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Abstract

Coded computing is a method for mitigating straggling workers in a centralized computing network, by using erasure-coding
techniques. Federated learning is a decentralized model for training data distributed across client devices. In this work we propose
approximating the inverse of an aggregated data matrix, where the data is generated by clients; similar to the federated learning
paradigm, while also being resilient to stragglers. To do so, we propose a coded computing method based on gradient coding. We
modify this method so that the coordinator does not access the local data at any point; while the clients access the aggregated matrix
in order to complete their tasks. The network we consider is not centrally administrated, and the communications which take place
are secure against potential eavesdroppers.

I. INTRODUCTION AND RELATED WORK

Inverting a matrix is one of the most important operations in numerous applications, such as, signal processing, machine
learning, and scientific computing [1], [2]. A common way of inverting a matrix is to perform Gaussian elimination, which
requires O(N3) operations for square matrices of order N . In high-dimensional applications, this can be cumbersome. Over the
past few years the machine learning (ML) community has made much progress on federated learning (FL), focusing on iterative
methods.

The objective of FL is to leverage computation, communication and storage resources to perform distributed computations for
ML models, where the data of each federated worker is never shared with the coordinator of the network; that aggregates local
computations in order to update the model parameters. In FL applications it is important that the data is kept private and secure.

Distributed computations in the presence of stragglers (workers who fail to compute their task or have longer response times)
must account for the effect of non-responsive workers. Coding-theoretic approaches have been adopted for this purpose [3], [4],
and fall under the framework of coded computing (CC). Other techniques have also been utilized; to develop approximate CC
schemes, e.g. equiangular tight frames [5] and sketching [6]. Data security is also an increasingly important issue in CC [7].
Despite the fact that multiplication algorithms imply inversion algorithms and vice versa, in the context of CC; matrix inversion
has not been studied as extensively as coded matrix multiplication (CMM) [8]. The main reason for this is the fact that the latter
is non-linear and non-parallelizable as an operator. We point out that distributed inversion algorithms do exist, though these make
assumptions on the matrix, are specific for distributed and parallel computing platforms, and require a matrix factorization; or
heavy and multiple communication instances between the workers and the coordinator.

In [9] a CC method1 was proposed based on gradient coding (GC) [10], which approximates the inverse of a matrix A. In
order to overcome the obstacle of non-linearity, the columns of A−1 are approximated. When assuming infinite floating-point
precision, this CCM introduces no numerical nor approximation errors. Note that GC and not CMM was utilized, as the latter
does not require the encoding to be done locally by the workers.

Though the two areas of FL and CC seem to be closely related, on the surface they appear incompatible. For instance, in CC
one often assumes there is a master server that distributes the data and may perform the encoding (encoding by the master server
is done in CMM, but not in GC), while in FL the central coordinator never has access to the distributed local training data; which
are located at different client nodes or workers.

There are a few recent works that leverage CC in order to devise secure FL methods for distributed regression and iterative
optimization [11]–[16]. In this work, we combine optimization and CC, using erasure coding to protect against stragglers as in
CC and locally approximating the inverse without revealing the data to the coordinator, to design a CCM which inverts a matrix
from data aggregated through clients; and guarantees security against eavesdroppers. Our approach, is based on the coded matrix
inversion method (CMIM) we develop, which utilizes balanced Reed-Solomon (BRS) codes [17], [18]. This results in an efficient
decoding in terms of the threshold number of responsive workers needed to perform an error free computation. We show that
the general class of maximum distance separable (MDS) generator matrices could be used to generate a suitable erasure code
(Theorem 7). The focus is on BRS codes, which have the following advantages:

(i) minimum redundancy per task across the network,
(ii) they optimize communication from workers to the master,

(iii) we can efficiently decode the resulting method.
As noted in [11], [13], most CCMs are not applicable in FL. In our case, the obstacle is that all clients need to know each others

data in order to invert the aggregated matrix, which we elaborate on in V-A. For this reason, we relax the privacy restriction of FL
and allow the clients to recover the aggregated matrix A, which is necessary and unavoidable for matrix inversion.

1We abbreviate ‘coded computing method/methods’ to CCM/CCMs.
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Our CMIM can also be used to compute the Moore–Penrose pseudoinverse Y† of a data matrix Y ∈ RM×N for M ≫ N ,
which is more general than inverting a square matrix. By using the fact that Y† = (Y⊤Y)−1Y⊤, the bottleneck is computing
the inverse of A = Y⊤Y. In addition, two more matrix multiplications need to take place distributively: computing A before
the inversion; and Â−1Y⊤ after the inverse has been approximated. The matrix products can be computed distributively using
various CCMs, e.g. we can use a modification of the coded FL approaches of [13] and a CMM from [19]; both of which are based
on GC. For the remainder of the paper, we focus on the generic problem of inverting a square matrix A.

The proposed approach applies to general linear regression problems. Compared to traditional FL iterative approaches [20],
the difference is that for Yθ = p; with p the label vector and θ the model parameters, the pseudoinverse-regularized regression
solution is θ̂ = Ŷ†p. Unlike conventional FL methods, this regularized regression can be computed non-iteratively. The non-
iterative nature of the proposed approach is advantageous in settings such as Kalman filtering, where the matrix inverse must be
updated in real time as measurements come in, as well as when dealing with time-series; and regularized regression with varying
regularized coefficients.

We organize the paper as follows. In II we recall basic facts on matrix inversion, least squares approximation and finite fields.
In III we review BRS codes, and prove two key lemmas regarding their generator matrices. In IV we present the matrix inverse
approximation algorithm we utilize in our CCM. The main contribution is presented in V. Our approach is split into four phases,
which we group in pairs of two. First, we discuss information sharing from the coordinator to the workers (we consider all
the clients’ servers as the network’s workers), and then information sharing between the workers. Second, we show how our
inversion algorithm can be incorporated in linear CCMs, and describe how this fits into the relaxed FL setting we are considering.
Concluding remarks and future work are presented in VI.

A. Overview of the Coded Matrix Inversion Method

In CC the computational network is centralized, and is comprised of a master server who communicates with n workers. The
idea behind our approximation is that the workers use a least squares solver to approximate multiple columns of A−1, resulting
in a set of local approximations to submatrices of Â−1, which we refer to as blocks. We present approximation guarantees and
simulation results for steepest descent (SD) and conjugate gradient (CG) iterative optimization methods. By locally approximating
the columns in this way, the workers can linearly encode the blocks of Â−1. The clients have a block of data {Aι}kι=1, which
constitute the data matrix A =

[
A1 · · · Ak

]
. To simplify our presentation, we assume that each local data block is of the same

size; i.e. Aι ∈ RN×T for T = N/k, and that client i has ni servers. Therefore, the total number of workers is n =
∑k

j=1 nj .
We assume the blocks are of the same size, so that the encodings carried out by the clients are consistent. In V, we show that this
assumption is not necessary. Moreover, for the CCM, it is not required that the number of blocks equal the number of clients. For
a given natural number γ, assume that γ divides T ; denoted γ | T (each local data block Aι is further divided into γ sub-blocks).
In the case where k ∤ N or γ ∤ T , we can pad the blocks of Â−1 so that these assumptions are met.

A limitation of our proposed CMIM, is the fact that each worker needs to have full knowledge of A, in order to estimate
columns of A−1 through a least squares solver. The sensitivity of Gaussian elimination and matrix inversion also require that
all clients have knowledge of each others’ data [9]. This limitation is shared by other coded federated learning methods, e.g.
CodedPaddedFL [13], and further justifies our requirement that task allocations need to be carefully distributed across the workers,
especially in the context of FL. In contrast to CC and GC; where a master server has access to all the data, in FL the data is
inherently distributed across devices, thus GC cannot be applied directly. We also assume that the coordinator does not intercept
the communication between the clients, otherwise she could recover the local data. Also, we trust that the coordinator will not
invert Â−1, to approximate A — this would be computationally difficult, for N large.

Before broadcasting the data amongst themselves, the clients encode their block Ai, which guarantees security from outside
eavesdroppers. When the clients receive the encoded data, they can decrypt and recover A. Then, their servers act as the workers
of the proposed CMIM and carry out their assigned computations, and directly communicate their computations back to the
coordinator. Once the recovery threshold (the minimum number of responses needed to recover the computation) is met, the
approximation Â−1 is recoverable.

B. Coded Federated Learning

There are few works that leverage CC to devise secure FL schemes. Most of these works have focused on distributed regression
and iterative methods, which is the primary application for FL [11]–[15]. Below, we describe and compare these approaches to
our work.

The authors of [11] proposed coded federated learning, in which they utilize a CMM scheme. Their security relies on the use
of random linear codes, to define the parity data. Computations are carried out locally on the systematic data, and only the parity
data is sent to the coordinator. The main drawback compared to our scheme is that each worker has to generate a random encoding
matrix and apply a matrix multiplication for the encodings, while we use the same BRS generator matrix across the network,
based on GC, to linearly encode the local computations. The drawback in our case, is that the workers need to securely share their
data with each other. This is an artifact of the operation (inversion) we are approximating, and is inevitable in the general case
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where A has no structure. Under the relaxed FL setting we are considering, where the data is gathered or generated locally and is
not i.i.d., we cannot make any assumptions on the structure of A.

