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Abstract—In this paper, we analyze status update systems
modeled through the Stochastic Hybrid Systems (SHSs) tool.
Contrary to previous works, we allow the system’s transition
dynamics to be polynomial functions of the Age of Information
(AoI). This dependence allows us to encapsulate many applica-
tions and opens the door for more sophisticated systems to be
studied. However, this same dependence on the AoI engenders
technical and analytical difficulties that we address in this
paper. Specifically, we first showcase several characteristics of
the age processes modeled through the SHSs tool. Then, we
provide a framework to establish the Lagrange stability and
positive recurrence of these processes. Building on this, we
provide an approach to compute the m-th moment of the age
processes. Interestingly, this technique allows us to approximate
the average age by solving a simple set of linear equations.
Equipped with this approach, we also provide a sequential
convex approximation method to optimize the average age by
calibrating the parameters of the system. Finally, we consider an
age-dependent CSMA environment where the back-off duration
depends on the instantaneous age. By leveraging our analysis, we
contrast its performance to the age-blind CSMA and showcase
the age performance gain provided by the former.

I. INTRODUCTION

In recent years, the proliferation of mobile devices, ubiq-
uitous connectivity, and cheap hardware costs have paved
the way for new real-time applications. Such applications in-
clude weather reporting, home appliance monitoring, vehicular
networks, and many other up-and-coming applications. The
common denominator for all these applications is their reliance
on fresh data to achieve their optimal performance. In light of
this, a metric of data freshness called the Age of Information
(AoI) was proposed in [1]. At any time t, if the freshest update
delivered to the destination had a timestamp of U(t), then the
age at the destination side is

∆(t) = t− U(t). (1)

In other words, the AoI is the time elapsed since the moment
that the freshest delivered update was generated. Accordingly,
the AoI can be regarded as a measure of the information time-
lag at the destination. Ever since its introduction, researchers
have aimed to investigate this metric in various systems to
gain insights on the means to achieve information freshness
[2]–[16]. Notably, age-based metrics such as the average AoI
[1], peak AoI [15], and non-decreasing age-functionals [16]
were minimized in an ample number of settings to achieve

the desired freshness goal. Clearly, this type of analysis relies
heavily on the tools that allow us to compute and analyze these
age-based metrics. In other words, any progress in the tools
mentioned above will enable the analysis of more sophisticated
and elaborate systems. With this in mind, and given that the
average AoI is the most commonly adopted age-based metric,
we will focus on it in the remainder of this paper.

In a large part of the literature, the most fundamental
tool that was leveraged to analyze the average age was the
graphical decomposition method [1]. Given that the average
age is nothing but the area below the instantaneous age curve,
the method decomposes this area into several trapezoids.
Afterward, the area of each trapezoid is written in function
of key quantities such as packet inter-arrival time, queueing
delay, transmission time, etc. Although this approach allows
us to compute the average age in various settings, its usage can
be limited in systems where packets can be dropped (i.e., lossy
systems) or when a variety of events needs to be accounted
for (e.g., a random access environment). To address such
limitations, another method, known as the Stochastic Hybrid
Systems (SHSs) tool, has recently gained significant attention
due to its versatility and simplicity. The use of the SHSs
tool for AoI analysis was first done by Yates et al. in [17]
in the context of multi-source information flows system. In
essence, an SHS revolves around two processes that interact
with one another: 1) a continuous process, and 2) a discrete
process, hence the name hybrid. The discrete process captures
events that could occur in the system, such as packet arrivals,
successful packet transmissions, etc. On the other hand, the
continuous process represents the age process of interest that
evolves with time and is subject to potential changes at each
transition of the discrete process. Under the constant transition
rates assumption on the discrete process, Yates et al. have
shown that the SHS model is stable and have provided an ef-
ficient way to calculate the average AoI. Accordingly, the work
mentioned above has enabled the analysis of various systems
using this tool. We cite for example Carrier-Sense-Multiple-
Access (CSMA) environments [18], [19], Non-Orthogonal-
Multiple-Access environments [20], parallel servers networks
[21], priority systems [22], [23], Tandem queues [24], and
many other systems. Given the wide applicability of this tool,
an interesting question arises: can we go beyond the constant
transition rates assumption to more elaborate age-dependent
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transition rates? The motivation behind such a consideration
is the vast amount of systems where the dynamics could
change given the instantaneous AoI. For example, users with
a higher age may be provided a higher access priority to the
channel. Another example would be making the transmission
time shorter for users with high age (e.g., by allocating a
higher power to their transmission). Therefore, it is compelling
to analyze such environments to open the door for more
sophisticated systems to be studied. This is what this paper
investigates and studies. To that end, the following are the
key contributions of this paper:

• Starting with a general status update system modeled
through the SHSs tool with age-dependent transition
rates, we showcase the regularity of the stochastic pro-
cesses involved. Additionally, we show that the SHS
model satisfies the strong Markov property and several
other critical characteristics. Equipped with these results,
we formulate the differential equations that govern the
evolution of the m-th moment of the age processes.

• The most fundamental step of our analysis is to show-
case the stability of the differential equations involved.
To tackle this, we distinguish in our analysis between
two cases: 1) single discrete state, single age process
systems, and 2) multiple discrete states, multiple age
processes systems. This distinction is made to ease out
the presentation of the paper as the analysis of the latter
case is more complicated than the former. To that end,
in the former case, we leverage Jensen’s inequality to
prove our desired stability results. In the latter case, and
given its complexity, we focus on a particular age-aware
CSMA environment and provide a framework to establish
stability. It is worth noting that the proposed framework
can be adapted to different systems by tweaking the
proofs accordingly. In both cases, thanks to the stability
results, we can assert the finiteness of the age moments
for any arbitrary time instant t.

• Unfortunately, finiteness is not enough to prove the
convergence of the differential equations in question.
To ensure the convergence, we need to establish the
ergodicity of the age processes on top of the Lagrange
stability. With this goal in mind, we leverage the strong
Markov property, Dynkin’s formula and Fatou’s lemma,
along with Lyapunov functions to establish the positive
recurrence of the age processes. Given the stability and
positive recurrence, we can then assert the ergodicity
of the age processes, affirming the convergence of the
differential equations in the steady-state regime.

• Although the convergence of the differential equations is
established, computing the moments of the age processes
remains challenging due to the dependence of low-order
moments on higher-order ones. To address this issue, we
propose a moment closure technique based on a scaling
of the differential equations. Interestingly, we show that
our approach allows us to approximate the average age of
the system with high accuracy by solving a set of linear

equations. Given this fact, we also present a Sequential
Convex Approximation (SCA) method to optimize the
average age by calibrating the system’s parameters. The
convergence of the SCA procedure to a stationary point
is then proven over any compact set of the parameters
space.

• Lastly, we implement the age-aware CSMA environment
and contrast its performance to the age-blind CSMA.
Interestingly, we demonstrate that the former shows sig-
nificant performance gains, highlighting further the utility
of the age-aware SHSs analysis.

