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Abstract

We study a system in which two-state Markov sources send status updates to a common receiver

over a slotted ALOHA random access channel. We characterize the performance of the system in

terms of state estimation entropy (SEE), which measures the uncertainty at the receiver about the

sources’ state. Two channel access strategies are considered: a reactive policy that depends on

the source behaviour and a random one that is independent of it. We prove that the considered

policies can be studied using two different hidden Markov models and show through a density

evolution analysis that the reactive strategy outperforms the random one in terms of SEE while the

opposite is true for age of information. Furthermore, we characterize the probability of error in the

state estimation at the receiver, considering a maximum a posteriori and a low-complexity (decode

& hold) estimator. Our study provides useful insights on the design trade-offs that emerge when

different performance metrics are adopted. Moreover, we show how the source statistics significantly

impact the system performance.
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I. INTRODUCTION

MONITORING the state of remotely-deployed nodes in wireless sensor networks

is one of the possible applications of Internet of Things (IoT) systems. Such use

cases are typically characterized by the presence of a large number of battery-powered,

low-complexity devices which sense an underlying process and send updates to a common

receiver over a shared channel in an often sporadic and unpredictable fashion. In these

settings, grant-based solutions that require channel negotiation and reservation procedures

to allocate resources prior to data delivery tend to be highly inefficient, and uncoordinated

access protocols based on variations of the well-known ALOHA scheme [1] are commonly

employed to enable connectivity [2].

The main goal in remote-monitoring IoT applications is to maintain an accurate knowledge

at the receiver of the status of the sensed processes. The task is in general not trivial, as

it jointly depends on how nodes generate (relevant) readings, as well as on the latency

experienced by packets sent in the network, and it becomes especially challenging in the

presence of a distributed channel contention. Important steps towards characterizing the

problem were taken with the definition of some relevant performance indicators. A pioneering

role in this sense was played by the age of information (AoI), originally introduced in the

context of vehicular communications [3][4]. The metric is defined as the time elapsed since

the generation of the last received update for a process of interest, and captures how fresh

the knowledge available at the receiver is. By virtue of its simple definition and mathematical

tractability, AoI has received a lot of research attention [5], allowing to identify some

fundamental trade-offs and protocol design principles that depart from those obtained using

classical metrics such as throughput or latency. While initial works focused on point-to-

point links, e.g. [6]–[10] among the vast available literature, important results were recently

obtained also for multiple sources [11]–[16], providing fundamental insights on the behavior

under ALOHA-based contention [17]–[20].

By definition, AoI is oblivious of the content of the status updates being sent, focusing only

on the time of their generation, and defines a penalty that continues to grow in the absence

of new incoming messages even if the monitored process does not change its state. As such,

the metric may fall short in accurately capturing the uncertainty experienced at the receiver,

especially in the presence of non-memoryless sources. To overcome this limitation, alternative

performance indicators have recently been proposed, such as age of incorrect information [21]

or value of information [22]. In the first case, a (possibly non-linear) penalty is undergone

DRAFT October 31, 2023



G. COCCO ET AL.: REMOTE MONITORING OF TWO-STATE MARKOV SOURCES VIA RANDOM ACCESS CHANNELS 3

only if the estimate available at the receiver is not sufficiently precise (e.g., it differs from the

actual state of the source). Similarly, value of information aims at measuring the relevance

of received updates towards improving the estimate of a process for a specific task. In this

context, a metric of particular interest is the state estimation entropy (SEE) [23], which

quantifies the uncertainty in the knowledge of the sources’ state at the sink, based on current

and past channel outputs as well as on the source model. From this standpoint, while recent

results were obtained in scheduled multi-user setups [24], [25], the behavior in random access

systems is still largely unexplored.

In this paper, we provide a contribution in this direction by detailing and extending the ini-

tial analysis presented in [26]. In particular, we consider a system in which nodes monitoring

two-state Markov sources communicate towards a common receiver over a slotted ALOHA

channel without feedback. Under the assumption of destructive collisions, we investigate the

ability of the system to acquire accurate estimates of the state of the sources at the receiver,

focusing on the SEE metric. We consider two variations of the ALOHA access: a random

transmission strategy, where the nodes send updates of their state with a fixed probability

in each slot according to a Bernoulli process, and a reactive transmission strategy, where

an update is sent only when a change of state in the underlying Markov source is detected.

For the first one, we show that the sampling parameters that minimize AoI, corresponding

to throughput maximization [4], [12], also minimize SEE. The result is in line with what

observed in [9], and confirms that, under a random sampling policy, AoI is a good proxy for

system design. On the other hand, our study reveals that a reactive approach can drastically

reduce the SEE, highlighting the importance of an access strategy that is tuned to the process

being monitored. The underlying intuition follows the observation that, when the value of

the monitored process is relevant, reporting only state changes makes transmissions more

informative and helps reducing congestion, favoring delivery of informative updates to the

receiver.

The key contributions of the present work can be summarized as follows:

• We provide an analytical characterization of the SEE for both the random and the reactive

transmission strategies. In particular, we show that these approaches can be modeled

using two distinct hidden Markov models. Moreover, we provide an efficient evaluation

of the SEE via a density evolution analysis [27][28, Chapter 4], with a complexity that

grows only quadratically in the number of nodes.

• Leaning on this, we study the behavior of the access schemes in the case of both

symmetric and asymmetric sources (i.e., with different transition probabilities between
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the two available states). In the latter case, we propose an approximated model to simplify

the DE analysis, and show by means of simulations that it provides a tight match in

terms of the SEE. Comparing the trends obtained for SEE and average AoI, the trade-

offs induced by a reactive transmission approach are thoroughly discussed. From this

standpoint, our work provides some useful hints for protocol design in IoT monitoring

systems.

• For both transmission strategies, we also study in Appendix A the state estimation error

probability achieved by a MAP estimator and by a simpler solution, dubbed decode and

hold (D&H). This strategy only updates the state estimate upon successfully receiving a

message informing the receiver about the state of the tracked source. Our analysis shows

that D&H offers performance comparable to that of a MAP estimator when symmetric

sources are monitored, whereas it exhibits a significant gap in the asymmetric case.

A. Related Works

The monitoring of one or more sources through an unreliable channel has received relevant

research attention in recent years.

In the context of point-to-point channels, several works approached the problem of esti-

mating the state of a single source. Among them, [9] studies the optimal sampling strategy

that minimizes the mean square estimation error of a Wiener process under a sampling rate

constraint, considering transmissions that incur queuing delay, and highlighting ties with an

AoI-based optimization under specific conditions. In turn, [29] proposes an optimal transmis-

sion policy for a single sensor observing a stochastic source and transmitting the observation

through a noisy channel. The considered approach takes into account past observations and

decisions of the sensor, showing that a threshold-in-threshold policy is optimal under some

conditions. Joint sampling and transmission strategies for N -state Markov sources are tackled

in [30], taking into account performance metrics such as the estimation error probability and

the cost that an estimate error might have on actuation. Scheduling policies in a battery-

constrained energy harvesting monitoring system are studied in [31] for Markov as well as

Gaussian sources under different estimation distortion metrics.

Interesting results were recently derived also in multiple-access settings. In [32] a random

access system with feedback in which each transmitter observes a different source, modelled

as a random walk process, is studied. The Authors consider two possible strategies: an

oblivious one – akin to our random transmission approach – and a non-oblivious one, which

triggers a transmission only when the discrepancy between the current source value and
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the knowledge at the receiver exceeds a threshold. AoI and a weighted sum of the squared

estimation errors are employed to evaluate the policies. In [33] a wireless sensor network

is studied using the SEE as the loss function to be minimized through optimal scheduling.

A similar setup is also considered in [34]. Important contributions were provided lately

in [24], [25], where the Authors investigate a system that monitors multiple binary Markov

processes. Studying the uncertainty of information (UoI), i.e. the entropy of a tracked process

conditioned on the latest observation, the minimization of the average sum UoI is cast onto

a restless multi-armed bandit problem, deriving optimal scheduling strategies. In [35] the

Authors study the problem of remote estimation of a discrete-time linear dynamical source

observed by multiple sensors that access a common receiver through a random access channel,

tackling the trade-off between number of transmitting nodes and estimation accuracy. Finally,

[36], [37] consider the problem of estimating the entropy rate of a hidden Markov model.

Going beyond these works, our contribution focuses on the performance at system level of

different sampling strategies in terms of SEE, AoI and state estimation error probability.

We consider two-state Markov sources, not necessarily symmetric, and compare how taking

source behavior into account in the policy design impacts the considered performance metrics.