In [13], two methods were proposed. CodedPaddedFL combines one-time-padding with GC to carry out the FL task. Some
of its disadvantages are that a one-time-pad (OTP) needs to be generated by each worker, and that the OTPs are shared with the
coordinator, which means that if she gets hold of the encrypted data, she can decrypt it, compromising security. Furthermore,
there is a heavy communication load and the coordinator needs to store all the pads in order to recover the computed gradients. In
the proposed CMIM, the coordinator generates a set of interpolation points, and shares them with the clients. If the coordinator
can intercept the communication between the workers, she can decrypt the encrypted data blocks. The second method proposed
in [13], CodedSecAgg, relies on Shamir’s secret sharing (SSS); which is based on polynomial interpolation over finite fields. In
contrast, our CMIM relies on GC and Lagrange interpolation.

Lastly, we discuss the method proposed in [15], which is based on the McEliece cryptosystem, and moderate-density parity-
check codes. This scheme considers a communication delay model which defines stragglers as the workers who respond slower
than the fastest worker, and time out after a predetermined amount of time ∆. As the iterative SD process carries on, such workers
are continuously disregarded. Due to this, there is a data sharing step at each iteration, at which the new stragglers communicate
encrypted versions of their data to the active workers. Our scheme is non-iterative, and has a fixed recovery threshold. Unlike
some of the works previously mentioned, which guarantee information-theoretic security, the McEliece based systems and our
approach have computational security guarantees.

C. Lagrange Interpolation and Polynomial CCMs
While there is extensive literature on matrix-vector and matrix-matrix multiplication, and computing the gradient in the presence

of stragglers, there is limited work on computing or approximating the inverse of a matrix [21]. The non-linearity of matrix
inversion prohibits linear or polynomial encoding of the data before the computations are to be performed. Consequently, most
CCMs cannot be directly utilized. Gradient coding is the appropriate CC set up to consider [22], precisely because the encoding
takes place once the computation has been completed, in contrast to most CMM methods where the encoding is done by the master,
before the data is distributed. This helps improve the recovery threshold, which is a primary objective of the CMM problem.

Here, we give a brief overview of the GC scheme on which our CMIM is based. We also review “Lagrange Coded Computing”
(LCC), which has relations to our approach. Then, we give a summary of our proposed CMIM. All these rely on Lagrange
interpolation over finite fields. We then mention related CMM schemes based on Lagrange or polynomial interpolation.

Gradient codes are a class of codes designed to mitigate the effect of stragglers in data centers, by recovering the gradient of
differentiable and additively separable objective functions in distributed first order methods [22]. The proposed CMIM utilizes
BRS generator matrices constructed for GC [10]. The main difference from our work is that in GC the objective is to construct an
encoding matrix G ∈ Cn×k and decoding vectors aI ∈ Ck, such that a⊤I GI = 1⃗ for any set of non-straggling workers indexed
by I. To do so, the decomposition of the BRS generator matrices GI = HIP is exploited, where HI is a Vandermonde matrix;
and the first row of P is equal to 1⃗. Subsequently a⊤I is extracted as the first row of H−1

I .
In the proposed CMIM framework, the objective is to design an encoding-decoding pair (G̃, D̃I) for which D̃IG̃I = IN , for

all I ⊊ Nn of size k. The essential reason for requiring this condition, as opposed to that of GC, is that the empirical gradient of a
given dataset is the sum of each individual gradients, while in our scenario if the columns of Â−1 are summed; they cannot then
be recovered.

The state-of-the art CC framework is LCC, which is used to compute arbitrary multivariate polynomials of a given dataset [4];
and has since been considered in various settings [23]–[27]. This approach is based on Lagrange interpolation, and it achieves the
optimal trade-off between resiliency, security, and privacy. The problem we are considering is not a multivariate polynomial in
terms of A. To securely communicate A to the workers, we encode it through Lagrange interpolation. Though similar ideas appear
in LCC, the purpose and application of the interpolation is different. Furthermore, LCC is a point-based approach and requires
additional interpolation and linear combination steps after the decoding takes place, while ours is a coefficient-based CCM [28].

Recall that the workers in the CMIM must compute blocks of Â−1. Once they complete their computations, they encode them
by computing a linear combination with coefficients determined by a sparsest-balanced MDS generator matrix. Referring to the
advantages claimed for CMIM in Section I, working with MDS generator matrices allows us to meet points (i) and (ii), while BRS
generator matrices also helps us satisfy (iii). Once the recovery threshold is met, the coordinator can recover the approximation
Â−1. The structure of sparsest-balanced generator matrices is also leveraged to optimally allocate tasks to the workers, while
linear encoding is what allows minimal communication load from the workers to the master. Security against eavesdroppers is
guaranteed by encoding the local data through a modified Lagrange interpolation polynomial, before it is shared by the clients.
This CMIM also extends to approximating A† [9].

Some of the earliest interpolation based CMM schemes are the Polynomial [8] and MatDot codes [29], both of which are point-
based. The construction of ‘Polynomial Codes’ has since been generalized to ‘Entangled Polynomial Codes’ [30], which define
similar polynomials to ours (12), though their use differs. We use (12) to encrypt the clients’ data blocks; and our decryption is an
evaluation at a finite field point. For Entangled Polynomial Codes two such polynomials are defined; one for each input matrix,
and their product determines another degree R − 2 polynomial which is evaluated by each worker at a different point, before
proceeding to the decoding step.
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In MatDot codes [29] two polynomials are defined, one corresponding to each input, where instead of the Lagrange polynomial
in (12); a monic monomial is multiplied by the partitions of the respective block submatrices. Then, analogous steps to those of
Entangled Polynomial Codes take place, in order to recover the matrix product.

II. PRELIMINARY BACKGROUND

The set of N × N invertible matrices is denoted by GLN (R). Recall that A ∈ GLN (R) has a unique inverse A−1, such that
AA−1 = A−1A = IN . The simplest way of computing A−1 is by performing Gaussian elimination on

[
A|IN

]
, which gives[

IN
∣∣A−1] in O(N3) operations. In Algorithm 1, we approximate A−1 column-by-column. We denote the ith row and column

of A respectively by A(i) and A(i). The condition number of A is κ2 = ∥A∥2∥A−1∥2. The largest, smallest and ith singular
values of A are denoted by σmin(A), σmax(A) and σi(A) respectively. For I an index subset of the rows of a matrix M, the matrix
consisting only of the rows indexed by I, is denoted by MI . We denote the set of integers between 1 and ν by Nν . The support
of a vector v is denoted by supp(v), and the number of nonzero elements of A by nnzr(A).

In the proposed algorithm we approximate N instances of the least squares minimization problem

θ⋆ls = arg min
θ∈RM

{
∥Aθ − y∥22

}
(1)

for A ∈ RN×M and y ∈ RN . In many applications N ≫ M , where the rows represent the feature vectors of a dataset. This has
the closed-form solution θ⋆ls = A†y.

Computing A† to solve (1) is intractable for large M , as it requires computing the inverse of A⊤A. Instead, we use gradient
methods to get approximate solutions, e.g. SD or CG, which require less operations, and can be done distributively. One could use
second-order methods; e.g. Newton–Raphson, Gauss-Newton, Quasi-Newton, BFGS, or Krylov subspace methods instead. This
would be worthwhile future work.

When considering a minimization problem with a convex differentiable objective function ψ : Θ→ R over an open convex set
Θ ⊆ RM , as in (1), the SD procedure selects an initial θ[0] ∈ Θ, and then updates θ according to:

θ[t+1] = θ[t] − ξt · ∇θψ(θ
[t]), for t = 0, 1, 2, . . .

until a termination criterion is met, for ξt the step-size. The CG method is the most used and prominent iterative procedure for
numerically solving systems of positive-definite equations.

Our proposed coding scheme is defined over the multiplicative cyclic group (F×
q , ·), for Fq the finite field of q elements and

F×
q = Fq\{0Fq

} its set of units. For implementation purposes, we identify F×
q with its realization in C as a subgroup of the

circle group, since we assume our data is over R. All operations can therefore be carried out over C. Specifically, we identify β
as an arbitrary primitive generator of (F×

q , ·). One such case is to identify β 7→ e2πi/(q−1). Thus, for all j ∈ Nq−1; we identify
βj 7→ e2πij/(q−1).