The rest of the paper is organized as follows: Section II
introduces the SHSs tool in general and the age-aware SHS in
particular. In Section III, we prove several key characteristics
of the SHS in question and lay out the fundamentals for La-
grange stability and positive recurrence. In Section IV and V,
we examine the stability and positive recurrence for 1) single
discrete state, single age process systems, and 2) multiple
discrete, states multiple age processes systems, respectively.
In Section VI, we propose a moment closure technique to
compute the average age and provide the SCA approach to
optimize the average age of the systems in question. Lastly,
the age-aware CSMA algorithm is implemented numerically
in Section VII, while Section VIII concludes the paper.
The notations adopted in the paper are as follows. We use
boldface to denote matrices and vectors. In addition, we let
In denote the n× n identity matrix. Also, let E[·] denote the
expectation, and || · || the vector norm.

II. INTRODUCTION TO SHSS

A. General Settings

Stochastic hybrid systems are dynamical systems that com-
bine 1) continuous change, 2) instantaneous change, and 3)
random effects. More precisely, the word “hybrid” refers
to these systems’ ability to model the interaction between
continuous dynamics and discrete dynamics. Some of the
earliest references that study systems with these features
include the work of Bellman [25] and Bergen [26] in 1954
and 1960, respectively. Since then, the interest in this type
of system skyrocketed due to the vast applications that fall
under its umbrella. For example, SHSs were found to be
useful in studying financial markets, air traffic management,
communication networks, and even biological systems [27].
Recently, and as has been pointed out in the introduction, the
SHS tool was also found pivotal to model and analyze the AoI
in status updates systems [17].

To understand these systems, let us define a jump process
q : [0,∞) 7→ Q that we will refer to as the discrete state. Q is
a (typically finite) discrete set that amasses all the possible
values of q(t). Next, we let x : [0,∞) 7→ Rn denote a
stochastic process with piecewise continuous sample paths that
we will call the continuous state. An SHS is defined by a



Stochastic Differential Equation (SDE)

ẋ = f(q,x, t) + g(q,x, t)ṅ, f : Q× Rn × [0,∞) 7→ Rn,
g : Q× Rn × [0,∞) 7→ Rn×k,

(2)

a family of L discrete transition/reset maps

(q,x) = φl(q
−,x−, t), φl : Q× Rn × [0,∞) 7→ Q× Rn,

(3)
and a family of L transition intensities/rates

λl(q,x, t), λl : Q×Rn×[0,∞) 7→ [0,∞), for l = 1, . . . , L,
(4)

where n denotes a k-vector of independent Brownian motion
processes. In other words, each component ni for i = 1, . . . , k
has the following characteristics
• ni(0) = 0
• ni has independent increments: for every t > 0, the future

increments ni(t + u) − ni(t), u ≥ 0, are independent of
the past values ni(s), s ≤ t.

• ni has Gaussian increments: ni(t+u)−ni(t) is normally
distributed with mean 0 and variance u

• ni(t) is continuous in t
In essence, the continuous process x(t) evolves according to
the SDE reported in (2). When a transition l takes place,
the corresponding reset map φl(q

−,x−, t) is applied and
the system continues evolving according to (2), but starting
from the new system state (q,x) = φl(q

−,x−, t). Note that
(q−,x−) denote both the discrete state and continuous state
of the system just before the transition takes place. Finally, to
understand the transition rates, let us consider an elementary
interval (t, t+dt] and suppose that the system is in state (q,x).
Then, the probability of transition l to take place is simply
λl(q,x, t)dt. As can be seen, the SHS is quite a versatile
modeling tool that can be used to represent a large variety
of systems. In the next section, we will adapt it to the AoI
framework in status updates systems.

B. Polynomial Age-dependent SHSs
Let us take the general SHS model reported in the previous

section and cater it to the special structure of the AoI frame-
work in status updates systems. First, in status updates settings,
the continuous process of the SHS model x(t) ∈ [0,∞)n

denote a collection of age-related processes. For example, the
components of x(t) could describe the age at the monitor
of a certain stream or the age of a specific packet at time
t. On the other hand, the discrete process q(t) ∈ Q will
denote the status of the network/system at hand. For example,
transitions between the different possible values of q(t) can
occur when an event in the network happens, such as a
successful packet transmission or a particular packet arrival.
Next, given that x(t) tracks the evolution of a collection of
age-related processes, we can assert that the SDEs governing
its evolution are characterized by

f(q,x, t) = bq,

g(q,x, t) = 0, (5)

and bq ∈ {0, 1}n is a binary vector for all q ∈ Q. To
understand the choice of the above functions, we note that the
evolution of the AoI is deterministic in nature as it can either
grow linearly with time or keep the same value. For instance, if
we track the age of a packet in a particular queue, its age grows
linearly when the queue is non-empty. In contrast, if the queue
is empty (i.e., there are no packets), its age stays equal to zero.
Hence, the derivative of each component of x(t) can be either
equal to 1 or 0. On top of that, given the deterministic nature
of this evolution, we have g(q,x, t) = 0. Thus far, we have
not imposed any particularities on the status updates system in
question. In other words, we did not impose any restrictions on
the packet model, channel model, or queuing discipline. The
first restriction we consider concerns the transition rates of
the ensued SHS model. Specifically, we focus in this paper
on the class of finite polynomial transition rates such that
λl(q,x, t) ≥ 0 for all x ∈ [0,∞)n. More precisely, the
transition rates have the following form

λl(q,x, t) =
∑
m∈M

a(l)
mx

m(t), l = 1, . . . , L, (6)

where m ∈ Nn, M is the set of order vectors m, and
xm(t) = xm1

1 (t) . . . xmn
n (t). In previous works on SHSs for

AoI analysis [17], the transition rates λl were considered
to be constant for all x. However, by letting λl(q,x, t)
be dependent on x, we can encompass a larger variety of
systems and applications. One simple example of such systems
being letting streams with higher age have more priority in
accessing resources. It is worth noting that although we only
consider polynomial functions, we can approximate various
non-polynomials functions up to a certain accuracy through
Taylor series [28]. Lastly, to fully characterize our system, we
consider that φl(q,x, t) can have one of the two following
forms

φl(q,x, t) = (q′,x′ = Alx) or φl(q,x, t) = (q′,x′ = cl),
(7)

where (q′x′) denote the new state of the system after transition
l takes place, cl ≥ 0, and Al ∈ {0, 1}n×n is a binary reset
matrix such that the sum of each row is less or equal to 1.
Accordingly, Al will allow us to incorporate transitions that
lead to interchange between the components (e.g., x′1 = x2)
upon a packet delivery or when transitions have no effect on
x (i.e., Al = In). Consequently, we have x′ = Alx ≤ x. On
the other hand, reset maps of the form x′ = cl allow us to
reset the age processes to a predefined value.

Although the case where λl is independent of x(t) has
been previously analyzed in [17], the above settings remain an
open research area. The next section will showcase the need
for a different methodology to study such systems compared
to the independent case. Note that such an analysis will
let us characterize/optimize the performance of an ample
number of systems. We report below one of the simplest
applications/examples of such systems. It is worth noting that
the illustrative example (and later examples found in the paper)
can be used as a reference for the readers to see how a status



updates system can be fitted to an SHS model.
Illustrative Example. Consider a scenario where x(t) ∈
[0,∞) denotes the AoI of a certain system at time t. To that
end, we have

ẋ(t) = 1, ∀t ∈ [0,∞). (8)

We consider that q(t) can only have one value, such as 0. In
other words, Q is the singleton {0}. We suppose that as the age
evolves, a self-transition counter starts ticking. Specifically,
the transition intensity is equal to λ1(x(t), t) = a1x(t) where
a1 > 0. When a transition occurs, the age x(t) is reset to 0.
In other words, the reset function is defined as φ1(0, x, t) =
(0, 0). This simple scenario describes a transmitter-receiver
zero delay system where, as the age grows, the transmitter
decides with a higher probability to sample a specific physical
process and sends a packet containing its value to the monitor
side. An illustration of this example can be found in Fig. 1.