The remainder of the paper is organized as follows. Sec. II introduces the system model

and the considered metrics. In Sec. III we discuss the optimal state estimation approach,

describing the hidden Markov models for both the random and the reactive strategies, whereas

a density evolution approach to efficiently evaluate their performance is presented in Sec. IV.

The fundamental trends and trade-offs of the considered strategies in terms of AoI and SEE

are presented and discussed in Sec. V by means of numerical results, followed by some

concluding remarks in Sec. VI. To complement our study, we tackle in Appendix A the

behavior in terms of state estimation error probability of a MAP estimator as well as of the

simpler D&H solution. Finally, Appendix B provides details on some useful calculations.

II. SYSTEM MODEL AND PRELIMINARIES

A. Notation

We use capital letters for random variables (r.v.s), and lowercase letters for their realiza-

tions. The probability of an event {X = x} is denoted as P[X = x], and the probability mass

function of the r.v. X as P (x) = P[X = x]. For discrete-time, finite-state Markov chains,

we denote the one-step transition probability from state i to state j as qij , and the stationary

probability of state i as πi.
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0 1

q00

q01

q10
q11

Fig. 1. Two-state Markov model for a generic source in the system.

B. System Model

We focus on a system with M statistically independent sources (nodes) that share a common

wireless channel towards a receiver. Time is slotted, and all nodes are assumed to be slot-

synchronized. A source k ∈ {0, 1, . . . ,M − 1} generates a random sequence of symbols

X
(k)
0 X

(k)
1 X

(k)
2 . . .

where X
(k)
n belongs to the alphabet X = {0, 1}, and represents the (random) state of the

source at time (slot index) n. Each node is modelled as a two-state stationary Markov chain

with transition probabilities qij = P
[
X

(k)
n = j |X(k)

n−1 = i
]

for all (i, j) ∈ X ×X , as reported

in Fig. 1. We denote the steady-state distribution of the process as

π0 =
q10

q10 + q01
, π1 =

q01
q10 + q01

.

Every node in the network can transmit update packets over the shared channel, reporting

information on the state of its source to the receiver. In this work we focus on random

access medium sharing policies, commonly employed in practical settings, and consider two

variations of the slotted ALOHA protocol [1] presented in detail in Sec. II-C. Accordingly,

three possible slot outcomes can be seen at the receiver: i) idle, i.e., no transmission is

performed; ii) singleton, i.e., only one source has transmitted; iii) collision, i.e., two or more

packets were sent concurrently. In the remainder, we assume the well-known collision channel

model [1], so that the content of a status update is correctly received whenever sent over a

singleton slot, whereas no packet can be decoded in the presence of a collision.

We further make some additional assumptions inspired by practical systems. First, we

consider that the receiver is able to detect a collision when it takes place but does not

have knowledge of the number of involved packets. Second, each transmission contains an

identifier of the source, and the receiver becomes aware of the current value of a process

upon decoding a packet from the corresponding source. Finally, no feedback is provided, so
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that a node is not aware of the outcome of its delivery attempt, nor can estimate the current

channel load. Accordingly, no retransmission is performed.1

Without loss of generality, we consider as reference the source with index k = 0 and drop

the superscript in X
(k)
n . Thus, the sequence of symbols generated by the reference source

will be denoted by

X0X1X2 . . .

and the receiver observes the random output sequence

Y0 Y1 Y2 . . .

where Yn belongs to the alphabet Y = {0, 1, I, C,⊖,⊕}. Here, 0 and 1 denote a collision-

free observation of the corresponding state of the reference source, I denotes an idle slot, C

denotes a collision, and ⊖,⊕ denote a collision-free observation of the state of any of the

other sources (with index in {1, . . . ,M − 1}), where ⊖ represents the “zero” state and ⊕ the

“one” state.

C. Transmission Strategies

In the remainder of our study we compare two distinct transmission strategies. In spite of

their simplicity, their analysis allows to capture some fundamental trade-offs of the considered

system, providing relevant insights.

Random transmission strategy: In the first approach, each source randomly decides at

each slot whether to transmit a status update, with activation probability α, or to remain

silent, with probability 1 − α. The decision is made independently of the evolution of the

source process, as well as across slots. We will refer to this approach as random transmission

strategy. In this case, the number of nodes accessing the channel over a slot follows a binomial

distribution of parameters M and α. Accordingly, the probability for the reference source to

deliver an update at time n is given by

ω = α(1− α)M−1 (1)

capturing the probability that a message is transmitted and does not undergo a collision.

Reactive transmission strategy: The second approach we tackle foresees a terminal

accessing the channel over a slot only if a state change in the corresponding source takes

1This setup is commonly employed in many practical IoT systems, e.g. LoRaWAN [2], where sensing tasks are performed

by simple, battery-powered nodes that operate without feedback from the receiver.
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place. Otherwise, no transmission is performed. For such solution, the probability for a source

to deliver an update over a generic slot can be approximated as

ω ≃ α̃ (1− α̃)M−1 (2)

where

α̃ := π0q01 + π1q10 =
2q01q10
q01 + q10

(3)

is the activation probability for a node. Equation (2) is exact in the symmetric case q01 = q10,

and only provides an approximation otherwise. Indeed, when q01 ̸= q10, the behavior of a

node across subsequent slots is no longer i.i.d, as it depends on the current state of the source.

Further details on this approximation will be discussed in Sec. III-B3, showing that it leads

to very accurate estimates of the metrics of interest.

Some additional remarks are in order for the reactive strategy. First, in this case the access

probability is fully determined by the source statistics.2 Moreover, this policy triggers a key

trade-off. On the one hand, avoiding transmission of state information if no change at the

source is observed may reduce the channel congestion, with beneficial effects on the overall

packet delivery probability. On the other hand, the unavoidable collisions in a random access

setting entail the risk of not providing updates for a long time when the source rarely changes

state. Finally, it is important to observe how collisions or idle slots carry information about

the state of the sources, as the access strategy intrinsically depends on whether the tracked

processes experience a transition.

D. State Estimation Entropy and Error Probability

Let us denote by Y n the random vector containing the output sequence from 0 to the

current time n, and by yn its realization. The uncertainty experienced at the receiver about

the present state of the monitored source can be conveniently captured by the entropy3

h(yn) : = H(Xn|Y n = yn) = −
∑
xn∈X

P (xn | yn) log2 P (xn | yn). (4)

Example 1. To get preliminary insights on this metric, consider the case of a single source in

the absence of channel contention (i.e., M = 1, no collisions). The node follows the random

2To attain more flexibility, one may conceive modified strategies, introducing a probability of transmission in presence

of a state change (to lower the channel load) or a probability to perform additional transmissions even in absence of state

change. These modifications will not be considered in this work.
3The notation h(·) should not be confused with the one that is sometimes used for differential entropy.
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h(yn)

H(X)

n

(a) symmetric source

h(yn)

H(X)

n

(b) asymmetric source

Fig. 2. Example of time evolution of h(yn) for a single source implementing a random transmission policy. The metric

is reset to a zero whenever an update is delivered, and converges to the entropy of the source, H(X), when the receiver

does not obtain any information for long periods of time. Subfigure (a) reports the case of a symmetric source (q01 = q10),

whereas (b) shows the behavior of an asymmetric source (q01 ̸= q10). Details are discussed in Example 1.

transmission policy, sending (successful) updates with a certain probability at every slot. An

example of the evolution over time of h(yn) for a symmetric source (q01 = q10) is reported in

Fig. 2a, showing how the uncertainty grows until an update is received, when a reset to zero

denotes exact knowledge acquired at the receiver on the status of the tracked source. Note

that, in the absence of refreshes, h(yn) approaches the entropy of the stationary distribution

of the source H(X) = −π0 log2 π0 − π1 log2 π1. The situation changes for an asymmetric

source, as illustrated in Fig. 2b for the case q10 = 0.2 and q01 = 0.01, corresponding to a

stationary distribution π0 = 0.047, π1 = 0.953. Note indeed that, when an update is delivered

informing that the source is in state 0, h(yn) grows slowly, in view of the low probability of

state transition. For instance, the uncertainty at the receiver at the end of an idle slot following

the update reception is given by H(Xn |Xn−1 = 0) = −q00 log2 q00 − q01 log2 q01 = 0.0808.

Conversely, if the receiver is informed that X has reached state 1, a higher uncertainty

follows in the subsequent slots, progressively reducing to converge to H(X) in the absence

of updates. In the latter example, the uncertainty after the first idle slot is H(Xn |Xn−1 = 1) =

−q10 log2 q10 − q11 log2 q11 = 0.7219, leading to the higher peaks shown in the plot.