III. BALANCED REED-SOLOMON CODES

A Reed-Solomon code RSq[n, k] over Fq for q > n > k, is the encoding of polynomials of degree at most k − 1, for k the
message length and n the code length. It represents our message over the defining set of points A = {αj}nj=1 ⊂ Fq

RSq[n, k] =
{[
f(α1), f(α2), · · · , f(αn)

] ∣∣∣
f(X) ∈ Fq[X] of degree ⩽ k − 1

}
where αj = αj , for α a primitive root of Fq . Hence, each αi is distinct. A natural interpretation of RSq[n, k] is through its
encoding map. Each message (m0, ...,mk−1) ∈ Fk

q is interpreted as f(x) =
∑k−1

i=0 mix
i ∈ Fq[x], and f is evaluated at each point

of A . From this, RSq[n, k] can be defined through the generator matrix

G =


1 α1 α2

1 . . . αk−1
1

1 α2 α2
2 . . . αk−1

2
...

...
...

. . .
...

1 αn α2
n . . . αk−1

n

 ∈ Fn×k
q ,

thus, RS codes are linear codes over Fq . Furthermore, they attain the Singleton bound, i.e. d = n − k + 1, where d is the code’s
distance, which implies that they are MDS.

Balanced Reed-Solomon codes [17], [18] are a family of linear MDS error-correcting codes with generator matrices G ∈ Fn×k
q

that are:
• sparsest: each column has the least possible number of nonzero entries
• balanced: each row contains the same number of nonzero entries

for the given code parameters k and n. The design of these generators are suitable for our purposes, as:
1) we have balanced loads across homogeneous workers,
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2) sparse generator matrices reduce the computation tasks across the network,
3) the MDS property permits an efficient decoding step,
4) linear codes produce a compressed representation of the encoded blocks.

A. Balanced Reed-Solomon Codes for CC
In the proposed CMIM, we leverage BRS generator matrices to approximate A−1 distributively. For simplicity, we will consider

the case where d = s+ 1 = nw
k is a positive integer2, for n the number of workers and s the number of stragglers. Furthermore,

d is the distance of the code and ∥G(j)∥0 = d for all j ∈ Nk; ∥G(i)∥0 = w for all i ∈ Nn, and d > w since n > k. For decoding
purposes, we require that at least k = n− s workers respond. Consequently, d = s+1 implies that n− d = k− 1. For simplicity,
we also assume d ⩾ n/2. In our setting, each column of G corresponds to a computation task of computing a block of Â−1;
which we will denote by Âi, and each row corresponds to a worker.

Our choice of such a generator matrix G ∈ Fn×k
q , solves

arg min
G∈Fn×k

q

{
nnzr(G)

}
s.t. ∥G(i)∥0 ⩾ w, ∀i ∈ Nn

∥G(j)∥0 ⩾ d, ∀j ∈ Nk

rank(GI) = k, ∀I : |I| = k

(2)

which determines an optimal task allocation among the workers of the proposed CMIM. The first and second constraints are
analogous to the bound of [22, Theorem 1], which is met with equality in “perfectly balanced GC schemes”. This theorem states
that if all rows of G have the same number of nonzeros, then ∥G(i)∥0 ⩾ k(s + 1)/n, for all i. By construction, the generator
matrix G we propose, meets the first and second constraints with equality, for all i ∈ Nn and j ∈ Nk.

Under the above assumptions, the entries of the generator matrix of a BRSq[n, k] code meet the following:
• each column is sparsest, with exactly d nonzero entries
• each row is balanced, with w = dk

n nonzero entries
where d equals to the number of workers who are tasked to compute each block, and w is the number of blocks that are computed
by each worker.

Each column G(j) corresponds to a polynomial pj(x), whose entries are the evaluation of the polynomial we define in (3) at
each of the points of the defining set A , i.e. Gij = pj(αi) for (i, j) ∈ Nn × Nk. To construct the polynomials {pj(x)}kj=1, for
which deg(pj) ⩽ nnzr(G(j)) = n− d = k − 1, we first need to determine a sparsest and balanced mask matrix M ∈ {0, 1}n×k,
which is ρ-sparse for ρ = d

n ; i.e. nnzr(G) = ρnk. We use the construction from [10], though it is fairly easy to construct
more general such matrices, by using the Gale-Ryser Theorem [31], [32]. Even though this was not pointed out in [10], their
construction of M (Algorithm 2) does not always produce a mask matrix of the given parameters when we select d < n/2. This
is why in our work we require d ⩾ n/2. Furthermore, deterministic constructions resemble generator matrices of cyclic codes.

For our purposes we use B = {βj}nj=1 as our defining set of points, where each point corresponds to the worker with the same
index. The objective now is to devise the polynomials pj(x), for which pj(βi) = 0 if and only if Mij = 0. Therefore:

(I) Mij = 0 =⇒ (x− βi) | pj(x)
(II) Mij ̸= 0 =⇒ pj(βi) ∈ F×

q

for all pairs (i, j).
The construction of BRSq[n, k] from [17] is based on what the authors called scaled polynomials. Below, we summarize the

polynomial construction based on Lagrange interpolation [10]. We then prove a simple but important result that allows us to
efficiently perform the decoding step.

The univariate polynomials corresponding to each column G(j), are defined as:

pj(x) :=
∏

i:Mij=0

(
x− βi
βj − βi

)
=

k∑
ι=1

pj,ι · xι−1 ∈ Fq[x] (3)

which satisfy (I) and (II). By the BCH bound [33, Chapter 9], it follows that deg(pj) ⩾ n − d = k − 1 for all j ∈ Nk. Since
each pj(x) is the product of n− d monomials, we conclude that the bound on the degree is satisfied and met with equality, hence
pj,ι ∈ F×

q for all coefficients.
By construction, G is decomposable into a Vandermonde matrix H ∈ Bn×k and a matrix comprised of the polynomial

coefficients P ∈ (F×
q )

k×k [10]. Specifically, G = HP where Hij = βj−1
i = βi(j−1) and Pij = pj,i are the coefficients

from (3). This can be interpreted as P(j) defining the polynomial pj(x), and H(i) is comprised of the first k positive powers of βi
in ascending order, therefore

pj(βi) =

k∑
ι=1

pj,ι · βι−1
i = ⟨H(i),P

(j)⟩.

2The case where nw
k

∈ Q+\Z+ is analyzed in [10], and also applies to our approach. We restrict our discussion to the case where nw
k

∈ Z+.
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The following lemmas will help us respectively establish in our CC setting the efficiency of our decoding step and the optimality
of the allocated tasks to the workers. For Lemma 1, recall that efficient matrix multiplication algorithms have complexityO(Nω),
for ω < 2.372 the matrix multiplication exponent [34].

Lemma 1. The restriction GI ∈ Fk×k
q of G to any of its k rows indexed by I ⊊ Nn, is an invertible matrix. Moreover, its inverse

can be computed online in O(k2 + kω) operations.

Proof. The matrices H and P are of size n × k and k × k respectively. The restricted matrix GI is then equal to HIP, where
HI ∈ Fk×k

q is a square Vandermonde matrix, which is invertible in O(k2) time [35]. Specifically

HI =


1 βI1

β2
I1

. . . βk−1
I1

1 βI2 β2
I2

. . . βk−1
I2

...
...

...
. . .

...
1 βIk

β2
Ik

. . . βk−1
Ik

 ∈ Fk×k
q .

It follows that
det(HI) =

∏
{i<j}⊆I

(βj − βi)

which is nonzero, since β is primitive. Therefore, HI is invertible. By [17, Lemma 1] and the BCH bound, we conclude that P is
also invertible. Hence, GI is invertible for any set I.

Note that the inverse of P can be computed a priori by the master before we deploy our CCM. Therefore, computing G−1
I

online with knowledge of P−1, requires an inversion of HI which takesO(k2) operations; and then multiplying it by P−1. Thus,
it requires O(k2 + kω) operations in total. ■

Lemma 2. The generator matrix G ∈ Fn×k
q of a BRSq[n, k] MDS code defined by the polynomials pj(x) of (3), solves the

optimization problem (2).

Proof. The first two constraints are satisfied by the construction of G, which meets the sparsest and balanced constraints with
equality; for the given parameters. The last constraint is implied by the MDS theorem, which states that every set of k rows of G
is linearly independent.

The sparsity constraints of (2) imply that nnzr(G) ⩾ max{nw, kd}, and for our parameters we have nw = kd. Both the first
and second constraints are met with equality for the chosen G. Moreover

nnzr(G) =
∑
j∈Nk

nnzr(G(j))

=
∑
j∈Nk

#
{
pj(βi) ̸= 0 : βi ∈ B

}
=
∑
j∈Nk

n−
{
i : Mij = 0

}
=
∑
j∈Nk

n− (n− d)

= kd

and the proof is complete. ■

We conclude this subsection by recalling how the decomposition G = HP is utilized for GC [10]. Each column of G
corresponds to a partition of the data whose partial gradient is to be computed. The polynomials are judiciously constructed
in this scheme, such that the constant term of each polynomial is 1, thus P(1) = 1⃗. By this, the decoding vector a⊤I is the first
row of H−1

I , for which a⊤I HI = e⊤1 . A direct consequence of this is that a⊤I GI = e⊤1 P = P(1) = 1⃗, which is the objective for
constructing a GC scheme.