Fig. 1: Example of an age-dependent SHS.

Given the ability of age-dependent SHSs to model a wide
variety of applications, a fundamental question arises: how
can we analyze such systems? In the sequel, we answer this
question and present a thorough analysis of the SHSs family
in question.

III. PRELIMINARIES TO THE SHSS ANALYSIS

In status updates systems, our goal is to quantify an age-
based metric for which the minimization allows us to achieve
the freshness goal. Various metrics have been adopted through-
out the literature, with the average AoI being the most common
[2]. To that end, given a certain status updates system modeled
through the SHSs tool depicted above, our fundamental goal
is to characterize the first-order statistics of the age processes
(e.g., the average AoI). Accordingly, let us consider the n-
dimensional vector m = (m1,m2, . . . ,mn) such that mi ∈ N
for i = 1, . . . , n and

∑n
i=1mi = m. Moreover, we let xm(t)

denote the monomial xm1
1 (t)xm2

2 (t) . . . xmn
n (t). With these

quantities in mind, we define the moment of x(t) associated
with m in state q ∈ Q as

µmq (t) = E[xm(t)δqq(t)] = E[xm1
1 (t)xm2

2 (t) . . . xmn
n (t)δqq(t)]

= E[xm(t)] Pr(q(t) = q), (9)

where δqq(t) is the Kronecker delta function. We also let
µm(t) = [µmq (t)]q∈Q be the vector that stacks the above
moments. On top of that, we define the moment of x(t)
associated with m as

µm(t) =
∑
q∈Q

µmq (t). (10)

In other words, µm(t) sums up all the contributions of the
different discrete states in the evolution of the moment of x
with respect to m. With this in mind, if we are interested in
the average AoI of the process x1 for example, we set m∗ to
(1, 0, . . . , 0) and study the dynamics of the moment associated
with m∗. Note that µm(t) depends on time and does not
necessarily converge to a finite limit as t → ∞. Therefore,
to analyze and derive the average AoI (or any other moments
of the age processes), a crucial step of the analysis consists
of establishing the convergence of µm(t) for any vector m .
We summarize below our approach to prove this

1) As a first step, we show that key properties hold for
the SHS in question. These properties will allow us to
establish an Ordinary Differential Equation (ODE) that
governs the evolution of µmq (t) for any m and q ∈ Q.

2) The next step of our analysis consists of proving the
stability of the SHS in question. As will be explained
later, there exist various forms of stability in the SHSs
literature. However, we will be interested in establishing
a specific form of stability: the Lagrange stability. Estab-
lishing the Lagrange stability ensures that the moments
of the continuous process x are finite. The finiteness of
the moments is a crucial technical step that precedes the
derivation of the AoI moments.

3) On top of the Lagrange stability, we also proceed with
proving the positive recurrence of the SHS. Proving the
positive recurrence is a fundamental step to conclude
the ergodicity of the stochastic processes, thus allowing
us to affirm the convergence of the moments of x
in the steady-state regime. This convergence is also a
critical prerequisite that precedes the derivation of the
AoI moments as it assures us of their existence.

4) Given the above results, we can assert the existence of
a stationary distribution for the SHS. Accordingly, we
can show the convergence of µm(t) to a finite limit for
any vector m as t→∞.

We start our analysis by providing the key properties verified
by the SHS in question, establishing the ODEs, and laying the
groundwork for the Lagrange stability and positive recurrence.
From there onward, we proceed with our stability and positive
recurrence analysis in two different cases

1) Single discrete, single age process: This is the case
where |Q| = 1 and n = 1, where | · | denotes the cardi-
nality of the set. The analysis provided in this scenario
will pave the way for the latter more complicated case.

2) Multiple discrete states, multiple age processes: In this
more complicated case, we examine an age-dependent
CSMA environment and showcase its Lagrange stability
and positive recurrence. Although we focus on this
particular example, the same analysis can be followed
for different systems by adapting the proofs to the
system of interest.

With our work outlined, we can establish the key properties
of the age-dependent SHS and lay the groundwork for our
analysis.



A. Characteristics and Moment Dynamics

The first key property of the system that we establish is its
regularity. The regularity property assures us that the process
{x(t) : t ≥ 0} cannot blow up in finite time.

Definition 1 (Regularity [29]). A stochastic process
{
(
x(t), q(t)

)
: t ≥ 0} is regular if and only if for any

0 < T <∞

Pr{ sup
0≤t≤T

||xx(0),q(0)(t)|| =∞} = 0, (11)

where xx(0),q(0)(t) denotes the value of x(t) given the initial
conditions (x(0), q(0)).

Lemma 1. The stochastic process {
(
x(t), q(t)

)
: t ≥ 0}

depicted in Section II-B is regular.

Proof: First, we recall that x grows at most linearly with
time whenever there are no transitions. When a transition l
occurs, x(t) jumps to either a predefined vector cl ≥ 0 or to
x′ = Alx(t). Note that given the properties of Al depicted in
Section II-B, we have x′ = Alx(t) ≤ x(t) for l = 1, . . . , L.
With this in mind, we get that the modulus of x(t) verifies
the following inequality

||x(t)|| ≤ max{||x(0)+1T ||,max
l
||cl+1T ||}, t = 0, . . . , T.

(12)
where 1 is a vector of dimension n with all entries equal to
1. Therefore, the process cannot blow up in finite time.

Subsequently, we examine the strong Markov property of
the process. This property will be of vital importance when
we examine several types of stopping times in later sections
of the paper.

Lemma 2. The stochastic process {
(
x(t), q(t)

)
: t ≥ 0},

with natural filtration {Ft}t≥0 verifies the strong Markov
property. Specifically, for any stopping time τ , conditioned on
the event {τ < ∞} and given

(
x(τ), q(τ)

)
, we have that(

x(τ + t), q(τ + t)
)

is independent of Fτ for each t ≥ 0.

Proof: To prove that our process verifies the strong
Markov property, we note that the SHS reported in Section
II-B is a special case of the Piecewise Deterministic Markov
Process (PDMP) introduced in the seminal paper of Davis in
[30]. Specifically, the process x(t) obeys to a deterministic
ODE, and discrete transitions happen at random instants that
induce changes to x(t). This coincides with the behavior
of a PDMP (e.g., see [31, Section 3.1]). Now, given the
regularity of the process shown in Lemma 1, and by noting
that the transition rates λl(q,x, t) are continuous functions of
x, we can conclude that there are only finitely many jumps
in finite time intervals. Therefore, Assumption 3.1 of [30]
is verified. With this in mind, we can leverage the results
of [30, Section 4] to conclude that the stochastic process
{
(
x(t), q(t)

)
: t ≥ 0} verifies the strong Markov property.

The next step of our analysis consists of finding the dy-
namics that govern the evolution of µm(t). To do so, we first

present several key results derived in [32] that will allow us
to proceed.