Two further remarks are in order. First, for the single source case, h(yn) is identically 0

when a reactive transmission strategy is implemented, as the receiver can perfectly track the

state of the source. Second, it is to be pointed out that the behavior of the metric becomes

more involved when multiple nodes contend for the channel. In this case, the uncertainty on

the tracked source varies differently based on the outcomes observed over the slots, as well

as on the implemented transmission strategy. More details will be discussed in the following

sections.
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To characterize the system performance we aim at deriving the distribution of the r.v.

Hn := h(Y n) (5)

and, in particular, its mean value E[Hn] = H(Xn|Y n). More specifically, we are interested

in the evaluation of the limiting behavior of such quantity as n → ∞, denoted as H∞ and

referred to as average state estimation entropy. We also note that H∞ coincides with the

time average

lim
N→∞

1

N

N−1∑
n=0

H(Xn|Y n).

This follows by observing that (Xn, Yn) is a stationary stochastic process, hence H(Xn|Y n)

is monotonically non-increasing and converges to a limit. The limit coincides with H∞ by

the Cesáro mean Theorem [38, Theorem 4.2.3].

In Appendix A, we also tackle the problem of estimating the reference source state at the

receiver. In this context, consider a generic state estimator for Xn, and denote the estimate

as X̂n. We introduce the state estimation error probability at time n as

P (n)
e = P

[
X̂n ̸= Xn

]
and denote the time average of the sequence P

(n)
e by

Pe = lim
N→∞

1

N

N−1∑
n=0

P (n)
e . (6)

E. Age of Information

As a reference benchmark for our study, we also analyze the performance of the presented

schemes in terms of AoI. The metric, originally proposed in [3], is a well-established measure

for the notion of information freshness, capturing how outdated the knowledge about the state

of a source is at the destination. To introduce this quantity, we assume each status update to

contain a time stamp, denoting the instant at which the message was generated. Accordingly,

the current AoI for the source of interest at time t is defined as

∆(t) := t− σ(t)

where σ(t) is the time stamp of the last successfully received update from the node. Leaning

on this definition, ∆(t) follows a sawtooth profile, growing linearly over time and being

reset each time an update is received, as exemplified in Fig. 3. For the setting under study,

we assume that the time stamp of a message corresponds to the the start of that slot it is

sent over, so that the AoI falls to one slot duration if the packet is successfully decoded,
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∆(t)

. . .

t

m+1

1

Fig. 3. Example of time evolution of age of information for a source of interest at the destination. The metric is reset to

a value of one slot whenever an update is received, and grows linearly otherwise.

accounting for the transmission and reception time of the message over the channel. Via

simple arguments, the stochastic process ∆(t) can be shown to be ergodic (see, e.g. [39]),

and we will focus in the remainder on its average value

∆̄ := E[∆(t)] = lim
N→∞

1

N

N−1∑
n=0

∆(n)

where n = ⌊t⌋. For a slotted ALOHA access, assuming independent behavior of all nodes

across slots, ∆̄ takes the simple form [39]

∆̄ =
1

2
+

1

ω
(7)

where ω is given for the random and reactive transmission strategies in (1) and (2), respec-

tively. Note that, from (7), the metric is minimized by maximizing ω. In other words, for

slotted ALOHA the optimal strategy coincides with throughput maximization.

III. OPTIMUM STATE ESTIMATION

As a first step towards characterizing the performance of the system under study, we address

the problem of estimating the state Xn of the reference source at the receiver upon observing

a sequence of channel outputs yn. In particular, we lean on the a-posteriori probability (APP)

logarithmic ratio

λn := ln
P[Xn = 0 |Y n = yn]

P[Xn = 1 |Y n = yn]
(8)

which, combined with a threshold test (x̂n = 0 if λn > 0 and x̂n = 1 otherwise), yields an

optimum maximum a posteriori (MAP) estimator, i.e, minimizing the state estimation error

probability. In the remainder of this section, we introduce hidden Markov models to capture

the relation between the observed channel outputs and the evolution of the reference source,

and use them to develop recursive equations to efficiently compute (8). To this aim, we also

show that the APP is a sufficient statistics for Xn. The results will be used in Sec. IV to

derive the distribution of the r.v. Hn and eventually the average state estimation entropy.
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Lemma 1. Assume X0, X1, . . . to be the random sequence of states generated by a two-state

stationary Markov source, and let Y0, Y1, . . . be the state sequence observations. Then, λn is

a sufficient statistic for estimating Xn given Y n.

Proof. Leaning on the Fisher-Neyman factorization theorem, it suffices to show that P (yn|xn)

can be written as a(xn, λn) b(y
n), a(·) and b(·) being non-negative functions. Following the

approach in [40, Lemma 4.7], we observe that

ln
P (xn | yn)

P[Xn = 0 |Y n = yn]
=

 0 if xn = 0

−λn if xn = 1

which implies that

P (xn|yn) = P[Xn = 0 |Y n = yn] exp(−xnλn).

By Bayes’ rule, we then have

P (yn|xn) =
P (xn|yn)P (yn)

P (xn)
=

P[Xn = 0 |Y n = yn] exp(−xnλn)P (yn)

P (xn)
= a(xn, λn)b(y

n)

where a(xn, λn) = exp(−xnλn)/P (xn) and b(yn) = P[Xn = 0 |Y n = yn]P (yn).

Lemma 1 allows to characterize the distribution of the r.v. Hn defined in (5). Note indeed

that Xn → Λn → Y n, i.e., they form a Markov chain. Leaning on this, we have

ln
P[Xn = 0 |Y n = yn]

P[Xn = 1 |Y n = yn]
= ln

P[Xn = 0 |Λn = λn]

P[Xn = 1 |Λn = λn]

and hence, owing to (8), P[Xn=xn|Λn=λn] = exp(−xnλn)/(1+exp(−λn)). We can use the

obtained probabilities to express the entropy (4) in terms of the APP logarithmic ratio as

h(yn) = H(Xn|Y n = yn) = H(Xn|Λn = λn)

=
∑
xn∈X

exp(−xnλn)

1 + exp(−λn)
log2

(
1 + exp(−λn)

exp(−xnλn)

)
.

(9)

With a slight abuse of notation, we denote the leftmost term of (9) as h(λn).

Remark 1. By observing that Hn = h(Λn) we see that the distribution of the r.v. Hn can be

derived from the distribution of the APP logarithmic ratio Λn.

We now focus on deriving a recursive formulation to obtain the APP logarithmic ratio

λn as a function of its previous value λn−1 and of the channel observation yn, for both the

random and reactive transmission strategies. The recursive formulation is based on hidden

Markov models (HMMs). In particular, the statistical relation between the output sequence

Y n and the reference source sequence Xn can be suitably described via different HMMs,

depending on the transmission strategy adopted by the nodes, as described next.
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A. Random Transmission Strategy

1) Hidden Markov Model: In this case, the observation of channel outputs in {C,⊖,⊕}
can be assimilated to the observation of an idle slot, i.e., the knowledge of the state of the

other sources does not provide information about the state of the reference source (we will

see that this is not true for the reactive policy). From this and the memoryless nature of the

access strategy, it follows that the statistical relation between the output sequence Y n and

Xn is fully characterized by the conditional probability function

P (Y n|Xn) =
n∏

ℓ=0

P (yℓ |xℓ). (10)

The distribution in (10) can readily be derived leaning on the activation probability α of the

nodes, as well as of the underlying Markov process Xn, as detailed in Appendix B.

2) Recursive APP Logarithmic Ratio Calculation: We can rewrite (8) as

λn = ln
P[Xn = 0, Y n = yn]

P[Xn = 1, Y n = yn]
.

Following the well-known steps for the derivation of the forward-backward algorithm recur-

sions over the presented HMMs (see e.g. [41], [42]), we obtain

λn = ln

∑
xn−1∈X P[Xn = 0, Xn−1 = xn−1, Y

n−1 = yn−1, Yn = yn]∑
xn−1∈X P[Xn = 1, Xn−1 = xn−1, Y n−1 = yn−1, Yn = yn]

(a)
= ln

∑
xn−1∈X P[Xn = 0, Yn = yn |Xn−1 = xn−1]P (xn−1|yn−1)∑
xn−1∈X P[Xn = 1, Yn = yn |Xn−1 = xn−1]P (xn−1|yn−1)

(b)
= ln

P (yn | 0)
P (yn | 1)

+ ln

∑
xn−1∈X P[Xn = 0 |Xn−1 = xn−1]P (xn−1|λn−1)∑
xn−1∈X P[Xn = 1 |Xn−1 = xn−1]P (xn−1|λn−1)

(c)
= ln

P (yn | 0)
P (yn | 1)

+ ln
q00 + q10 exp(−λn−1)

q01 + q11 exp(−λn−1)

=: f(yn, λn−1).