IV. INVERSE APPROXIMATION ALGORITHM

Our goal is to estimate A−1 =
[
b1 · · · bN

]
, for A a square matrix of order N . A key property to note is

AA−1 = A
[
b1 · · · bN

]
=
[
Ab1 · · · AbN

]
= IN

which implies that Abi = ei for all i ∈ NN , where ei are the standard basis column vectors. Assume for now that we use any
black-box least squares solver to estimate

b̂i ≈ arg min
b∈RN

{
gi(b) := ∥Ab− ei∥22

}
(4)
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which we call N times, to recover Â−1 :=
[
b̂1 · · · b̂N

]
. This approach may be viewed as approximating

Â−1 ≈ arg min
B∈RN×N

{
∥AB− IN∥2F

}
.

Alternatively, one could estimate the rows of A−1. Algorithm 1 shows how this can be performed by a single server.

Algorithm 1: Estimating A−1

Input: A ∈ GLN (R)
for i=1 to N do

approximate b̂i ≈ argminb∈RN

{
∥Ab− ei∥22

}
end
return Â−1 ←

[
b̂1 · · · b̂N

]
In the case where SD is used to approximate b̂i from (4), the overall operation count is O(TiN2); for Ti the total number of

descent iterations used. An upper bound on the number of iterations can be determined by the underlying termination criterion,
e.g. the criterion gi(b̂[t]) − gi(b⋆

ls) ⩽ ϵ is guaranteed to be satisfied after T = O(log(1/ϵ)) iterations [36]. The overall error of
Â−1 may be quantified as

• errℓ2(Â−1) := ∥Â−1 −A−1∥2
• errF (Â−1) := ∥Â−1 −A−1∥F

• errrF (Â−1) := ∥Â−1−A−1∥F

∥A−1∥F
=

(
N∑

i=1
∥Ab̂i−ei∥2

2

)1/2

∥A−1∥F
.

To approximate A−1 distributively, each of the n workers are asked to estimate τ -many b̂i’s in parallel. When using SD, the
worst-case runtime by the workers is O(τTmaxN

2), for Tmax the maximum number of iterations of SD among the workers. If CG
is used, each worker needs no more than a total of Nτ CG steps to exactly compute its task, i.e. O(τNκ2) operations; as each
instance of (4) is expected to converge in O(κ2) iterations, which is the worst case runtime [37], [38].

In order to bound errrF (Â−1) = ∥Â−1−A−1∥F

∥A−1∥F
, we first upper bound the numerator and then lower bound the denominator.

Since ∥A−1 − Â−1∥2F =
∑N

i=1 ∥A−1ei − b̂i∥22, bounding the numerator reduces to bounding ∥A−1ei − b̂i∥22 for all i ∈ NN .
This is straightforward

∥A−1ei − b̂i∥22
♢
⩽ 2

(
∥A−1ei∥22 + ∥b̂i∥22

)
$
⩽ 2

(
∥A−1∥22 · ∥ei∥22 + ∥b̂i∥22

)
= 2

(
1/σmin(A)2 + ∥b̂i∥22

)
(5)

where in ♢ we use the fact that ∥u− v∥22 ⩽ 2(∥u∥22 + ∥v∥22), and in $ the submultiplicativity of the ℓ2-norm is invoked. For the
denominator, by the definition of the Frobenius norm

∥A−1∥2F =

N∑
i=1

1

σi(A)2
⩾

N

σmax(A)2
. (6)

By combining (5) and (6) we get

errrF (Â−1) ⩽
√
2

(
N/σmin(A)2 +

∑N
i=1 ∥b̂i∥22

N/σmax(A)2

)1/2

=
√
2

(
κ22 +

σmax(A)2

N
·

N∑
i=1

∥b̂i∥22

)1/2

.

This is an additive error bound in terms of the problem’s condition number, which also shows a dependency on the estimates
{b̂i}Ni=1. Propositions 3 and 4 give error bounds when using SD and CG as the subroutine of Algorithm 1 respectively.

Proposition 3. For A ∈ GLN (R), we have errF (Â−1) ⩽
ϵ
√

N/2

σmin(A)2 and errrF (Â−1) ⩽
ϵ
√

N/2

σmin(A) , when using SD to solve (4) with
termination criteria ∥∇gi(b[t])∥2 ⩽ ϵ for each i.

Proof. Recall that for a strongly-convex function with strong-convexity parameter µ, we have the following optimization gap [36,
Section 9.1.2]

gi(b)− gi(b⋆
ls) ⩽

1

2µ
· ∥∇gi(b)∥22 . (7)



8

For A ∈ GLN (R) in (4), the constant is µ = σmin(A)2. By fixing ϵ =
√
2σmin(A)2η, we have η = 1

2 ·
(

ϵ
σmin(A)

)2
. Thus, by (7)

and our termination criterion:

∥∇gi(b)∥2 ⩽
√
2σmin(A)2η =⇒ gi(b)− gi(b⋆

ls) ⩽ η ,

so when solving (4) we get
gi(b)− gi(b⋆

ls) = gi(b)− 0 = ∥Ab̂i − ei∥22 ,

hence

∥Ab̂i − ei∥22 ⩽
1

2
·
(

ϵ

σmin(A)

)2

(8)

for all i ∈ NN . We want an upper bound for each summand ∥A−1ei − b̂i∥22 of the numerator of errrF (Â−1)2:

∥A−1ei − b̂i∥22 = ∥A−1(ei −Ab̂i)∥22
⩽ ∥A−1∥22 · ∥ei −Ab̂i∥22
♯

⩽ ∥A−1∥22 ·
1

2
·
(

ϵ

σmin(A)

)2

(9)

=
ϵ2

2σmin(A)4
(10)

where ♯ follows from (8), thus errF (Â−1)2 ⩽ Nϵ2

2σmin(A)4 . Substituting (9) into the definition of errrF (Â−1) gives us

errrF (Â−1)2 ⩽
∥A−1∥22
∥A−1∥2F

· N
2
·
(

ϵ

σmin(A)

)2 ‡
⩽

Nϵ2/2

σmin(A)2

where ‡ follows from the fact that ∥A−1∥22 ⩽ ∥A−1∥2F . ■

In the experiments of Subsection IV-A, we verify that Proposition 3 holds for Gaussian random matrices. The dependence on
1/σmin(A) is an artifact of using gradient methods to solve the underlying problems (4), since the error will be multiplied by
∥A−1∥22. In theory, this can be annihilated if one runs the algorithm on pA for p ≈ 1/σmin(A), followed by multiplication of
the final result by p. This is a way of preconditioning SD. In practice, the scalar p should not be selected to be much larger than
1/σmin(A), as it could result in Â−1 ≈ 0N×N .

Proposition 4. Assume Algorithm 1 uses CG to solve (4). Then, in O
(
N
√
κ2 ln(1/ϵ)

)
iterations, we have errF (Â−1) ⩽ Nϵ.

Moreover, if A⊤A has Ñ distinct eigenvalues, it converges in at most ÑN steps.

Proof. By [37, Section 10] and [39, Section 2], we know that for each subroutine (4) of Algorithm 3, CG requires at most
O(√κ2 ln(1/ϵ)) iterations in order to attain an ϵ-optimal point, for each b̂i. Hence, considering all approximate columns {b̂i}Ni=1,
we conclude that the total error in terms of the Frobenius norm of Â−1, is at most Nϵ.

Recall that in order to solve (1) with the CG method in the case where A is neither symmetric, positive-definite, nor square,
we apply the CG iteration to the normal equations: A⊤Ay = A⊤θ. This follows by setting the derivative of (1) to zero. In our
scenario, we are assuming that A ∈ GLN (R), hence A⊤A is full-rank and symmetric, thus CG in its simplest form can be used
to solve the minimization problems of Algorithm 1. By [38, Theorem 38.4], it follows that each instance of (4) converges in at
most Ñ steps. ■

Even though Proposition 4 guarantees convergence in at most ÑN steps, it does not assume finite floating-point precision.
Therefore, this does not hold in practical settings. Our experiments though show that after significantly less steps, we achieve
approximations of negligible error, which is sufficient for ML and FL applications.

A. Numerical Experiments

The accuracy of the proposed algorithm was tested on randomly generated matrices, using both SD and CG for the subroutine
optimization problems. The depicted results are averages of 20 runs, with termination criteria ∥∇gi(b[t])∥2 ⩽ ϵ for SD and
∥b[t]

i − b
[t−1]
i ∥2 ⩽ ϵ for CG, for the given ϵ accuracy parameters. We considered A ∈ R100×100. The error subscripts represent

A = {ℓ2, F, rF}, N = {ℓ2, F}. We note that significantly fewer iterations took place when CG was used for the same ϵ, though
this depends heavily on the choice of the step-size. The errors observed in the case of CG, are due to floating-point arithmetic.
Therefore, as expected; there is a trade-off between accuracy and speed when using SD vs. CG.