Assumption 1 ( [32]). The vector field f(·, ·, ·) is regular and
the transition intensities λl(q,x, t) : Q× [0,∞)n × [0,∞) 7→
[0,∞) for l = 1, . . . , L are measurable functions.

Assumption 2 ( [32]). Let φxl : Q×[0,∞)n×[0,∞) 7→ [0,∞)
for l = 1, . . . , L denote the projection of φl into [0,∞)n.
There exists a continuous function γf : [0,∞) 7→ [0,∞) and
constants cf , cφ such that

||f(q,x, t)|| ≤ max{γf (t)||x||, cf}, ||φxl (q,x, t)|| ≤ max{||x||, cφ},
(13)

∀q ∈ Q,x ∈ Rn, t ≥ 0, l ∈ {1, . . . , L}.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let us
define a test function ψ(q,x, t) : Q × [0,∞)n × [0,∞) 7→
[0,∞) as a continuously differentiable function with respect
to its second and third arguments. We have that

dE[ψ(q(t),x(t), t)]

dt
= E[(Lψ)(q(t),x(t), t)], (14)

where the operator L is the SHS generator that maps for every
function ψ(q,x, t) the value (Lψ)(q,x, t) as follows

ψ(q,x, t) 7→ (Lψ)(q,x, t) =
∂ψ(q,x, t)

∂x
f(q,x, t) +

∂ψ(q,x, t)

∂t

+
1

2
trace

(∂2ψ(q,x, t)

∂x2
g(q,x, t)g(q,x, t)′

)
+

L∑
l=1

λl(q,x, t)[ψ(φl(λl(q,x, t), t)− ψ(q,x, t)]. (15)

As one can see, the above theorem will allow us to evaluate
the dynamics of the moments µm(t) by appropriately choos-
ing the test functions ψ. However, to leverage this theorem, we
first need to verify that our system verifies the key assumptions
depicted above.

Lemma 3. The stochastic process {
(
x(t), q(t)

)
: t ≥ 0}

depicted in Section II-B verifies Assumptions 1 and 2.

Proof: As a first step, we note that the vector field
f(q,x, t) in eq. (5) is equal to bq , and therefore, the regularity
assumption on the vector field f(q,x, t) is trivial. Next,
we recall that for the SHS depicted in Section II-B, the
transition intensities λl(q,x, t) are polynomials in x, which
are continuous functions. With that in mind, and given that
x ∈ [0,∞)n, we can assert that these functions are measurable
(see [33, Proposition 2.3.1]). Next, let us focus on bounding
φxl : Q × [0,∞)n × [0,∞) 7→ [0,∞) for l = 1, . . . , L. Note
that if φl(q,x, t) = (q′,x′), then φxl (q,x, t) = x′. Let also
φql : Q × [0,∞)n × [0,∞) 7→ Q for l = 1, . . . , L denote the
projection of φl into Q. Given our system’s dynamics, and as
explained in the proof of Lemma 1, we have

||φxl (q,x, t)|| ≤ max{||x||, cmax}, l = 1, . . . , L, (16)

where cmax = max
l
||cl||. On top of that, we note that

f(q,x, t) = bq ≤ 1 for all q ∈ Q,x ∈ [0,∞)n, t ∈ [0,∞).



Therefore, our system satisfies the aforementioned assump-
tions.

Given that our system verifies the key assumptions, we can
now leverage Theorem 1 to find the dynamics governing the
evolution of µm(t).

Theorem 2. For any q ∈ Q, let ψmq (q(t),x, t) = xmδqq(t).
The SHS extended generator applied to this function is

Lψmq (q(t),x, t) = δqq(t)

n∑
i=1

biqmix
mi−1
i

∏
j 6=i

x
mj

j

+
∑
q̂∈Q

δq̂q(t)
[ ∑
l∈Lq,q̂

λl(q̂,x, t)(φ
x
l (q̂,x, t))m

]
− δqq(t)

∑
l∈Lq

λl(q,x, t)x
m, (17)

where biq is the i-th component of bq , Lq is the set of transitions
originating from q, Lq,q̂ is the set of transitions originating
from q̂ and ending in q, and (φxl (q(t),x, t) = x′)m =
x′m1

1 x′m2
2 . . . x′mn

n . Moreover, the moment of x(t) associated
with m in state q ∈ Q verifies the following ODE

dE[µmq (t)]

dt
= E[(Lψmq (q(t),x, t)]. (18)

Proof: Given that our system verifies Assumptions 1 and
2, we can leverage Theorem 1 to characterize the evolution
of the moments dynamics of the system. Specifically, for any
test function ψ, we have

dE[ψ(q(t),x(t), t)]

dt
= E[(Lψ)(q(t),x(t), t)]. (19)

To that end, we adopt the following family of test functions
ψmq (q(t),x, t) = xmδqq(t) = xm1

1 xm2
2 . . . xmn

n δqq(t). As one
can see in eq. (15), the expression in the right hand side, which
we will denote by F (q,x), will depend on the value of the
discrete state q. Given that our test function ψmq depends on q,
and given that our goal is to showcase the relationship between
the different test functions [ψmq ]q∈Q, we proceed similarly to
[34, Section VI] and rewrite the SHS as follows

(Lψ)(q(t),x) =
∑
q̂∈Q

δq̂q(t)F (q̂,x). (20)

Let us now write F (q̂,x) for the special case of
ψmq (q(t),x, t) = xmδqq(t). By leveraging eq. (15), we obtain

F (q̂,x) = δqq̂

n∑
i=1

biqmix
mi−1
i

∏
j 6=i

x
mj

j

+

L∑
l=1

λl(q̂,x, t)
[
δqφq

l (q̂,x,t)(φ
x
l (q̂,x, t))m − δqq̂xm

]
, (21)

where (φxl (q(t),x, t) = x′)m = x′m1
1 x′m2

2 . . . x′mn
n and φql

is the projection of φl into Q. To obtain the results of the
theorem, it suffices then to combine eq. (20) and eq. (21)
while keeping in mind the definition of the Kronecker delta
function. Note that the differentiation of the test functions

ψ(·, ·, ·) through the Kronecker functions will allow us to relate
the different moments with one another as will be seen in later
sections of the paper.

To understand the results of the above theorem, we apply it
to the illustrative example depicted in Section II-B. By doing
so, we end up with the following expression for any m ∈ N∗

dµm(t)

dt
= mµm−1(t)− a1µ

m+1(t). (22)

As can be seen from the equation above, the most challenging
part about studying these systems is that the derivative of the
moment of order m depends on the moment of order m+ 1.
By examining the results of Theorem 2, one can conclude
that this is a consequence of the dependence of the transitions
intensities on the process x(t). If we restrict ourselves to the
case where the transition intensities λl(q,x, t) are constants,
the derivative of the moment of order m will only depend on
lower-order moments. In this case, to analyze the average AoI,
for example, a linear system of a finite number of equations
can be formulated as done in the work of Yates et al. [17].
Then, one can study the stability of this system through its
eigenvalues. In contrast, in our case, the moment of order 1
depends on the moment of order 2, which itself depends on
the moment of order 3, etc. Accordingly, the same approach
cannot be adopted, and we will have to leverage different tools
to establish the stability of the SHS in question. To that end,
we lay out the groundwork for our stability analysis in the
following subsection.