(11)

In (11), (a) follows by conditioning on Xn−1 and Y n−1 and by observing that (Xn, Yn) are

independent on Y n−1 once we condition on Xn−1. Similarly, (b) follows by application of

Bayes’ Theorem and by observing that Yn is independent on Xn−1 once we condition on

Xn. Moreover, since λn−1 is a sufficient statistic for xn−1, we can replace P (xn−1|yn−1)

with P (xn−1|λn−1). Finally, (c) is obtained by introducing the Markov source transition

probabilities, and by noting that P (xn−1|λn−1) ∝ exp(−xn−1λn−1), as derived after Lemma

1. The recursion is hence defined via λn = f(yn, λn−1), and its evaluation complexity is

independent of the number of sources.
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B. Reactive Transmission Strategy

We consider next the reactive transmission strategy. As before, we first introduce the HMM,

followed by the derivation of the recursive APP logarithmic ratio. In addition, we provide

an alternative low-complexity (sub-optimal) state estimation algorithm.

1) Hidden Markov Model: The observation of channel outputs in {I, C,⊖,⊕} should be

used in this case to refine the estimate of the state of the reference source. To see why this

is true, let us consider the following example.

Example 2. Assume the case M = 3, with sources being driven by the transition probabilities

q00 = 0.1, q01 = 0.9, q10 = 0.1, q11 = 0.9, and following a reactive strategy. Note that a state

change, and hence a transmission, is much more probable if the past state is 0. Suppose now

that the receiver observes at time n− 1 the output Yn−1 = 0 (the past state of the reference

source is 0), whereas a collision is experienced at slot n, i.e. Yn = C. Consider the following

different situations for the other two sources at time n− 1:

a) X
(1)
n−1 = 0 and X

(2)
n−1 = 0;

b) X
(1)
n−1 = 1 and X

(2)
n−1 = 1.

The probability for the reference source to have transitioned given that a collision is observed

in slot n can be computed using the definition of conditional probability as

P[Xn = 1 |Yn = C, Xn−1 = 0, X
(1)
n−1, X

(2)
n−1] =

P[Xn = 1, Yn = C |Xn−1 = 0, X
(1)
n−1, X

(2)
n−1]

P[Yn = C |Xn−1 = 0, X
(1)
n−1, X

(2)
n−1]

.

In case (a), all three sources have the same probability of transition to a different state at time

n, and hence of generating a transmission in slot n. Accordingly, the numerator evaluates to

q01(1−q200), whereas the denominator is given by q301+3q00q
2
01. It follows that the probability

of a transition for the reference node is ≈ 0.91. Conversely, in case (b), the joint probability

of the reference source transitioning and of seeing a collision is given by q01(1−q211), whereas

the overall collision event has probability q01q
2
10 + 2q01q10q11 + q00q

2
10. The transition of the

reference source can then be inferred in this case with probability ≈ 0.99.

From the example above we can see that, under reactive sampling, having (even partial)

knowledge of the state of the other sources, jointly with the channel output observations,

provides information on the state of the reference source. From a careful inspection of the

example we also see that what matters is not the state of each source, but rather the number

of sources that are in a given state during the past slot. Accordingly, we denote by Sn the r.v.

that counts the number of sources (with the exclusion of the reference one) that are in state
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P (Yn|(0, 1), (0, 0))

0, 0 1, 0

0, 1 1, 1

0,M−1 1,M−1

P (Yn|(0, 0), (0, 0)) P (Yn|(1, 0), (0, 0))

P (Yn|(1, 1), (0, 0))

P (Yn|(0,M−1), (0, 0))

P (Yn|(1,M−1), (0, 0))

...
...

Fig. 4. Hidden Markov model for the reactive transmission strategy. The underlying Markov chain has state σn = (Xn, Sn),

where Sn denotes the number of nodes, other than the tracked source, that are in state 0 at time n. The observed outputs

depend on the state through the conditional probabilities P (yn |σn−1, σn), some of which are highlighted in the diagram.

0 at time n. Obviously, Sn ∈ S with S = {0, 1, . . . ,M − 1}. For the sake of estimating the

state of the reference source, the system can be characterized as a 2M -state Markov chain

σn := (Xn, Sn), with state space X × S . The channel output depends then on the system

state transition through the conditional probability function P (yn |σn−1, σn), leading to the

HMM illustrated in Fig. 4.

Remark 2. Note that, when q01 = q10 (symmetric sources), the information on the counter

Sn can be dropped without any information loss, as the knowledge of Sn does not influence

the probability of observing a collision at step n+1. In this case, the conditional probability

function P (yn |xn−1, xn) suffices, and the HMM simplifies to the one reported in Fig. 5.

2) Recursive APP Logarithmic Ratio Calculation: In the reactive case, the derivation of

the APP logarithmic ratio is based on the recursive computation of the state probabilities for

the 2M -states HMM described in Sec. III-B1. Following the steps of the forward-backward
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0 1

P (Y n | 0, 0)

P (Y n | 1, 0)

P (Y n | 0, 1)
P (Y n | 1, 1)

Fig. 5. Hidden Markov model for the reactive transmission policy, when symmetric sources are observed (q01 = q10).

algorithm recursions, and recalling that σn = (Xn, Sn) we have:

P (σn, y
n)

(a)
=

∑
σn−1∈X×S

P (σn, σn−1, yn, y
n−1)

(b)
=

∑
σn−1∈X×S

P (σn, yn|σn−1, y
n−1)P (σn−1, y

n−1)

(c)
=

∑
σn−1∈X×S

P (yn|σn−1, σn)P (σn|σn−1)P (σn−1, y
n−1). (12)

In (12), (a) follows from the law of total probability, (b) from conditioning on the past state

and on Y n−1, and (c) by exploiting the Markov property. At every step, the APP logarithmic

ratio can be evaluated as

λn = ln

∑
σn∈{0}×S

P (σn, y
n)∑

σn∈{1}×S
P (σn, y

n)
.

We remark that the complexity of the calculation entailed by the recursion grows quadrat-

ically with the number of states in the HMM, i.e., with M2. We describe in the following a

sub-optimal algorithm that computes approximate values of the APP logarithmic ratios with

a complexity that is independent of the number of sources. This makes it suited in cases in

which M is large.

3) Myopic State Estimation: The recursive calculation implementing the optimal detector

requires tracing probabilities over a trellis diagram with 2M states. A simplified approach

consists in neglecting the effect of Sn−1 and Sn on the probability of observing Yn. This

is equivalent to the derivation of a recursive state estimator where (a) the reference source

adopts a reactive transmission approach and (b) all the remaining M − 1 sources adopt a

random approach with activation probability set to the stationary probability of a state change

α̃ := π0q01 + π1q10. We refer to the estimator obtained under this approximation as myopic

estimator, and to the model described by conditions (a) and (b) as surrogate myopic model.
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For such model we have P (yn|σn, σn−1) = P (yn|xn, xn−1), hence

P (xn, y
n)=

∑
xn−1∈X

P (yn|xn, xn−1)P (xn|xn−1)P (xn−1, y
n−1) (13)

resulting in the myopic APP logarithmic ratio recursion

λ̃n = ln

∑
xn−1∈X P[Xn = 0, Xn−1 = xn−1, Y

n−1 = yn−1, Yn = yn]∑
xn−1∈X P[Xn = 1, Xn−1 = xn−1, Y n−1 = yn−1, Yn = yn]

(a)
= ln

∑
xn−1∈X P[Yn = yn |Xn−1 = xn−1, Xn = 0]P[Xn = 0 |Xn−1 = xn−1]P (xn−1|yn−1)∑
xn−1∈X P[Yn = yn |Xn−1 = xn−1, Xn = 1]P[Xn = 1 |Xn−1 = xn−1]P (xn−1|yn−1)

(b)
= ln

∑
xn−1∈X P[Yn = yn |Xn−1 = xn−1, Xn = 0] qxn−10 exp(−xn−1λ̃n−1)∑
xn−1∈X P[Yn = yn |Xn−1 = xn−1, Xn = 1] qxn−11 exp(−xn−1λ̃n−1)

=: g(yn, λ̃n−1). (14)

Here, (a) follows by a recursive application of conditioning and of the Markov property,

whereas (b) exploits again the fact P (xn−1|yn−1) = P (xn−1|λ̃n−1), which holds true in the

surrogate myopic model, and P (xn−1|λ̃n−1) ∝ exp(−xn−1λ̃n−1). We will see numerically

that the recursion λ̃n = g(yn, λ̃n−1) yields estimates of the actual APP logarithmic ratio that

are accurate enough to characterize the estimation entropy under the reactive transmission

strategy with good approximation. Notably, the evaluation of the recursion λ̃n = g(yn, λ̃n−1)

entails a complexity that is independent on the number of sources.