Average Â−1 errors, for A ∼ 50 · N (0, 1) — SD
ϵ 10−1 10−2 10−3 10−4 10−5

errA O(10−2) O(10−5) O(10−7) O(10−9) O(10−12)
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Average Â−1 errors, for A ∼ 50 · N (0, 1) — CG
ϵ 10−3 10−4 10−5 10−6 10−7

errN O(10−3) O(10−5) O(10−8) O(10−11) O(10−12)

errrF O(10−3) O(10−5) O(10−7) O(10−10) O(10−12)

We utilized Algorithm 1 in Newton’s method, for classifying images of four and nine from MNIST, by solving a regularized
logistic regression minimization problem. For Algorithm 1, we used CG with a fixed number of iteration per column estimation.
It is clear from Figure 1 that we require no more than 18 iterations per column estimate, for N = 785, to attain the optimal
classification rate. With more than 18 CG iterations, the same classification rate was obtained.

14 15 16 17 18 19

CG iterations per column
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inversion with CG
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Fig. 1. MNIST classification error, where Algorithm 1 is used in Newton’s method. In red, we depict the error when exact inversion was used.

V. SECURE CODED MATRIX INVERSION

In this section, we describe the proposed CMIM (also presented in [9]) which makes Algorithm 1 resilient to stragglers, and
show how it can be applied to the relaxed FL scenario described in the introduction. The CMIM workflow is depicted in Figure 2.

Our scheme can be broken up in to four phases: (a) the coordinator shares elements β,H of a finite field with all the clients,
(b) the clients each generate a pseudorandom permutation (PRP) σι, encrypt their corresponding data block Aι through a matrix
polynomial fι(x), and broadcast {fι(x), σι} to the other clients, (c) the clients recover A, compute and encode their assigned task
Wι, which is communicated to the coordinator, (d) the coordinator decodes once sufficiently many workers respond. It is also
possible that β,H are determined collectively by the clients, or by a single client, which makes the data sharing secure against a
curious and dishonest coordinator.

Fig. 2. Algorithmic workflow of the CMIM, as proposed in [9]. The master shares f(x), an encoding analogous to (12), along with β, {η−1
j }kj=1. The workers

then recover A, compute their assigned tasks, and encode them according to G. Once k encodings Wι are sent back, Â−1 can be recovered.

In our proposed approach, we assume there is a trustworthy coordinator who shares certain parameters to each of the k clients
which constitute the network; e.g. hospitals in a health care network, each of which are comprised of multiple servers. What we
present works for the case where the clients have local datasets of different sizes, {Ni}ki=1. This would result in the encoding
functions fι(x) having different degrees, or their matrix coefficients being of a different size. In our setting we assume the workers
are homogeneous, i.e. they have the same computational power. Therefore, equal computational loads are assigned to each of
them. In order to keep the notation and size of the communication loads consistent, we assume w.l.o.g. that Aι ∈ RN×T for all
ι ∈ Nk. If this is not the case, before fι(x) are determined, the clients could perform a data exchange phase (e.g. [15]), so that
Ni = Nj for all i ̸= j. By this, it follows that the number of blocks does not have to be equal to the number of clients. The
example we describe, is simply a motivation. A flowchart of our approach is presented in Figure 3.

Moreover, in the case whereM > N ; forM =
∑k

i=1Ni, we can select a subset of features and/or samples, so that the resulting
data matrix we consider is square. This can be interpreted as using the surrogate Ã = SA, where S ∈ RN×M is an appropriate
(sparse) sketching matrix for matrix inversion [40], which the workers agree on.

First, in V-A we argue why all of A needs to be known by each of the workers, in order to recover entries or columns of its
inverse. Then, in V-B we focus on phases (a) and (b), where we utilize Lagrange interpolation to securely share A among the
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Fig. 3. Flowchart of our proposal, where k = ni = 4 for all i ∈ N4.

workers. We discuss the computation tasks the workers are requested to compute, which are blocks of Â−1; and collectively
correspond to the subroutine problems of Algorithm 1. In V-C we focus on (c) and (d), where we show how the workers encode
their computations, and describe the coordinator’s decoding step. Optimality of BRS generator matrices in terms of the encoded
communication loads is established in V-D.

When assuming no floating-point errors, our approach introduces no numerical nor approximation errors. The errors are a
consequence of using iterative solvers to estimate (4), which we utilize to linearly separate the computations. Therefore, if the
workers can recover the optimal solutions to the underlying minimization problems, our scheme would be exact.

A. Knowledge of A is necessary

A bottleneck when computing the inverse of a matrix; or estimating its columns, is that the entire matrix needs to be known.
A single change in the matrix’s entries may result in a non-singular matrix, which conveys how sensitive Gaussian elimination is.
Such problems are extensively studied in conditioning and stability of numerical analysis [38], and in perturbation theory. This is
not a focus of our work.

In the case where only one column is not known, one can determine the subspace in which the missing column lies, but without
the knowledge of at least one entry of that column, it would be impossible to recover that column. Even with such an approach or
a matrix completion algorithm, the entire A is determined before we proceed to inverting A; or performing linear regression to
approximate Ab = ei as in (4).

A similar issue, relating to our set up, is the case where one of the blocks is different. This could lead to drastic miscalculations.
In the following example, we consider n = k = 2 and N = 4, where the second worker sends two different blocks, which are
indicated by a different color and font:

A1 =

 6 2 2 -5
0 −1 2 0
−5 6 -1 -3
5 −3 -4 3

 A2 =

 6 2 −1 −3
0 −1 5 6
−5 6 3 −2
5 −3 1 6

 .

It follows that ∥A−1
1 ∥F ≈ 90.45, ∥A−1

2 ∥F ≈ 1, and ∥A−1
1 − A−1

2 ∥0 = 16; i.e. no entries of A−1
1 and A−1

2 are equal.
Furthermore, by the data processing inequality [41, Corollary pg. 35], the above imply that no less thanN2 information symbols

can be known by each worker, while hoping to approximate a column of A−1. Hence, all clients need full knowledge of each others
information, and cannot communicate less than NT symbols to each other. This is a consequence of the fact that a dense vector is
not recoverable from underdetermined linear measurements. They can however send an encoded version of their respective block
Aι ∈ RN×T to the other clients consisting of NT symbols, determined by a modified Lagrange polynomial, which guarantees
security against eavesdroppers.

Similar cryptographic protocols date back to the SSS algorithm [42], [43], which is also based on RS codes. This idea has been
extensively exploited in LCC [4], yet differs from our approach.
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B. Phases (a), (b) — Data Encryption and Sharing

Let k, γ ∈ Z+ be factors of N and T respectively, so that T = N
k and Γ = T

γ .3 The coordinator constructs a set of distinct
interpolation points B = {βj}nj=1 ⊊ F×

q , for q > n ⩾ γ.4 To construct this set, it suffices to sample β ∈ F×
q ; any one of the

ϕ(q − 1) primitive roots of Fq (ϕ is Euler’s totient function), which is a generator of the multiplicative group (F×
q , ·), and define

each point as βj = βj . Then, a random multiset H =
{
ηj ∈ F×

q | ∀j ∈ Nγ

}
of size γ is generated, i.e. repetitions in H are

allowed, which will be used to remove the structure of the Lagrange coefficients, as the adversaries could exploit their structure
to reveal β.

The element β and setH, are broadcasted securely to all the workers through a public-key cryptosystem, e.g. RSA or McEliece.
Matrices Aι are partitioned into γ blocks

Aι =
[
A1

ι · · · Aγ
ι

]
where Ai

ι ∈ RN×Γ, ∀i ∈ Nγ , (11)

and each client generates a PRP σι ∈ Sγ . The blocks {Aι}kι=1 are encrypted locally through the univariate polynomials

fι(x) =

γ∑
j=1

Aj
ι · ησι(j)

∏
l ̸=j

x− βl
βj − βl

 (12)

for which fι(βj) = ησι(j)A
j
ι .

The clients securely broadcast {fι(x), σι} to each other, and their servers can then recover all Aι’s as follows:

Aι =
[
η−1
σι(1)

fι(β1) · · · η−1
σι(γ)

fι(βγ)
]
∈ RN×T . (13)

The coefficients of fι(x) are comprised of NΓ symbols, thus, each polynomial consists of a total of NT symbols, which is the
minimum number of symbols needed to be communicated. The PRP σι is generated locally by the clients, to ensure that each
fι(x) differs by more than just the matrix partitions.

We assume Kerckhoffs’ principle, which states that everyone has knowledge of the system, including the messages fι(x). For
the proposed CMIM, as long as {β,H} and σι are securely communicated, even if fι(x) is revealed, the block Aι is secure against
polynomial-bounded adversaries (this is the security level assumed by the cryptosystems used for the communication).

Proposition 5. The encryptions of Aι through fι(x), are as secure against eavesdroppers as the public-key cryptosystems which
are used when broadcasting {β,H} and σι. To recover Aι, an adversary needs to intercept both communications, and break both
cryptosystems.