B. Lagrange Stability - Fundamentals

In the literature of SHSs, stability has various definitions
(Lagrange, Lyapunov, exponential stability, etc.). Depending
on the framework, one may choose to adopt a definition of
stability rather than the other. We refer the interested readers
to the survey by Teel et al. in [27]. In the sequel, we will be
interested in the notion of Lagrange stability as it will elegantly
allow us to proceed with our AoI analysis.

Definition 2 (Lagrange Stability). For a stochastic hybrid
system, the closed set A ⊂ [0,∞)n is said to be Lagrange
stable in the m-th mean (m ≥ 1) if

sup
t≥0

E[ inf
y∈A
||x(t)− y||m] <∞. (23)

It is common to study the stability for an equilibrium point,
often taken to be the origin. Without loss of generality, we
adopt the same approach in our paper. In other words, we will
be interested in proving that

sup
t≥0

E[||x(t)||m] <∞. (24)

Concretely, the Lagrange stability consists of showing that the
expected m-th power of the modulus of x(t) evolves over a
bounded ball centered around the origin. Instead of examining
the norm of x(t) to establish the stability, we focus on studying
the moments of x(t) corresponding to a vector m ∈ Nn. As
presented in the corollary below, proving the finiteness of these



moments is sufficient to establish the Lagrange stability of the
SHS.

Corollary 1. If for any vector m = (m1,m2, . . . ,mn) such
that mi ∈ N for i = 1, . . . , n and

∑n
i=1mi = m we have

µm(t) <∞, t ≥ 0, (25)

then the SHS is Lagrange stable.

Proof: Our goal is to show that

sup
t≥0

E[||x(t)||m] <∞. (26)

To that end, we recall that given that the vector space to
which x(t) belongs is finite dimensional, then all norms
are equivalent. Accordingly, let us consider the ∞-norm
||x(t)||∞ = max

i
xi(t). Note that by assumption, we have that

µm(t) is bounded for t ≥ 0 and for any chosen vector m.
We can therefore consider the family of vectors m = mei,
for i = 1, . . . , n to conclude that

E[xmi (t)] <∞, i = 1, . . . , n, t ≥ 0. (27)

Given that this is true for any i, we can deduce that it is the
case for E[max

i
xmi (t)] for any time t ≥ 0. Therefore, we can

conclude that
sup
t≥0

E[||x(t)||m∞] <∞. (28)

With the Lagrange stability defined, we can now lay out
the foundation for another key aspect of our analysis: positive
recurrence.

C. Positive Recurrence - Fundamentals

This subsection is devoted to the definitions of recurrence
and positive recurrence. To that end, let us consider a certain
set U = D × J ⊂ [0,∞)n ×Q. We let

σU := inf{t ≥ 0 : (x(t), q(t)) ∈ U}, (29)

τU := inf{t ≥ 0 : (x(t), q(t)) /∈ U}, (30)

denote the entry and exit time out of the set U . Moreover, we
let the recurrence time τUU denote the time for the stochastic
{
(
x(t), q(t)

)
: t ≥ 0} to return to U given that it started in

U . On top of that, we can define

σD := inf{t ≥ 0 : x(t) ∈ D}, (31)

τD := inf{t ≥ 0 : x(t) /∈ D}, (32)

as the entry and exit time out of D, regardless of the value
of q(t). The above quantities will be essential in our positive
recurrence analysis in the sequel. With the above notions in
mind, we provide the following definitions.

Definition 3 (Recurrence [29]). For U = D×J ⊂ [0,∞)n×
Q, where D is an open set with compact closure D, let

σ
x(0),q(0)
U := inf{t ≥ 0 : (x(t), q(t)) ∈ U}, (33)

where the superscript x(0), q(0) denotes the the initial condi-
tions. A regular process (x(t), q(t)) is said to be recurrent
with respect to U if Pr(σ

x(0),q(0)
U < ∞) = 1 for any

(x(0), q(0)) ∈ Dc × Q, where Dc denotes the complement
of D. Otherwise, the process is transient with respect to U .

Definition 4 (Positive Recurrence [29]). A recurrent process
with finite mean recurrence time for some set U = D × J ⊂
[0,∞)n × Q, where D is a bounded open set with compact
closure, is said to be positive recurrent with respect to U .
Otherwise, the process is null recurrent with respect to U .

In essence, the set U is said to be recurrent if we are assured
to eventually reach U if we start outside of U . If, on top of
that, the expected return time to U is finite when starting from
a point (x, q) ∈ U , we can conclude that the process is positive
recurrent with respect to U . We are interested in positive
recurrence since it is essential to establish the ergodicity of the
process (x(t), q(t)). The positive recurrence property allows
us to ensure the ergodicity of (x(t), q(t)), and therefore its
steady-state convergence to a stationary measure. In fact, given
the positive recurrence property, we can assure the existence of
a unique stationary measure [29, Theorem 4.3]. Additionally,
we are guaranteed to converge to this aforementioned measure
in the steady-state regime [29, Theorem 4.4]. With these
definitions laid out, we can now proceed with our analysis
for the two cases of single and multiple discrete states as it
has been previously outlined.

IV. SINGLE DISCRETE STATE, SINGLE AGE PROCESS

In this section, we focus on the case where |Q| = 1 and
n = 1. Based on the general model depicted in Section II-B,
the transitions rates in this special case have the following
form

λl(x(t), t) =

Jl∑
j=0

a
(l)
j x

j(t), l = 1, . . . , L, (34)

where Jl ≥ 0 is the polynomial order of the rate of transition
l, λl(x(t), t) ≥ 0 for l = 1, . . . , L, and x(t) is the age process
of interest that increases linearly with time (i.e., f(x, t) = 1).
Moreover, we consider the following transition reset functions

φl(x, t) = c, l = 1, . . . , L, (35)

where c ≥ 0. There exists a range of applications for this
SHS model, with the simplest being the illustrative example
provided in Section II-B. The first step of the subsequent
analysis consists of applying Theorem 2 on this specific family
of systems. By doing so, and given that n = 1, we end up
with the following ODE

dµm(t)

dt
= mµm−1(t)+

L∑
l=1

Jl∑
j=0

a
(l)
j c

jµj(t)−
L∑
l=1

Jl∑
j=0

a
(l)
j µ

m+j(t),

(36)
where µm(t) = E[xm(t)] is the age moment of order m ≥ 1.



A. Lagrange Stability

With the ODE established, we can now proceed with
showcasing its Lagrange stability. To do so, we first study the
particularity of the function xy for any y ≥ 1. To that end, we
note that the function gpower(x) = xy is convex for x ∈ [0,∞)
and for any y ≥ 1. With this in mind, we recall Jensen’s
ineqality for convex functions. Specifically, we have that for
any real-valued stochastic variable Y and convex function g(·)

g(E[Y ]) ≤ E[g(Y )]. (37)

Given the convexity of the function gpower(·), let us apply
Jensen’s inequality on the stochastic process x(t). We can
conclude that for any p ≥ r ≥ 1, we have

E[xr(t)]p/r = [µr(t)]p/r ≤ µp(t) = E[xp(t)]. (38)

Given that the tricky part of the ODE reported in eq. (36) is
its dependence on higher-order moments, Jensen’s inequality
allows us to relate the different moments together to some
extent. This is why Jensen’s inequality was found to be
essential in the analysis of various SHSs (we refer the reader to
the survey in [27]). With the above particularities of the SHS
in question, we provide the following results on the finiteness
of the age moments.