Remark 3. It is worth mentioning that, as a consequence of Remark 2, the recursion

(14) yields the exact APP logarithmic ratio when the sources have symmetric transition

probabilities, i.e., when q00 = q11.

IV. DENSITY EVOLUTION ANALYSIS

Recalling that the distribution of the estimation entropy Hn can be derived from that

of the APP logarithmic ratio using (9), we consider next the problem of obtaining the

distribution of the r.v. Λn. To do so, we employ a density evolution (DE) [27] approach

to the recursive calculation of the APP logarithmic ratio density over the trellis diagram

describing the evolution of the HMM state [28, Chapter 4]. In particular, quantized DE [43]

provides an efficient (i.e., fast) means to evaluate the estimation entropy Hn, and it represents

a viable alternative to the use of long Monte Carlo simulations. We instantiate the analysis for

both the random and the reactive transmission strategies. Note that in the reactive case, the

analysis requires tracking the evolution of the joint distribution of 2M − 1 random variables,
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rendering the quantized DE analysis intractable even under simple quantiziation rules. For

this reason, we will resort only to the myopic state estimator.

A. Random Transmission Strategy

The analysis is based on a recursive calculation of the distribution of Λn given the

distributions of Λn−1 and of Yn|Xn. Suppose the joint distribution of Λn−1 and Xn−1 to

be known. We have that

P (λn, xn) =
∑

xn−1∈X

∑
yn,λn−1:

f(yn,λn−1)=λn

P (λn−1, yn, xn, xn−1)

=
∑

xn−1∈X

∑
yn,λn−1:

f(yn,λn−1)=λn

P (yn|xn, xn−1)P (xn|xn−1)P (λn−1, xn−1)

=
∑

yn,λn−1:
f(yn,λn−1)=λn

P (yn|xn)
∑

xn−1∈X
P (xn|xn−1)P (λn−1, xn−1) (15)

where f(yn, λn−1) is given in (11), which readily provides the evolution of the joint distri-

bution. The recursion is initialized by assuming no initial knowledge on the state, i.e., by

setting P[Λ−1 = 0, X−1 = 0] = P[Λ−1 = 0, X−1 = 1] = 1/2.

B. Reactive Transmission Strategy

As discussed, we work under the surrogate myopic model introduced in Sec. III-B3. Also

in this case the analysis is based on a recursive calculation of the distribution of Λ̃n given the

distributions of Λ̃n−1 and of Yn|Xn, Xn−1. Suppose the joint distribution of Λ̃n−1 and Xn−1

to be known. We have that

P (λ̃n, xn) =
∑

xn−1∈X

∑
yn,λ̃n−1:

g(yn,λ̃n−1)=λ̃n

P (λ̃n−1, yn, xn, xn−1)

=
∑

xn−1∈X

∑
yn,λ̃n−1:

g(yn,λ̃n−1)=λ̃n

P (yn|xn, xn−1)P (xn|xn−1)P (λ̃n−1, xn−1) (16)

where g(yn, λ̃n−1) is given in (14), which provides the evolution of the joint distribution. The

recursion is initialized by setting P[Λ̃−1 = 0, X−1 = 0] = P[Λ̃−1 = 0, X−1 = 1] = 1/2.

V. RESULTS AND DISCUSSION

We analyze the SEE as a function of the nodes’ population size under both random and

reactive transmission strategies. The results are obtained via DE analysis as reported in
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Fig. 6. Average SEE vs. number of nodes M , in the case of symmetric sources (q01 = q10). Lines denote results obtained

via DE analysis, whereas markers the output of Monte Carlo simulations.

Sec. IV, and verified by means of Monte Carlo simulations. In the latter case, the entropy

h(yn) is tracked relying on a MAP estimator for each realization, and the SEE is estimated

by averaging the results obtained for large values of n.

First insights on the behavior of the different access policies are provided in Fig. 6, which

reports the average SEE against the number of sources M in the system for the symmetric

case q01 = q10. In the plot, blue lines refer to the random transmission approach, whereas red

ones are relative to the reactive strategy. Solid and dashed patterns are used to distinguish

results obtained for q01 = q10 = 0.1 and q01 = q10 = 0.01, respectively.

For the random transmission strategy, the activation probability α has been set to 1/M .

This choice maximizes the throughput of slotted ALOHA, and, as discussed in Sec. II-E, is

also optimal in terms of average AoI. It is easy to observe that setting α = 1/M minimizes

the SEE, too.4 To see this, it is sufficient to note that the problem of estimating the state Xn

given the observations Y n is equivalent to the problem of estimating Xn with Y0, Y1, . . . , Yn

being the observations of X0, X1, . . . , Xn after transmission over n + 1 independent binary

erasure channels (BECs) with erasure probability ϵ = 1−ω, where the channel output alphabet

is {0, 1, ?} and ? denotes an erasure. The observation follows by the fact that, under random

transmissions, observing Yn ∈ {I, C,⊖,⊕} does not yield any information on Xn, hence

any channel output in {I, C,⊖,⊕} can be regarded as an erasure. The conditional entropy

H(Xn|Y n) is hence minimized by minimizing ϵ, i.e., by maximizing ω = α(1− α)M−1.

4A similar trend – i.e., AoI as proxy to minimize the uncertainty on the source state – was also noted in [5], [9], for a

single source setting when sampling is performed independently of the source evolution.
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Fig. 7. Average SEE vs. number of nodes M . Asymmetric source case: q01 = 0.01, q10 = 0.1. Lines denote results obtained

via DE analysis, whereas markers the output of Monte Carlo simulations. For the reactive case, the myopic surrogate model

was used for DE.

Fig. 6 offers several take-aways. First, as expected, the average SEE raises in all cases

when more nodes populate the network. The trend stems from the harsher channel contention

experienced for larger values of M , which increases the probability of losing updates due to

collisions and thus the uncertainty at the receiver. In contrast, lower values of the state tran-

sition probability q01 = q10 improve the SEE. The reason is twofold. On the one hand, when

the source status changes less often, fewer updates are required on average at the receiver to

track its evolution, and the loss of packets entails a lower increase in the uncertainty level. On

the other hand, more sporadic transitions reduce the channel contention in the reactive case,

increasing the probability of successfully delivering a packet and positively impacting the

metric. The plot also pinpoints the beneficial effect of implementing a reactive transmission

strategy. As discussed, having sources only notifying state changes makes transmissions

more informative and helps preventing congestion, whereas a random transmission approach

may see nodes occupy the channel to send information already available at the receiver or,

similarly, not promptly notify a relevant transition. The effect is especially apparent for low

values of M . Notably, for M = 2, perfect knowledge is available at the receiver for the

reactive policy (SEE equal to 0). Indeed, in this case, once the state of both nodes is known,

if a collision occurs the receiver deduces a simultaneous state change at the sources, which

allows to infer the new states.

The behavior in presence of asymmetric sources is reported in Fig. 7, considering q01 = 0.01

and q10 = 0.1. In this case, we recall that the analytical results obtained via DE for the reactive

transmission strategy offer an approximation, as they were derived resorting to the myopic
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Fig. 8. Average AoI vs number of nodes M , in the case of symmetric sources. Lines denote results obtained analytically,

whereas markers the output of Monte Carlo simulations. For the random strategy, α = 1/M .

surrogate model described in Sec. III-B3. Nonetheless, a very tight match can be observed

with the results of Monte Carlo simulations, which estimate the average SEE taking into

account the evolution of all sources in the systems. The outcome is particularly interesting,

as it corroborates the accuracy of the proposed simplified analytical approach in capturing

the behavior of the policy also for asymmetric transitions.

For the rest, the plot confirms the trends discussed in the symmetric case. From this

standpoint, it is interesting to observe that the average SEE tends to converge for large values

of M to the entropy of the stationary state distributions of the respective Markov chains, which

is 1 for the symmetric case and ≈ 0.44 for the asymmetric one under study. In fact, as more

nodes populate the system, the number of received packets per source progressively sinks

(either because of collisions, in the case of the reactive scheme, or because the activation

probability falls to 0 asymptotically in M for the random scheme), reducing the amount of

information available at the receiver on the tracked processes.

The results reported so far have highlighted the beneficial role played by a transmissions

strategy that is tuned to the process being monitored, when aiming at maintaining a low

SEE at the receiver in the presence of sources that are not memoryless. Such outcome is

particularly interesting, as it suggests medium access control design principles that inherently

differ from those commonly considered when targeting information freshness. To appreciate

this, we explore the behavior of both the random and reactive transmission strategies in terms

of average AoI. As discussed in Sec. II-E, the metric is commonly employed to capture how

up to date the perception of a monitored process is at the receiver, and tracks the time
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elapsed since the generation of the last received update. In slotted ALOHA systems, AoI

takes the form reported in (7), and is minimized by maximizing the average throughput, i.e.,

the frequency with which each source can successfully report data. From this standpoint,

we recall that the metric is by definition oblivious of the value being delivered, so that

generating and delivering a reading leads to a reset of AoI regardless of the actual content

of the message.