Proof. We prove this by contradiction. Assume that an adversary was able to reverse the encoding fι(x) of Aι. This implies that
he was able to reveal β and σι(H) := {ησι(j)

}γj=1. The only way to reveal these elements, is if he was able to both intercept and
decipher the public-key cryptosystem used by the coordinator, which contradicts the security of the cryptosystem.

In order to invert the multiplications of σι(H) for each of the evaluations of fι(x), both H and σι need to be known. To do so,
the adversary needs to intercept both the communication between the coordinator and the clients, and the communication between
the clients, as well as breaking both the cryptosystems used to securely carry out these communications. ■

C. Phases (c), (d) — Computations, Encoding and Decoding

At this stage, the workers have knowledge of everything they need in order to recover A, before they carry out their computation
tasks. By (13), the recovery is straightforward.

For Algorithm 1, any CCM in which the workers compute an encoding of partitions of the resulting computation E =[
E1 · · · Ek

]
could be utilized. It is crucial that the encoding takes place on the computed tasks {Ei}ki=1 in the scheme, and

not the assigned data or partitions of the matrices that are being computed over (such CMM leverage the linearity of matrix
multiplication), otherwise the algorithm could potentially not return the correct approximation. This also means that utilizing such
encryption approaches (e.g. [4]) for guaranteeing security against the workers, is not an option. We face these restrictions due to
the fact that matrix inversion is a non-linear operator.

The computation tasks Ei correspond to a partitioning Â−1 =
[
Â1 · · · Âk

]
, of our approximation from Algorithm 1. We

propose a linear encoding of the computed blocks {Âi}ki=1 based on generators satisfying (2). Along with the proposed decoding
step, we have a MDS-based CCM for matrix inversion.

We consider the same parameters as in V-B, in order to reuse B in the proposed CMIM. Each Âi is comprised of T distinct but
consecutive approximations of (4), i.e.

Âi =
[
b̂(i−1)T+1 · · · b̂iT

]
∈ RN×T ∀i ∈ Nk,

3If γ ∤ T , append 0T×1 to the end of the first γ̃ = T (modγ) blocks which are each comprised of Γ̃ = ⌊T
γ
⌋ columns of Aι, while the remaining γ − γ̃

blocks are comprised of Γ̃ + 1 columns. Now, each block is of size T × (Γ̃ + 1).
4For the encodings of the Aι’s, γ points suffice, and we only need to require q > γ. We select B of cardinality n and require q > n ⩾ γ, in order to reuse B

in our CCM.
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which could also be approximated by iteratively solving

Âi ≈ arg min
B∈RN×T

{∥∥AB−
[
e(i−1)T+1 · · · eiT

]∥∥2
F

}
.

Without loss of generality, we assume that the workers use the same algorithms and parameters for estimating the columns
{b̂i}Ni=1. Therefore, workers allocated the same tasks are expected to get equal approximations in the same amount of time.

For our CCM, we leverage BRS generator matrices for both the encoding and decoding steps. We adapt the GC framework,
so we need an analogous condition to a⊤I GI = 1⃗ for the CMIM; in order to invoke Algorithm 1. The condition we require is
D̃IG̃I = IN , for an encoding-decoding pair (G̃, D̃I).

From our discussion on BRS codes in III-A, we set G̃ = IT ⊗ G and D̃I = IT ⊗ G−1
I for any given set of k responsive

workers indexed by I. The index set of blocks requested from the ιth worker to compute is Jι := supp(G(ι)), and has cardinality
w. The workers’ encoding steps correspond to

G̃ · (Â−1)⊤ = (IT ⊗G) ·

Â
⊤
1
...
Â⊤

k

 =


∑

j∈J1

pj(β1) · Â⊤
j

...∑
j∈Jn

pj(βn) · Â⊤
j

 (14)

which are carried out locally, once they have computed their assigned tasks. We denote the encoding of the ιth worker by Wι ∈
CT×N , i.e. Wι =

∑
j∈Jι

pj(βι) · Â⊤
j , which is sent to the coordinator. The received encoded computations by any distinct k

workers indexed by I, constitute G̃I · (Â−1)⊤.
Lemma 1 implies that as long as k workers respond, the approximation Â−1 is recoverable. Moreover, the decoding step

reduces to a matrix multiplication of k × k matrices. Applying H−1
I to a square matrix can be done in O(k2 log k), through the

IFFT algorithm. The prevailing computation in our decoding, is applying P−1. The decoding step is

D̃I ·
(
G̃I · (Â−1)⊤

)
=

(
IT ⊗G−1

I
)
·
(
IT ⊗GI

)
· (Â−1)⊤

= (IT · IT )⊗
(
G−1

I ·GI
)
· (Â−1)⊤

= IT ⊗ Ik · (Â−1)⊤

= (Â−1)⊤

and our scheme is valid.
The above CCM therefore has a linear encoding done locally by the workers (14), is MDS since s = d − 1, and its decoding

step reduces to computing and applying G−1
I (Lemma 1). The security of the encodings rely on the secrecy of B, which were

sent from the coordinator to the workers. For an additional security layer, the interpolation points of B could instead be defined as
βj = βπ(j), for π ∈ Sn a PRP. In this case, π−1 would also need to be securely broadcasted.
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Fig. 4. Comparison of decoding complexity, when naive matrix inversion is used (so O(k3)) compared to the decoding step implied by Lemma 1, for n = 200
and varying s. We also provide a logarithmic scale comparison.

Remark 6. With the above framework, any sparsest-balanced generator MDS matrix [31] would suffice, as long as it satisfies the
MDS theorem [44]. By Lemma 1, if we set k = Ω(

√
N) (as in [8]), the decoding step could then be done inO

(
Nω/2

)
= o
(
N1.186

)
time, which is close to linear in terms of N .

Theorem 7. Let G ∈ Fn×k be a generator matrix of any MDS code over F, for which ∥G(j)∥0 = n − k + 1 and ∥G(i)∥0 = w
for all (i, j) ∈ Nn × Nk. By utilizing Algorithm 1, we can devise a linear MDS coded matrix inversion scheme; through the
encoding-decoding pair (G̃, D̃I).

Proof. The encoding coefficients applied locally by each of the n workers correspond to a row of G. The encodings of all the
workers then correspond to G̃ · (Â−1)⊤, for G̃ = IT ⊗G, as in (14). Consider any set of responsive workers I of size k, whose
encodings constitute G̃I · (Â−1)⊤. By the MDS theorem, GI is invertible. Hence, the decoding step reduces to inverting GI ; i.e.
D̃I = IT ⊗G−1

I , and is performed online. ■
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Constructions based on cyclic MDS codes, which have been used to devise GC schemes [45], can also be considered. These
encoding matrices are not sparsest-balanced, which makes them suitable when considering heterogeneous workers.

Proposition 8. Any cyclic [n, k] MDS code C over F ∈ {R,C} can be used to devise a coded matrix inversion encoding-decoding
pair (G̃, D̃I).

Proof. Consider a cyclic [n, n− s] MDS code C over F ∈ {R,C}. Recall that from our assumptions, we have s = n− k. By [45,
Lemma 8], there exists a codeword g1 ∈ C of support d = s+ 1, i.e. ∥g1∥0 = d. Since C is cyclic, it follows that the cyclic shifts
of g1 also lie in C. Denote the n − 1 consecutive cyclic shifts of g1 by {gi}ni=2 ⊊ C ⊊ F1×n, which are all distinct. Define the
cyclic matrix

Ḡ :=

 | | |
g⊤
1 g⊤

2 . . . g⊤
n

| | |

 ∈ Fn×n.

Since ∥gi∥0 = d and gi is a cyclic shift of gi−1 for all i > 1, it follows that ∥Ḡ(i)∥0 = ∥Ḡ(j)∥0 = d for all i, j ∈ Nn, i.e. Ḡ
is sparsest and balanced. If we erase any s = n − k columns of Ḡ, we get G ∈ Fn×k. By erasing arbitrary columns of Ḡ, the
resulting G is not balanced, i.e. we have ∥G(i)∥0 ̸= ∥G(j)∥0 for some pairs i, j ∈ Nn. Similar to our construction based on BRS

generator matrices, we define the encoding matrix to be G̃ = IT ⊗G. The local encodings are then analogous to (14).
Consider an arbitrary set of k non-straggling workers I ⊊ Nn, and the corresponding matrix GI ∈ Fk×k. By [45, Lemma 12,

B4.], GI is invertible. The decoding matrix is then D̃I = IT ⊗G−1
I , and the condition D̃IG̃ = IN is met. ■

D. Optimality of MDS BRS Codes

Under the assumption that k = n − s, by utilizing the BRSq[n, k] generator matrices, we achieved the minimum possible
communication load from the workers to the coordinator. From our discussion in V-A, we cannot hope to receive an encoding
of less than N2/k symbols; when we require that k workers respond with the same amount of information symbols in order to
recover Â−1 ∈ RN×N , unless we make further assumptions on the structure of A and A−1. Each encoding Wι consists of
NT = N2/k symbols, so we have achieved the lower bound on the minimum amount of information needed to be sent to the
coordinator. Moreover, Wι ∈ CT×N for any sparsest-balance generator MDS matrix. This also holds true for other generator
matrices which can be used in Theorem 7, as the encodings are linear (e.g. Proposition 8).