Theorem 3. For any order m ≥ 0, the moments of the age
process verify the following inequality

µm(t) ≤ Um, t ≥ 0, (39)

where Um is a finite positive number.

Proof: The proof can be found in Appendix A.
Given the above results, and by leveraging Corollary 1, we

can deduce the Lagrange stability of the system.

B. Positive Recurrence

The stability results assure us that the moments are finite.
However, the finiteness is, unfortunately, not enough to prove
the convergence of the differential equation reported in eq.
(36) for any m ≥ 1. For example, the solutions to the ODE
can oscillate within a certain interval without converging.
To ensure the convergence, on top of the Lagrange stability,
we need to establish the ergodicity of the stochastic process
{x(t) : t ≥ 0}. To do so, we will leverage several properties
of the AoI evolution and the Lagrange stability results to
prove the positive recurrence of the process. To proceed in this
direction, let us first tweak the definitions reported in Section
III-C to fit the single discrete state case. Let D ⊂ [0,∞) be a
non-empty open interval with a compact closure. Let

τD := inf{t ≥ 0 : x(t) /∈ D}, (40)

σD := inf{t ≥ 0 : x(t) ∈ D}. (41)

Concretely, the above two stopping times will allow us to
define the notion of entry and exit time of a certain interval,
as will be seen in the sequel. Given the evolution of the AoI,
and the reset maps reported in (35), it can be easily seen that
the set D0 = [0, c[ is transient, where c is the AoI value

corresponding to the reset maps φl(x, t) for l = 1, . . . , L. In
fact, if x(0) ∈ [c,∞), then Pr(σD0 = ∞) = 1. Accordingly,
we focus in the sequel on proving the positive recurrence of
the process x(t) with respect to D ⊂ [c,∞). To that end, we
first show that the expected exit time of a non-empty interval
D with compact closure is finite.

Proposition 1. Let D ⊂ [c,∞) be a non-empty interval with
compact closure D. We have

Ex[τD] <∞, ∀x ∈ D, (42)

where Ex is the expectation given the initial condition x(0) =
x.

Proof: The proof can be found in Appendix B.
The above results allow us to assert that whatever the set D

with a compact closure we are in, we will eventually escape
it in finite time. With the above results in mind, we can now
prove the positive recurrence of the stochastic process x(t)
with respect to any non-empty open set D ⊂ [c,∞) with a
compact closure D.

Theorem 4. The system in question is positive recurrent with
respect to any non-empty open set D ⊂ [c,∞) with compact
closure D. In other words,

Ex[τDD] <∞, ∀x ∈ D, (43)

where τDD is the recurrence time of the set D.

Proof: The proof can be found in Appendix C.
Given the positive recurrence of the process, along with

the Lagrange stability that eliminates the possibility of infinite
moments, we can be assured that as time passes by, we have

µm(t)
t→∞−−−→ µm∞, (44)

where µm∞ is the steady-state moment of order m. Given the
ODE depicted in eq. (36), we can stack the equations that
the moments verify for any order m ≥ 1 and take their
derivative to zero. Accordingly, we get that the vector µ∞ =
[µ0(∞), µ1(∞), . . .] verifies the following linear system

A∞µ∞ = b∞, (45)

where A∞ and b∞ are an infinite dimension matrix and vector
respectively that incorporate the entries of the ODE for every
m ≥ 1. Note that µ0

∞ is trivially equal to 1. Therefore, the
remaining step of our analysis is to solve the above linear
system and find an expression of the first-order moment of
the age process of interest. This will be examined in Section
VI.

V. MULTIPLE DISCRETE STATES, MULTIPLE AGE
PROCESSES

The previous section results were based on the use of
Jensen’s inequality thanks to the convexity of the function
g(x) = xm for x ∈ [0,∞) and m ≥ 1. By considering
the more general case where multiple age processes interact
with one another, the same approach cannot be adopted as the



function g(x) = xm1
1 . . . xmn

n is not convex for x ∈ [0,∞)n.
Additionally, if |Q| > 1, one has to consider the contribution
of each discrete state to the overall moment value. These two
aspects greatly complicate the resulting ODEs and render the
analysis of the system even more challenging. Given these
difficulties, we focus in the rest of our analysis on a specific
environment modeled through age-dependent SHS tools with
multiple discrete states and age processes. The analysis done
in the sequel can then be used as a roadmap by the reader to
adapt it for their system of interest.

A. Environment Description

One of the various applications of the SHS depicted in Sec-
tion II-B is a general age-aware CSMA environment. Specif-
ically, let us consider a scenario where n links (transmitter-
receiver pairs) share a transmission medium. The transmitter
side of each link sends status updates to its corresponding
monitor. However, due to interference, only one link can be
active at each time instant. Given that links typically exhibit
random channel conditions, we assume that the transmission
time of the packets of each link i is exponentially distributed
with an average of 1

Hi
. In CSMA environments, the transmitter

senses the channel before attempting a transmission. If an
interfering transmission is spotted, the transmitter waits for the
channel to be free again. As for when the channel is found
to be idle, the transmitter waits for a certain duration of time
before transmitting, called the back-off time. While waiting,
it keeps sensing the environment to spot any conflicting
transmission. If any interfering transmission is spotted, the
transmitter immediately stops its back-off timer and waits for
the medium to be free to resume it. In other words, the back-
off timers of all links only tick when the channel is idle. After
a successful transmission by a certain link, the transmitter side
of this link generates a new back-off time to prepare for the
next packet transmission. In other words, we assume links are
always competing for the channel to send their packets. As for
the packet arrivals, we suppose that the transmitter generates a
new packet upon channel capture, which is then sent through
the medium. Lastly, we consider that the back-off times are
exponentially distributed with the back-off rate for link i being
Ri(xi(t)) = aixi(t), where ai > 0 is a fixed constant and xi
for i = 1, . . . , n denote the age at the monitor side of link i. In
other words, the higher the age of a link, the more aggressive
it is in its quest to capture the channel.

Given that the back-off rate depends on the age and that the
age evolves with time, practical implementation issues arise.
In fact, although mathematically we can model an exponential
back-off time with a time-variable rate, we need to consider
how to implement such a mechanism in practice. To that end,
we summarize how to achieve this in the following.
Practical implementation: To explain the proposed imple-
mentation, let us consider an exponential clock X with rate
λ > 0. The probability that a tick takes place in the interval

(t, t+ ∆t] is

Pr(X ≤ t+∆t|X > t) =
Pr(t < X ≤ t+ ∆t)

Pr(X > t)
= 1−exp (−λ∆t).

(46)
Therefore, if we consider an elementary time interval ∆t
where the age can be considered constant for its duration (and
accordingly the back-off rate is constant too), it suffices to let
users access the channel during this elementary time-interval
with a probability

pi(t) = 1− exp(−aixi(t)∆t) (47)

to implement the age-dependent back-off rate environment.
With that in mind, we recall that in every practical CSMA
protocol, time is discretized, and the duration of each time
slot is defined as Tslot. This slot duration is pre-determined
based on wave propagation delay and various other factors.
For example, in IEEE 802.11n, it is equal to 9µs [35].
Accordingly, to implement our approach, we suppose that
when the channel is free, transmitters access the channel at
each time slot with a probability

pi(t) = 1− exp(−aixi(t)Ts) (48)

using, for example, the Request To Send/Clear To Send
(RTS/CTS) mechanism of the IEEE 802.11 protocol. Then,
when a link captures the channel, the rest of the links stay
silent, waiting for its transmission to finish. Given that Tslot is
typically small, we can assert that this approach allows us to
implement the age-dependent rate approach practically. Note
that for simplicity, we will be ignoring the possible effect of
collisions in our analysis, and we refer the readers to [18]
where it was discussed how to incorporate this practical issue
by imposing a simple upper bound constraint on the back-off
rate. Equivalently, we can handle the collisions in this case by
upper bounding the values of ai for i = 1, . . . , n, for example,
in the framework provided in Section VI-B.