The average AoI obtained for the access strategies under study is reported in Fig 8 against

the number of nodes in the network, considering symmetric sources (q10 = q01 = 0.1, and

q10 = q01 = 0.01). For the random transmission, α = 1/M , as already discussed. We further

note that only one curve is reported for such approach, as its performance in terms of AoI

does not depend on the transitions of the underlying monitored source. This is not the case

for reactive transmissions, as the activation probability inherently depends on how frequently

the sources transition. Focusing on the two curves for the reactive approach, we also note

that, when few nodes are present, a higher transmission frequency (q01 = 0.1) leads to lower

AoI, as collisions are seldom experienced and updates can be delivered more often. As soon

as M > 10, however, the channel becomes overloaded (average load larger than 1 pkt/slot,

and the AoI rapidly deteriorates. In this region, the lower transmission rate experienced due

to q01 = 0.01 becomes beneficial, avoiding excessive congestion.

More interestingly, the plot reveals that the average AoI attained with a random transmis-

sion strategy is always lower compared to the one offered by the reactive scheme. The only

point in which the two strategies coincide corresponds to the situation in which the state tran-

sition probability coincides with the optimal activation probability (i.e., α̃ = 1/q01 = 1/M ,

obtained for M = 10 when q01 = 0.1 and for M = 100 when q01 = 0.01 – out of the plot).

Remarkably, AoI and SEE suggest the use of different access solutions. The intuition

behind this behavior is that AoI treats all packets as equally informative, and taking the

stochastic model of the source into account does not provide any advantage. However, when

the actual state of a monitored process plays a major role, maintaining a low uncertainty level

at the receiver may be critical. In this sense, the SEE naturally emerges as a good candidate

metric, and the profoundly different hints it provides in terms of access strategy shall be

taken into account in the design of the system. In turn, AoI may be the metric of choice

when fresh information is needed, or can be a valuable proxy when the source statistics are

not known at the receiver.

To conclude our study, we report in Fig. 9 the SEE attained with the different trans-

mission strategies for larger user populations, representative of practical IoT settings. To

DRAFT October 31, 2023



G. COCCO ET AL.: REMOTE MONITORING OF TWO-STATE MARKOV SOURCES VIA RANDOM ACCESS CHANNELS 23

2 · 10−4 5 · 10−4 10−3
0.02

0.1

0.4

source transition probability, q01

av
er
ag
e
st
at
e
es
ti
m
at
io
n
en
tr
op

y
[b
it
]

random trans., M = 100

reactive trans. (myopic), M = 100

random trans., M = 250

reactive trans. (myopic), M = 250

Fig. 9. Average SEE vs. source transition probability q01, obtained by means of density evolution (myopic approximation

for the reactive case). Solid lines report results for M = 100, whereas dashed ones for M = 250. In all cases, q10 = 10q01.

Accordingly, for the reactive strategy the x-axis denotes a span of channel load from 0.02 to 0.28 [pkt/slot] when M = 100

and from 0.05 to 0.7 [pkt/slot] when M = 250.

this aim, we set M = 100 (solid lines) or M = 250 (dashed lines), and consider asym-

metric sources with β := q10/q01 = 10. Accordingly, the stationary probabilities evaluate

to π0 = β/(1 + β) ≈ 0.909 and π1 = 1/(1 + β) ≈ 0.091. In the plot, the x-axis explores

different values of q01, denoting an increasing transition rate for the sources. For the random

strategy, we set in all cases α = 1/M , so that the system operates at a channel load of 1

packet per slot. For the reactive strategy, instead, we observe that the average load can be

estimated (under the myopic approximation) as M(π0q01+π1q10) = 2Mβq01/(1+β), and the

x-axis of Fig. 9 can also be interpreted as a scaled version of the contention level (see figure

caption). In the considered setting, the stationary entropy of the source is H(X) = 0.4395,

as was in Fig. 7. As expected, an increase in the number of nodes leads to higher values of

SEE for a given q01. For the reactive strategy, this is a direct consequence of the increased

level of contention, and thus the lower success probability. As far as the random strategy is

concerned, although the load is kept constant, and so is the success probability (e−1 ≈ 0.37),

the higher SEE stems from the more sporadic access opportunities each node has (α = 1/M ).

We observe how, also for larger values of M , the beneficial effect of tying the access policy

to the source evolution is apparent when it comes to reducing the uncertainty at the receiver,

as can be appreciated from the remarkable gap between the random and reactive strategies.
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VI. CONCLUSIONS

In this paper, we have studied a system in which multiple terminals share a common

slotted ALOHA channel to report updates to a receiver. Assuming each node to monitor

a two-state Markov source, we characterized the performance of the system in terms of

average state estimation entropy, capturing the uncertainty at the receiver about the state of

the tracked processes, under two transmission strategies: random and reactive. In the former

case, a node randomly sends a status update at each slot, whereas in the latter a message

is transmitted only if the monitored source has experienced a state change. We provided an

analytical characterization of the SEE, and showed that its calculation is amenable to efficient

implementation through DE, which allows to evaluate how the system performance scales

with the number of source nodes. Our study reveals that a reactive solution can offer better

performance in terms of SEE, lowering channel congestion and favoring delivery of relevant

updates. Notably, this design hint differs from what suggested when considering the average

AoI as reference metric, for which the random transmission approach is convenient. From

this standpoint, AoI is an adequate metric in contexts where limited knowledge about the

source statistics is available, and it is reasonable to assume that drought of updates translate

into higher uncertainty about the state of the source. However, in setups where the receiver

has knowledge of the source model, SEE naturally emerges as a good metric, as it captures

the residual uncertainty at the receiver about the state of the sources once the channel output

and the source model have been taken into account.

APPENDIX A

PRAGMATIC STATE ESTIMATION: DECODE&HOLD

The approach presented in Sec. III provides the receiver with an optimal estimate of the

current source state, minimizing the probability of error. The complexity entailed by running a

MAP estimator may however be critical in settings where messages are delivered to a battery-

powered and computationally-limited collector [2], [44]. In addition, it requires knowledge

on the statistics of the source, which may not be available. For such scenarios, other detectors

may be preferred, trading off an optimal estimate in favor of a simpler implementation.

Starting from this remark, we consider an alternative solution, based on a decode and hold

(D&H) estimator. In this approach, the receiver maintains at any time n an estimate X̂n for

the reference source, which is updated whenever a packet is decoded and reveals the current
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state of the node of interest, or remains unchanged otherwise, i.e.

X̂n =

Yn if Yn ∈ {0, 1}

X̂n−1 if Yn ∈ {I, C,⊖,⊕} .
(17)

From (17) we see that the D&H solution does not require the calculations of an APP

logarithmic ratio as in the MAP estimator, nor does it lean on knowledge of the source

statistics. On the other hand, the following example provides an intuition of why this simple

scheme is inherently suboptimal.

Example 3. Consider the case of a system with M = 2 sources, operating under the reactive

transmission strategy, and assume the following evolution:

• at time n− 2, we have Xn−2 = 0, X(1)
n−2 = 1

• at time n− 1 only the source of interest transitions: Xn−1 = 1, X(1)
n−1 = 1

• at time n both sources transition: Xn = 0, X(1)
n = 0

Accordingly, slot n− 1 sees the sole transmission of the reference source, so that Yn−1 = 1,

whereas a collision is experienced over slot n, i.e. Yn = C. In this situation, the D&H

estimator outputs the sequence X̂n−1 = 1, X̂n = 1, providing an erroneous estimate in

slot n (i.e., X̂n ̸= Xn) Conversely, the output of the threshold test on the APP logarith-

mic ratio in (8) performed by the MAP approach returns the correct estimates in both

time instants. This can readily be verified by observing that, for the case under study,

P[Xn = 0 |Yn = C, Yn−1 = 1, Y n−2 = yn−2 ] = 1. Indeed, the observation of a collision im-

plies that both nodes transmitted, and hence changed their state, providing certain knowledge

of the state of the reference source at time n as well.

To characterize the performance of this low-complexity solution, we focus on the average

error probability Pe, which can be effectively computed by jointly tracking the source state

and estimate processes via the Markov chain (Xn, X̂n). The analysis we present is exact under

random transmissions, whereas it resorts to the myopic surrogate model when the reactive

strategy is implemented.