We also require the workers to estimate the least possible number of columns for the given recovery threshold k. For our choice
of parameters, the bound of [22, Theorem 1] is met with equality. That is, for all i ∈ Nn:

∥G(i)∥0 = w =
k

n
· d =

k

n
· (n− k + 1) ,

which means that for homogeneous workers, we cannot get a sparser generator matrix. This, along with the requirement that GI
should be invertible for all possible I, are what we considered in (2).

E. Time and Space Complexity

Next, we discuss the complexity of our method. Communication loads and storage are measured in symbols over R. For
simplicity, we assume that the n workers are homogeneous and the local data blocks {Aι}kι=1 are of size N × T , for T = N/k =
Γγ. To further simplify our expressions and for fair comparisons to other polynomial codes, we set k = n = Ω(

√
N) (as in [8]).

Let ν = |Enc(β)| denote the number of symbols required for the encoding of β through a public-key cryptosystem used to
securely broadcast a symbol. Further note that |Enc(H)| = γν and |Enc(σι)| ⩽ γν/2, when the same cryptosystem is used to
broadcastH and σι respectively. Hence, phase (a) requires a communication load of O(νγ) symbols per client.

There are γ modified Lagrange polynomials in (12); each of which require O(n− 1) operations to compute. Multiplying each
polynomial with one of the γ sub-blocks {Aj

ι}
γ
j=1, requires γ · O(NΓ) = O(NT ) = O(N3/2) additional operations in total.

Finally, summing over the encoded blocks requires O(NΓ(γ − 1)) = O(N3/2) operations. Hence, the encoding through the
polynomials fι(x) has complexity O

(
2N3/2 + γ(n − 1)

)
= O

(√
N(N + γ)

)
for each data block, which is done locally by the

clients. The PRP used could be any block cipher, e.g. the Feistel cipher; which has time complexity O(n). Therefore, phase (b)
has complexity O

(√
N(N + γ + 1)

)
and the clients communicate 2NT + n = Ω

(√
N(N + 1)

)
symbols to each other, which

accounts for a total communication load of (k − 1) · Ω
(√
N(N + 1)

)
= Ω(N2) symbols per client.

At phase (c), the ιth client first recovers A by evaluating η−1
σι(j)

fι(βj); for each j ∈ Nγ , which requires a total of O(γ ·NΓ) =

O
(
N3/2

)
operations. The complexity of the computation tasks depends on the underlying optimization algorithm used by the

workers; and the desired level of accuracy. By Proposition 4, under the given assumptions, when using CG we converge after
Ñ iterations per column estimate, and each iteration has complexity O(N). Therefore, the complexity of the workers’ tasks are
O(ÑNT ) = O

(
ÑN3/2

)
. All in all, the computation tasks at phase (c) have total complexity O

(
(Ñ + 1)N3/2

)
= O

(
ÑN3/2

)
per worker. Since Wι ∈ CT×N for each ι, the communication load is 2NT = 2N2/k = Ω

(
N3/2

)
symbols. Furthermore, the

baseline to computing the A−1 is Gaussian elimination; which has complexity O(N3) when carried out on one server, while our
approach through CG has complexity k · O

(
ÑN3/2

)
= O

(
ÑN2

)
.
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By Lemma 1 and Remark 6; the decoding takes O(Nω/2) = o(N1.186) time, which amounts to the complexity of phase (d).
Since our recovery threshold is k, phase (d) no more than k · Ω(NT ) = Ω(N2) symbols need to be received and stored by the
coordinator, who finally recovers a matrix of size N ×N .

We summarize the communication loads (C.L.) and time complexity (T.C.) of each of the four phases in the Table below. The
time complexity for phase (a) depends on the encryption method that is used to securely communicate β,H; which we do not
study, and there is no communication taking place in phase (d). Phases (a) and (d) correspond to the coordinator, (b) to each
client, and (c) to each worker.

Communication Loads & Time Complexities
Phase (a) share β,H (b) encrypt Aι (c) CC job (d) decode

C.L. O(νγ) Ω(N2) Ω
(
N3/2

)
✗

T.C. ✗ O
(√

N(N+γ)
)

O
(
ÑN3/2

)
o
(
N1.186

)
A bottleneck of our approach is the workers’ storage requirement. As was discussed in V-A, the workers need to recover A, so

they need to store a total of N2 symbols. The central server receives a total of k completed tasks {Wi}i∈I , which constitute to a
total of 2N2 symbols. Further examining this drawback would be worthwhile future work.

F. Comparison to Exact Matrix Inversion

We conclude this section with a discussion on the conditions under which our CMIM will have advantages over standard matrix
inversion approaches. First of all, the main bottleneck of our approach is the fact that each worker has a storage requirement of
N2 symbols. When N is relatively small, matrix inversion can be performed by a single server; though the time complexity is still
high, in which case our distributed approach is beneficial. In this scenario, the storage constraint is not an issue. For N very large,
our approach is still advantageous in terms of time complexity, as a single server would need to perform the entire computation
on its own; while also storing the entire matrix. In this case, the storage requirement of our approach is disadvantageous, since
we require total storage of kN2 symbols across the network, while matrix inversion only requires N2. This is the cost we pay for
performing our method distributively.

The second point of comparison is approximation accuracy. The accuracy of standard finite precision matrix inversion is
controlled by the number of bits of precision used by the multiplier. On the other hand, by design, our proposed algorithm
introduces an additional approximation error due to its reliance on successive approximation iterations. As we showed numerically
though in Figure 1, after a few iterations of Algorithm 1 with CG; we can achieve the same error rate as when exact matrix inversion
is used, with a lower complexity. Furthermore, in building risk minimizing ML models, approximate solutions using iterative
approximations are often faster and sufficient for achieving desired performance benchmarks. Additionally, the approximation
accuracy of our proposed matrix inversion method is controllable by adjusting the number of iterations carried out locally by the
workers.

Lastly, we discuss when Algorithm 1 might have advantages over exact matrix inversion in terms of computational complexity
and waiting time. For simplicity, we assume that exact computation of A−1 requires O(N2.372) operations. When utilizing our
algorithm with CG on a single server, we require O(ÑN2) operations to guarantee convergence. Thus, in this case; Algorithm
1 is beneficial when Ñ < N0.372, where Ñ is the number of distinct eigenvalues of A⊤A. When employing a distributed
implementation, in terms of the waiting time through phase (c); our approach is beneficial when Ñ < N0.872.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of approximate computation of the inverse of a matrix distributively in a relaxed FL
setting, under the possible presence of straggling workers. We provided approximation error bounds for our approach, as well as
security and recovery guarantees. We also provided numerical experiments that validated our proposed approach.

There are several interesting future directions. One avenue to consider is incorporating fully homomorphic encryption in our
phases (b),(c),(d), to obtain a FL scheme; and prevent the requirement of clients need to recover each others’ information. An
important issue is the numerical stability of the BRS approach, so exploring other suitable generator matrices could be beneficial;
e.g. circulant permutation and rotation matrices [46]. It is also worth investigating if we can reduce the communication rounds
when computing the pseudoinverse through our approach. This depends on the CMM which is being utilized, though using
different ones for each of the two multiplications may also be beneficial.

In terms of coding-theory, it would be interesting to see if it is possible to reduce the complexity of our decoding step.
Specifically, could well-known RS decoding algorithms such as the Berlekamp-Welch algorithm be exploited? Another direction,
is leveraging approximate CCMs. The work of [47] considers the GC problem for approximate and exact recovery through
Lagrange interpolation, for heterogeneous workers in the presence of stragglers and adversaries. A potential scheme for matrix
inversion could also be developed through the methods of [47]. In terms of our approximation algorithms, an avenue worth
exploring is that of incorporating approximate and/or sparse Gaussian elimination [48], [49] into our distributed CCM.
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Tribute to Alex Vardy: As this is a special issue dedicated to the memory Alexander Vardy, we mention how this paper
relates to his work. Even though Alex had not worked on CC, his contributions to RS codes are immense. A focus of ours is
to reduce the decoding complexity of the proposed BRS-based CCM, while in [50] it was shown by Guruswami and Vardy
that maximum-likelihood decoding of RS codes is NP-hard. Another highly innovative work of Vardy’s is [51], in which the
‘Parvaresh-Vardy codes’ were introduced; and the associated list-decoding algorithm was shown to yield an improvement over the
Guruswami–Sudan algorithm. This was subsequently improved by Guruswami and Rudra [52], whose techniques were exploited
in [26] to introduce list-decoding in CC.
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APPENDIX A
ADDITIONAL MATERIAL AND BACKGROUND

In this appendix, we include material and background which was used in our derivations. First, we recall what an ϵ-optimal
solution/point is, which was used in the proof of Proposition 4. Next, we state the MDS theorem and the BCH Bound. We then give
a brief overview of the GC scheme from [10], to show how it differs from our CMIM. We also explicitly give their construction
of a balanced mask matrix M ∈ {0, 1}n×k, which we use for the construction of the BRS generator matrices. Lastly, we illustrate
a simple example of the encoding matrix.