To the best of the authors’ knowledge, this is the first work
that theoretically investigates a CSMA environment where the
back-off duration depends on the instantaneous age of the link.
In previous works on CSMA environments, the average AoI
was optimized by tweaking a constant parameter that does not
depend on the instantaneous age (e.g., [18]). The same goes for
most of the works on random access environments, where the
AoI was optimized by calibrating age-blind parameters (e.g.,
[36]). In some other works, a threshold approach was adopted
to incorporate the instantaneous AoI in the analysis. For
example, in [37], a slotted ALOHA environment was studied
where only users with an age larger than a specific threshold
Γ access the channel. Given that our work constitutes the
first age-aware CSMA environment, a fundamental question
arises: how much performance gain can be achieved by letting
these back-off timers depend on the AoI? To answer this
question, we will model our system and leverage our SHS
results from Section III to examine the average AoI in this
environment. This further highlights the importance of the age-
dependent SHSs framework as it allows us to answer this type
of fundamental question.



B. Support of the Age Processes

To start our analysis, we model our system using the SHSs
tool. To that end, we first note that our system falls under
the umbrella of polynomial age-dependent SHSs models of
Section II-B as will be depicted in the following. First, let us
consider the continuous process x(t) ∈ [0,∞)2n where xi(t)
for i = 1, . . . , n denotes the age at the monitor side of link
i at time t and xn+i(t) for i = 1, . . . , n denotes the age of
the packet at the transmitter side of link i at time t. On top of
that, we recall from Section II-B that q(t) ∈ Q is a discrete
process that captures the status of the network in question. In
our case, we set q(t) to 0 when the network is idle (i.e., when
no link is transmitting). When link i captures the medium and
starts transmission, then q(t) will be equal to i. Accordingly,
we have Q = {0, 1, . . . , n}. Given the dynamics of the system
described in the previous section, an illustration of the possible
transitions between the different values of q(t) and their rates
can be highlighted in Fig. 2.

Fig. 2: Illustration of the age-aware CSMA.

With the continuous and discrete processes clarified, what
remains is to characterize the other components of the SHS
model. To that end, let us note that
• The age at the monitor of all links grows linearly with

time regardless of the value of the discrete process q(t).
On the other hand, the age of the packet at transmitter
k grows linearly with time only if a packet exists in its
system. Therefore, x(t) evolves according to eq. (5) such
that

biq = 1, for i = 1, . . . , n, n+ q,

biq = 0, otherwise, (49)

where biq is the i-th component of the vector bq for any
q ∈ Q.

• Transitions originating from the state {0} take place when
a link captures the channel. These transitions do not affect
the value of the age processes (i.e., the corresponding
transition matrix Al ∈ {0, 1}2n×2n reported in Section
II-B is equal to I2n).

• Finally, when a successful transmission happens, for
example a transition from state k 6= 0 to state 0, the

age of link k, denoted by xk, becomes equal to xk+n and
xk+n becomes equal to 0. The matricesAl corresponding
to these transitions can be formulated based on this fact
while noting that all the other age processes remain
unchanged.

Given all the above, we have a complete characterization
of the SHS model of the age-dependent CSMA and all its
elements that were reported in Section II-B. Consequently,
we can now determine the support of the stochastic process
{
(
x(t), q(t)

)
: t ≥ 0}. In other words, the smallest closed set

to which (x(t), q(t)) belong with probability 1. To that end,
we first note that the age of the packet at transmitter k is equal
to 0 when q(t) 6= k. Expressly,

xk+n = 0, for q(t) 6= k, k = 1, . . . , n. (50)

On top of that, given that the age of the packet at transmitter
k increases from 0 solely when q(t) transitions to state k, we
can also conclude that for q(t) = k, we have that

xk+n < xi, ∀i ∈ {1, . . . , n}, for k = 1, . . . , n. (51)

With this in mind, we can summarize below the set of states
Ddefinition ×Q that the process belong to

[0,∞)n × {0} × . . . , {0}, for q(t) = 0,

[0,∞)n × [0,∞)× {0} × . . . , {0}, for q(t) = 1,

subject to xn+1 < xi, ∀i ∈ {1, . . . , n}.
...

...
[0,∞)n × {0} × . . . , {0} × [0,∞), for q(t) = n,

subject to x2n < xi, ∀i ∈ {1, . . . , n}.
(52)

The above depiction of the support will be useful when we
establish the positive recurrence of the stochastic process
{
(
x(t), q(t)

)
: t ≥ 0} in the next section.

C. Positive Recurrence

With the support of the stochastic process defined, we
proceed with establishing its positive recurrence. Note that
unlike the single state case studied in Section IV, we start
our analysis with the positive recurrence of the stochastic
process instead of the Lagrange stability. This is a consequence
of the fact that studying the ODEs that govern the moment
dynamics in the multiple states case is rather challenging.
Instead, we will establish the Lagrange stability using the
positive recurrence results established in this section. To that
end, the first step of our analysis is to show that the expected
exit time of any non-empty set D with a compact closure is
finite.

Proposition 2. Let D ⊂ [0,∞)2n be a non-empty set with
compact closure D. We have

Ex,q[τD] <∞, ∀(x, q) ∈ D ×Q, (53)

where Ex,q is the expectation given the initial conditions
(x, q).

Proof: The proof can be found in Appendix D.



The above results allow us to assert that whatever the set D
with a compact closure we are in, we will eventually escape it
in finite time. This will be crucial for the sequel. The next step
in our preparation for our positive recurrence proof, we show
below that we are guaranteed to have an age at the monitor
of each link strictly larger than 0.

Lemma 4. For any initial state (x, q), we have

Prx,q(xi(t) = 0) = 0, for i = 1, . . . , n, t > 0, (54)

where Prx,q denotes the probability given the initial condition
(x, q).

Proof: To prove this, we note that the components xi(t) of
the vector x(t) evolve in a deterministic way in each discrete
state. In particular, they grow linearly with time. On top of
that, after a transition from any state k 6= 0 to state 0, the
age process xk(t) inherits the value xn+k(t). Note that at the
point of transition, xn+k(t) will be equal to the time spent in
state k. Given that the time spent in state k is exponentially
distributed with rate Hk, we have Pr(Hk = 0) = 0. This
concludes our proof.

Given the above lemma, and without loss of generality, we
will assume that the initial state x(0) verifies xi 6= 0 for
i = 1, . . . , n. Next, we establish the positive recurrence of the
discrete component of {

(
x(t), q(t)

)
: t ≥ 0}. This will pave

the way for us to prove the positive recurrence of the overall
process.

Proposition 3. The discrete stochastic process {q(t) : t ≥ 0}
is positive recurrent with respect to any state q ∈ Q.