Let us first focus on the random approach. In this case, the transition probabilities of

the chain are summarized in Fig. 10a, where we recall that ω = α(1 − α)M−1 is the

probability that a node successfully delivers an update over a slot. As an example, consider

state (Xn, X̂n) = (0, 0). The process remains in the same state over the next slot if no change

of state occurs, i.e. with probability q00. Note indeed that X̂n+1 will remain 0 both in case

of transmission and successful delivery of an update (i.e. Yn+1 = 0), and in the absence of a
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0, 0 0, 1

1, 0 1, 1

q00

q01(1−ω)

q01ω

q00ω q00(1− ω)

q01

q10

q11(1− ω)
q11ω

q10ω

q11

q10(1−ω)

(a) random transmission strategy

0, 0 0, 1

1, 0 1, 1

q00

q01(1−(1−α̃)M−1)

q01(1− α̃)M−1

q00

q01

q10

q11

q10(1− α̃)M−1

q11

q10(1−(1−α̃)M−1)

(b) reactive transmission strategy

Fig. 10. Markov chains (Xn, X̂n) tracking the evolution of reference source state and D&H estimate, in the case of a

random (a) and reactive (b) transmission policy.

received packet from the reference source (i.e. Yn+1 ∈ {I, C,⊖,⊕}). Instead, no transition to

state (0, 1) can take place, since the D&H estimator would only reset X̂n+1 to 1 upon receiving

an update from the source containing that value, which is not possible when Xn+1 = 0. In

turn, the system moves to (1, 0) – providing an erroneous estimate of the source state –

whenever the node of interest changes state (probability q01) but does not deliver an update,

either due to a collision or for lack of transmission (overall probability 1−ω). Conversely, a

transition to (1, 1) occurs when the source moves to state 1 and successfully sends a packet

in slot n+1 (probability q01ω). All other probabilities in the chain can be derived following

a similar reasoning.

The finite state Markov process is readily shown to be aperiodic and irreducible, and

thus ergodic. Accordingly, the error probability Pe introduced in (6), expressing the average

time spent by the chain in (0, 1) and (1, 0), can be computed as the sum of the stationary

probabilities of such states, denoted by π(0,1) and π(1,0). Solving the balance equation, we get

Pe = π(0,1) + π(1,0) =
2q01q10 (1− ω)

(q01 + q10) [ω + (1− ω)(q01 + q10)]
. (18)

The same approach can be leveraged to derive the performance of the D&H estimator when

the nodes operate following a reactive transmission policy, leaning on the surrogate myopic

model introduced in Sec. III-B3. The corresponding transition probabilities for the Markov

chain (Xn, X̂n) take the form reported in Fig. 10b. In this case, the term (1− α̃)M−1 captures

the probability for a source to deliver an update over a slot once a state change has taken

place, with the activation probability α̃ defined in (3). The stationary distribution of the chain
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Fig. 11. Average state estimate error probability, Pe, against the number of devices in the network, symmetric source case

(q10 = q01 = 0.01). Solid lines denote analytical results for the D&H estimator, whereas circle markers the outcome of

Monte Carlo simulations. Dashed lines report results for a MAP estimator using (20) and (21). Different colors indicate the

performance attained under the random (blue) or reactive (red) transmission policy.

gives in this case

π(0,1) ≈
q10(1− (1− α̃)M−1)

(q01 + q10)(2− (1− α̃)M−1)
, π(1,0) ≈

q01(1− (1− α̃)M−1)

(q01 + q10)(2− (1− α̃)M−1)

leading to an average error probability

Pe ≈
1− (1− α̃)M−1

2− (1− α̃)M−1
. (19)

As discussed, this is exact for symmetric sources (i.e. q01 = q10), whereas it is only an

approximation in the asymmetric case.

First insights on the behavior of the D&H estimator are offered by Fig. 11, which re-

ports Pe against the number of nodes in the network in the case of symmetric sources

(q01 = q10 = 0.01). Blue lines refer to performance attained under the random transmission

policy, whereas red ones are representative of the reactive approach. In the former case, the

activation probability has been set as the reciprocal of the number of nodes, i.e., α = 1/M ,

in order to maximize the throughput and thus the average number of delivered updates. In

the plot, solid lines report the analytical results for the D&H estimator obtained via (18) and

(19), whereas circle markers denote the results of Monte Carlo simulations. Finally, dashed

lines show the performance of a MAP estimator, which can be derived from the DE analysis.

In particular, for the random transmission strategy case the error probability is

Pe = lim
n→∞

∑
λn≤0

P (λn, 0) + lim
n→∞

∑
λn>0

P (λn, 1) (20)
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where P (λn, xn) is computed with the recursion (15). Note that to practically estimate the

limit in (20) it suffices to let n grow large enough (e.g., n ≈ 105) to observe converging

probability estimates. Similarly, the error probability for the MAP estimator for the reactive

transmission strategy case can be obtained, in the myopic approximation setting, as

Pe ≈ lim
n→∞

∑
λ̃n≤0

P (λ̃n, 0) + lim
n→∞

∑
λ̃n>0

P (λ̃n, 1) (21)

where P (λ̃n, xn) follows from the DE recursion (16).

The reported trends pinpoint a visible gap between the two estimators when few nodes

populate the network. The rationale behind this goes along the lines of the discussion

presented in Example 2. Indeed, while both MAP and D&H attain an exact knowledge

whenever a packet from the tracked source is received, the former refines its estimate also

in the presence of an idle slot, a collision, or upon receiving a packet from another node

(Yn ∈ {I, C,⊖,⊕}). Such side information is especially beneficial for low values of M , as it

allows to infer with a good level of confidence the state of the reference process. A simple

quantitative intuition on this can be grasped by focusing on the reactive strategy and by

considering the likelihood ratio

P[Xn = Xn−1, Yn = C ]

P[Xn ̸= Xn−1, Yn = C ]
=

(1− α)
[
1− (1− α)M−1 − (M − 1)(1− α)M−2

]
α [1− (1− α)M−1]

(22)

obtained in the event of a collision and only looking at the outcome of the last slot. The

quantity evaluates to 0 for M = 2, allowing the MAP estimator to extract exact knowledge

on the change of state, as discussed in the previously presented example.

Interestingly, the performance gap between the two approaches vanishes as the number of

sources increases. For larger M , indeed, idle slots occur more seldom, and the impact of

observing a collision on the MAP estimate of the reference source becomes weaker. A hint

on this is again offered by (22), as the likelihood ratio converges to (1−α)/α for M → ∞.

This observation is of practical relevance, suggesting that the simple D&H solution offers

good performance in sufficiently large networks when symmetric sources are to be tracked.

Fig. 11 also reveals that a lower error probability is attained for the configuration under

study when nodes implement a reactive transmission approach, especially for low to inter-

mediate values of M . The choice of accessing the channel only to signal a change of state

is in this case particularly beneficial, increasing the probability of successfully notifying an

update. Conversely, when sources are sampled at random times, nodes may attempt to report

information which is already available at the receiver, congesting the medium unnecessarily

and generating additional collisions that reduce the estimator accuracy.
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Fig. 12. Average state estimate error probability, Pe, against the number of devices in the network, asymmetric source case

(q10 = 0.01, q01 = 0.1). Solid lines denote analytical results for the D&H estimator, whereas circle markers the outcome of

Monte Carlo simulations. Dashed lines report results for a MAP estimator obtained via (20) and (21) (myopic surrogate).

Different colors indicate the performance attained under the random (blue) or reactive (red) transmission policy.

These remarks are complemented by Fig. 12, which shows the same set of performance

trends in the case of asymmetric sources, assuming q01 = 0.01, q10 = 0.1. Within the plot, let

us first consider the behavior observed when the reactive policy is implemented (red lines).

In this case, simulation results show a very tight match with the analytical formulation of

Pe for the D&H estimator (19), obtained relying on the myopic surrogate approximation. On

the other hand, a significant gap is present with respect to the behavior of a MAP approach,

for all values of M . This stems from the long time that may be required for an erroneous

D&H estimate to be corrected. For the configuration under study, for instance, a change of

the Markov chain (Xn, X̂n) in Fig. 10b from state (0, 1) to an exact knowledge can occur at

the earliest when the source takes the less likely transition 0 → 1 and the transmitted update

is correctly received (i.e., (Xn, X̂n) transitions to (1, 1), taking on average 1/[q01(1− α̃)M−1]

slots). Conversely, the MAP approach can better refine its estimate at each slot, possibly

correcting the erroneous knowledge without the need for the source to perform any further

transmission. In addition, and in contrast to what observed in the symmetric case, the D&H

estimator performs worse when nodes implement a reactive rather than a random transmission

policy, already for relatively low values of M . The trend can again be explained observing

that in the former case the estimator can remain in error for a long time due to lack of

transitions (and thus update transmissions) of the reference source. When delivery attempts

are performed at random times, instead, such periods of drought can be shortened, with

beneficial effects on the average error probability.
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APPENDIX B

CONDITIONAL STATISTICS OF CHANNEL OBSERVATIONS

In this appendix, we derive the statistical relation between the observed channel output at

a generic slot, Yn, and the state of the system sources, as introduced in the HMMs of Sec. III.