Definition 9 ( [53]). A point x̄ is said to be an ϵ-optimal solution/point to a minimization problem with objective function f(x),
if for any x, it holds that f(x) ⩾ f(x̄)− ϵ, where ϵ ⩾ 0. When ϵ = 0, an ϵ-optimal solution is an exact minimizer.

Theorem 10 (MDS Theorem — [44]). Let C be a linear [n, k, d] code over Fq , with G,K the generator and parity-check matrices.
Then, the following are equivalent:

1) C is a MDS code, i.e. d = n− k + 1
2) every set of n− k columns of K is linearly independent
3) every set of k columns of G is linearly independent
4) C⊥ is a MDS code.

Theorem 11 (BCH Bound — [17], [33]). Let p(x) ∈ Fq[x]\{0} with t cyclically consecutive roots, i.e. p(αj+ι) = 0 for all
ι ∈ Nt. Then, at least t+ 1 coefficients of p(x) are nonzero.

Algorithm 2: MaskMatrix(n, k, d) [10]

Input: n, k, d ∈ Z+ s.t. n > d, k and w = kd
n

Output: row-balanced mask matrix M ∈ {0, 1}n×k

M← 0n×k

for j = 0 to k − 1 do
for i = 0 to d− 1 do

ι← (i+ jd+ 1) mod n
Mr,ι ← 1

end
end
return M

A. Generator Matrix Example

For an example, consider the case where n = 9, k = 6 and d = 6, thus w = kd
n = 4. Then, Algorithm 2 produces

M =



1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 1 1 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 1 0 1
0 1 1 0 1 1
0 1 1 0 1 1
0 1 1 0 1 1


∈ {0, 1}9×6 .
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For our CCM, this means that the ith worker computes the blocks indexed by supp(M(i)), e.g. supp(M(1)) = {1, 2, 4, 5}. We
denote the indices of the respective task allocations by Ji = supp(M(i)). The entries of the generator matrix G are the evaluations
of the constructed polynomials (3) at each of the evaluation points B = {βi}ni=1, i.e. Gij = pj(βi). This results in:

G =



p1(β1) p2(β1) 0 p4(β1) p5(β1) 0
p1(β2) p2(β2) 0 p4(β2) p5(β2) 0
p1(β3) p2(β3) 0 p4(β3) p5(β3) 0
p1(β4) 0 p3(β4) p4(β4) 0 p6(β4)
p1(β5) 0 p3(β5) p4(β5) 0 p6(β5)
p1(β6) 0 p3(β6) p4(β6) 0 p6(β6)

0 p2(β7) p3(β7) 0 p5(β7) p6(β7)
0 p2(β8) p3(β8) 0 p5(β8) p6(β8)
0 p2(β9) p3(β9) 0 p5(β9) p6(β9)


.

APPENDIX B
DISTRIBUTED PSEUDOINVERSE

For full-rank rectangular matrices A ∈ RN×M where N > M , one resorts to the left Moore–Penrose pseudoinverse A† ∈
RM×N , for which A†A = IM . In Algorithm 3, we present how to approximate the left pseudoinverse of A, by using the fact that
A† = (A⊤A)−1A⊤; since A⊤A ∈ GLM (R). The right pseudoinverse A† = A⊤(AA⊤)−1 of A ∈ RM×N where M < N ,
can be obtained by a modification of Algorithm 3.

Just like the inverse, the pseudoinverse of a matrix also appears in a variety of applications. Computing the pseudoinverse of
A ∈ RN×M forN > M is even more cumbersome, as it requires inverting the Gram matrix A⊤A. For this appendix, we consider
a full-rank matrix A.

One could naively attempt to modify Algorithm 1 in order to retrieve A† such that A†A = IM , by approximating the rows
of A†. This would not work, as the underlying optimization problems would not be strictly convex. Instead, we use Algorithm
3 to estimate the rows of B−1 := (A⊤A)−1, and then multiply the estimate B̂−1 by A⊤. This gives us the approximation
Â† = B̂−1 ·A⊤.

The drawback of Algorithm 3 is that it requires two additional matrix multiplications, A⊤A and B̂−1A⊤. We overcome this
barrier by using a CMM scheme twice, to recover Â† in a two or three-round communication CC approach. These are discussed
in below.

Bounds on errF (Â−1) and errrF (Â−1) can be established for both algorithms, specific to the black-box least squares solver
being utilized.

Algorithm 3: Estimating A†

Input: full-rank A ∈ RN×M where N > M
B← A⊤A
for i=1 to M do

ĉi = argminc∈R1×M

{
gi(c) := ∥cB− e⊤i ∥22

}
b̂i ← ĉi ·A⊤

end

return Â† ←
[
b̂⊤
1 · · · b̂⊤

M

]⊤
▷ Â†

(i) = b̂i

Corollary 12. For full-rank A ∈ RN×M with N > M , we have errF (Â†) ⩽
√
Mϵ·κ2√

2σmin(A)3
and errrF (Â†) ⩽

√
Mϵ·κ2√

2σmin(A)2
when

using SD to solve the subroutine optimization problems of Algorithm 3, with termination criteria ∥∇gi(c[t])∥2 ⩽ ϵ.

Proof. From (10), it follows that

∥B−1ei − ĉ⊤i ∥2 ⩽
ϵ/
√
2

σmin(B)2
=

ϵ/
√
2

σmin(A)4
=: δ .

The above bound implies that for each summand of the Frobenius error; ∥b̂i − A†
(i)∥2 = ∥ĉiA⊤ − e⊤i · B−1A⊤∥2, we have

∥b̂i −A†
(i)∥2 ⩽ δ∥A⊤∥2. Summing the right hand side M times, we get that

errF (Â†)2 ⩽M · (δ∥A⊤∥2)2

=
Mϵ2 · σmax(A)2

2σmin(A)8
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=
Mϵ2 · κ22
2σmin(A)6

.

By taking the square root, we have shown the first claim.
Since 1/σmin(A) = ∥A†∥2 ⩽ ∥A†∥F , it then follows that

errrF (Â†) =
errF (Â†)

∥A†∥F
⩽

errF (Â†)

∥A†∥2
=

√
Mϵ · κ2√

2σmin(A)2
,

which completes the proof. ■

A. Pseudoinverse from Polynomial CMM

One approach to leverage Algorithm 3 in a two-round communication scheme is to first compute B = A⊤A through a CMM
scheme, then share B with all the workers who estimate the rows of B̂−1, and finally use another CMM to locally encode the
estimated columns with blocks of A⊤; to recover Â† = B̂−1 ·A⊤. Even though there are only two rounds of communication, the
fact that we have a local encoding by the workers results in a higher communication load overall. An alternative approach which
circumvents this issue, uses three-rounds of communication.

For this approach, we use the polynomial CMM scheme from [8] twice, along with our coded matrix inversion scheme. This
CMM has a reduced communication load, and minimal computation is required by the workers. To have a consistent recovery
threshold across our communication rounds, we partition A as in (11) into k̄ =

√
n− s =

√
k blocks. Each block is of size

N × T̄ , for T̄ = M
k . The encodings from [8] of the partitions {Aι}k̄ι=1 for carefully selected parameters a, b ∈ Z+ and distinct

elements γi ∈ Fq , are

Ãa
i =

k∑
j=1

Ajγ
(j−1)a
i and Ãb

i =

k∑
j=1

Ajγ
(j−1)b
i

for each worker indexed by i. Thus, each encoding is comprised of NT̄ symbols. The workers compute the product of their
respective encodings (Ãa

i )
⊤ · Ãb

i . The decoding step corresponds to an interpolation step, which is achievable when k̄2 = k many
workers respond5, which is the optimal recovery threshold for CMM. Any fast polynomial interpolation or RS decoding algorithm
can be used for this step, to recover B.

Next, the master shares B with all the workers (from V-A, this is necessary), who are requested to estimate the column-blocks
of B̂−1

B̂−1 =
[
B̄1 · · · B̄k

]
where B̄j ∈ RM×T̄ ∀j ∈ Nk (15)

according to Algorithm 1. We can then recover B̂−1 by our BRS based scheme, once k workers send their encoding.
For the final round, we encode B̂−1 as

B̃a
i =

k∑
j=1

B̄jγ(j−1)a
i

which are sent to the respective workers. The workers already have in their possession the encodings Ãb
i . We then carry out the

polynomial CMM where each worker is requested to send back (B̃a
i )

⊤ · Ãb
i . The master server can then recover Â†.

Theorem 13. Consider G ∈ Fn×k as in Theorem 7. By using any CMM, we can devise a matrix pseudoinverse CCM by utilizing
Algorithm 3, in two-rounds of communication. By using polynomial CMM [8], we achieve this with a reduced communication
load and minimal computation, in three-rounds of communication.
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