A. Random Transmission Strategy

In this case, we are interested in computing the conditional distribution P (yn|xn) in (10).

We start by observing that, by the i.i.d. behavior of all nodes across slots, the channel output

does not depend on the state of the reference source when Yn ∈ {I, C,⊖,⊕}, i.e. in the case

of idle slot, collision, or message reception from another node. Accordingly, we get

P[Yn = I |Xn = xn] = (1−α)M

P[Yn = C |Xn = xn] = 1− (1−α)M −Mω

P[Yn = ⊖ |Xn = xn] = (1− α)(M − 1)π0 ω

P[Yn = ⊕ |Xn = xn] = (1− α)(M − 1)π1 ω .

In particular, an idle slot is experienced when none of the M sources becomes active,

whereas a collision occurs when more than one node transmits. In turn, the probability of

receiving a ”one” or ”zero” message from a source other than the reference one is obtained

by jointly considering the event of having the reference source not transmitting (1 − α), a

single packet sent over the slot by one of the other nodes (probability (M − 1)ω), and that

the sender is in the corresponding state (probability π0 or π1).

Finally, the conditional probabilities when a packet from the reference source is received

can be obtained as P[Yn = 0 |Xn = 0] = P[Yn = 1 |Xn = 1] = ω, P[Yn = 0 |Xn = 1] = 0

and P[Yn = 1 |Xn = 0] = 0. In the first case, the outcome is observed when the source

transmits while all other contenders remain silent, whereas receiving a message from the

source with a state different from the current one is not possible.

B. Reactive Transmission Strategy, Symmetric Sources

When sources are symmetric (q01 = q10) and a reactive transmission strategy is employed,

the corresponding HMM is fully characterized by specifying the conditional probabilities

P (yn |xn−1, xn), as highlighted in (13). Consider first the case Yn = I. Such an outcome can

only be observed if the reference source does not transition (i.e., Xn−1 = Xn) and the same

holds for all other nodes. We thus get P[Yn = I |Xn−1 = xn−1, Xn = xn] = (1− α̃)M−1 for
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xn−1 = xn and 0 otherwise. The reference source has to remain in the same state also for

the receiver to retrieve a packet from any of the other nodes (Yn ∈ {⊖,⊕}). Accordingly,

P[Yn = ⊖ |Xn−1 = xn−1, Xn = xn−1] = P[Yn = ⊕ |Xn−1 = xn−1, Xn = xn−1]

= (M − 1)
α̃

2
(1−α̃)M−2 (23)

whereas P[Yn = ⊖|Xn−1 ̸= Xn] = P[Yn = ⊕|Xn−1 ̸= Xn] = 0. Within (23), the term

α̃/2 = π0q01 = π1q10 denotes the probability for one of the M − 1 sources to perform the

transition which is successfully reported to the receiver.

Similarly, when considering a collision outcome, the cases in which a state change (i.e.,

transmission) for the reference source takes place or not have to be distinguished. In the

former, the activation of one or more of the remaining M − 1 nodes suffices to have Yn = C,

whereas two ore more have to change state if the reference node does not. Following this

reasoning we obtain

P[Yn = C |Xn−1=xn−1, Xn=xn] =

1−(1−α̃)M−1 if xn−1 ̸= xn

1−(1−α̃)M−1−(M−1) α̃ (1−α̃)M−2 otherwise.

Lastly, the conditional probability of observing a reading from the source of interest can

be derived with the same reasoning applied in the random transmission case:

P[Yn = 0 |Xn−1=xn−1, Xn=xn] =

(1−α̃)M−1 if xn−1 = 1, xn = 0

0 otherwise
(24)

P[Yn = 1 |Xn−1=xn−1, Xn=xn] =

(1−α̃)M−1 if xn−1 = 0, xn = 1

0 otherwise.
(25)

C. Reactive Transmission Strategy, Asymmetric Sources

For the general case of asymmetric sources (q10 ̸= q01), we are interested in computing both

the one-step transition probabilities of the Markov chain σn = (Xn, Sn) and the conditional

probabilities P (yn |σn−1, σn). Let us first consider the former. Recalling the independent

behavior of the reference source, we readily get

P (σn |σn−1) = P (xn |xn−1)P (sn | sn−1).
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Denote now for the sake of compactness as S̄n the r.v. describing the number of sources,

apart from the reference one, in state 1 at a generic slot n, i.e.

S̄n = M − 1− Sn .

By simple combinatorial arguments, it follows that

P[Sn = sn−1 + k |Sn−1 = sn−1 ] =

min{sn−1,s̄n−1k}∑
ℓ=0

(
sn−1

ℓ

)
qℓ01 q

sn−1−ℓ
00

(
s̄n−1

ℓ+ k

)
qℓ+k
10 q

s̄n−1−ℓ−k
11

for any 0 ≤ k ≤ M − 1− sn−1. The expression accounts for all the possible cases in which

the number of sources transitioning from state 1 to 0 is k more than those changing from 0

to 1. Similarly, when the number of sources in state 0 experiences an overall decrease, we

obtain for any 1 < k ≤ sn−1

P[Sn=sn−1−k |Sn−1 = sn−1 ] =

min{sn−1−k,s̄n−1}∑
ℓ=1

(
sn−1

ℓ

)
qℓ01 q

sn−1−ℓ
00

(
s̄n−1

ℓ− k

)
qℓ−k
10 q

s̄n−1−ℓ+k
11 .

Leaning on this, the conditional probabilities of observing Yn can be derived. Consider

first the case Yn = I. Recalling that an idle slot under the reactive strategy occurs only when

neither the reference source nor any of the other nodes transition, we get for Sn = Sn−1 and

Xn = Xn−1

P [Yn = I |σn−1 = (xn−1, sn−1), σn = σn−1 ] =
q
sn−1

00 q
s̄n−1

11

P [Sn = sn−1 |Sn−1 = sn−1]
(26)

and P [Yn = I |σn−1 = (xn−1, sn−1), σn = (xn, sn) ] = 0 otherwise. In (26), only the cases in

which none of the other sources change state (probability q
sn−1

00 q
s̄n−1

11 ) are accounted for in

triggering an idle slot, as the overall event Sn = Sn−1 also includes all cases in which the

same number of nodes transitions from 0 to 1 and from 1 to 0. Following a similar reasoning,

the conditional probabilities for the receiver to decode a packet from a source different from

the reference one follow. Specifically, for Sn = Sn−1 − 1 and Xn = Xn−1

P [Yn = ⊕ |σn−1 = (xn−1, sn−1), σn = (xn−1, sn−1 − 1) ] =
sn−1 q01 q

sn−1−1
00 q

s̄n−1−1
11

P [Sn = sn−1 − 1 |Sn−1 = sn−1]

and, for Sn = Sn−1 + 1, Xn = Xn−1

P [Yn = ⊖ |σn−1 = (xn−1, sn−1), σn = (xn−1, sn−1 + 1) ] =
s̄n−1 q10 q

s̄n−1
11 q

s̄n−1

00

P [Sn = sn−1 + 1 |Sn−1 = sn−1]
.
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In all other cases, the events cannot be observed. The expressions capture the event that only

one of the sources performs a transition and notifies its new state.

Finally, the conditional probabilities for Yn to take value 0 or 1 are akin to those obtained

in (24), (25), as only the reference node has to transition over slot n. In this case, accounting

for the asymmetry of the other sources, we have for Sn = Sn−1 and Xn = 1, Xn−1 = 0

P [Yn = 1 |σn−1 = (0, sn−1), σn = (1, sn−1) ] =
q
sn−1

11 q
s̄n−1

00

P [Sn = sn−1 |Sn−1 = sn−1]

and P [Yn = 1 |σn−1 = (xn−1, sn−1), σn = (xn, sn) ] = 0 otherwise. Similarly

P [Yn = 0 |σn−1 = (1, sn−1), σn = (0, sn−1) ] =
q
sn−1

11 q
s̄n−1

00

P [Sn = sn−1 |Sn−1 = sn−1]

and 0 otherwise.

In conclusion, the observation of a collision is the complementary event to those just de-

scribed, and the corresponding probability, i.e. P [Yn = C |σn−1 = (xn−1, sn−1), σn = (xn, sn) ],

can be derived accordingly.
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