Proof: The proof can be found in Appendix E.
With this in mind, we can combine all the propositions of

this section to provide our main positive recurrence results
below.

Theorem 5. For any set U = D×{q} ∈ Ddefinition×Q where
D is a non-empty open set with compact closure D, we have

Ex,q[τUU ] <∞ (55)

for any initial state x ∈ D.

Proof: The proof can be found in Appendix F.
With the positive recurrence of the stochastic process

{
(
x(t), q(t)

)
: t ≥ 0} being established, we can now focus on

showing the Lagrange stability of the process.

D. Lagrange Stability
Our goal in this section is to establish the Lagrange stability.

Proving this form of stability ensures us that the moments
of x(t) with respect to any vector m are finite. In the
previous case, this was done by leveraging Jensen’s inequality.
However, in this multi-process case, different machinery has
to be leveraged to prove such results, as will be detailed in
the following theorem.

Theorem 6. For any vector m, the moment of x(t) associated
with m verifies the following inequality

µm(t) = E[xm(t)] ≤ Um, t ≥ 0, (56)

where Um is a finite positive number.

Proof: The proof can be found in Appendix G.
Given the above results, and by leveraging Corollary 1, we

can deduce the Lagrange stability of the system. With the pos-
itive recurrence and Lagrange stability results established, we
can conclude the convergence of the moments in the steady-
state regime. In the next section, we provide further details
on the ODEs that govern the dynamics of these moments in
order to establish the equations that the steady-state moments
verify.

E. Moment Dynamics

As previously discussed, we can obtain the ODEs that the
moments verify by applying Theorem 2 on the system in
question. To that end, let us apply Theorem 2 to find the
differential equations that the moments of x verify. To do so,
let us define the following vectors

0
m and

k
m as

0
m = (m1,m2, . . . ,mn, 0, . . . , 0︸ ︷︷ ︸

n entries

), (57)

k
m = (m1,m2, . . . ,mn, 0 . . . , mn+k︸ ︷︷ ︸

position n+k

, 0, . . . , 0), k = 1, . . . , n.

(58)
Equipped with the above vector forms, we provide the follow-
ing proposition.

Proposition 4. The moment of x(t) corresponding to m in
state k is non-zero if and only if m follows the corresponding
form

k
m for k = 0, . . . , n. Moreover, these moments verify the

differential equations below

dµ
0
m
0 (t)

dt
=

n∑
i=1

miµ
0
m−ei
0 (t)−

n∑
i=1

aiµ
0
m+ei
0 (t)+

n∑
i=1

Hiµ
0
mi
i (t),

(59)

dµ
k
m
k (t)

dt
=



akµ
k
m+ek
0 (t) +

n∑
i=1

miµ
k
m−ei
k (t)−Hkµ

k
m
k (t),

for mn+k = 0, k 6= 0,
n∑
i=1

miµ
k
m−ei
k (t) +mn+kµ

k
m−en+k

k (t)−Hkµ
k
m
k (t),

for mn+k 6= 0, k 6= 0,
(60)

where ei ∈ {0, 1}2n is a unit vector with 1 in position i and
0 elsewhere, and

0
mi denotes the following vector

(m1,m2, . . . ,mi−1, 0,mi+1, . . . ,mn, 0, . . . , mi︸︷︷︸
at position i+n

, 0, . . . , 0).

(61)

Proof: The first step of our analysis consists of under-
standing how the age evolves in each discrete state. To that
end, we recall that in state 0, there are no packets in the system.
Accordingly, and as it has been previously explained, we have



xn+1 = xn+2 = . . . = x2n = 0 in this state. With that in
mind, the vector m is required to have the following form

0
m = (m1,m2, . . . ,mn, 0, . . . , 0︸ ︷︷ ︸

n entries

), (62)

in order to ensure that the moment of x corresponding to the
vector m in state 0 is non-zero. By applying Theorem 2 to
this particular choice of m, we get

dµ
0
m
0 (t)

dt
=

n∑
i=1

miµ
0
m−ei
0 (t)−

n∑
i=1

aiµ
0
m+ei
0 (t)+

n∑
i=1

Hiµ
0
mi
i (t),

(63)
where ei is a unit vector with 1 in position i and 0 elsewhere,
and

0
mi denotes the following vector

(m1,m2, . . . ,mi−1, 0,mi+1, . . . ,mn, 0, . . . , mi︸︷︷︸
position i+n

, 0, . . . , 0).

(64)
In other words, in the vector above, the position i becomes
equal to zero, and the position i + n inherits the value mi.
This is a consequence of the fact that a transition from state i
to state 0 happens when a packet is delivered. When such an
event happens, the age at the monitor xi becomes equal to the
age of the delivered packet xi+n. To make our results clearer,
we detail in the following how we applied Theorem 2. To that
end, we adopt the test function ψ

0
m
0 (q(t),x, t) = x

0
m(t)δ0q(t).

By applying Theorem 2 while keeping in mind the transitions
dynamics, we obtain

Lψ
0
m
0 (q(t),x, t) = δ0q(t)[

n∑
i=1

[mix
mi−1
i

n∏
j=1,j 6=i

x
mj

j ]

−
n∑
i=1

aixix
m] +

n∑
i=1

δiq(t)Hix
0
mi
i . (65)

Then, given the definition of µmq (t) provided in eq. (9) for
q ∈ Q and the equality in (18), we can obtain the results of
(59).

Next, we study the moment of x with respect to m in any
other discrete state k 6= 0. We point out that if the discrete
process q(t) is equal to k 6= 0, then there exists a packet for
link k in the system, but there are no packets for the remaining
links. Accordingly, xi = 0 for i ∈ {n + 1, . . . , 2n} \ {k}.
Therefore, the vector m is required to have the following form

k
m = (m1,m2, . . . ,mn, 0 . . . , mn+k︸ ︷︷ ︸

position n+k

, 0, . . . , 0), (66)

in order to ensure that the moment of x corresponding to the
vector m in state k is non-zero. By applying Theorem 2 for

this particular choice of m, we get

dµ
k
m
k (t)

dt
=



akµ
k
m+ek
0 (t) +

n∑
i=1

miµ
k
m−ei
k (t)−Hkµ

k
m
k (t),

for mn+k = 0, k 6= 0,
n∑
i=1

miµ
k
m−ei
k (t) +mn+kµ

k
m−en+k

k (t)−Hkµ
k
m
k (t),

for mn+k 6= 0, k 6= 0,

which concludes our proof.
Given the positive recurrence of the process, along with

the Lagrange stability that eliminates the possibility of infinite
moments, we can be assured that as time passes by, we have

µm(t)
t→∞−−−→ µm∞, (67)

where µm∞ is the steady-state moment of order m. Given the
ODEs depicted in Proposition 4, we can stack the equations
that the moments verify for any order m ≥ 0 and take their
derivative to zero. Accordingly, we get that the vector µ∞
verifies the following linear system

A∞µ∞ = b∞, (68)

where

µ∞ = [µ0
0(∞), µ0

1(∞), . . . , µ0
n(∞), µe10 (∞), . . .], (69)

and A∞ and b∞ are an infinite dimension matrix and vector
respectively that incorporate the entries of the ODE for every
m ≥ 0. Therefore, the remaining step of our analysis is to
solve the above system and find an expression of the first-
order moment of the age process of interest.

VI. SOLUTIONS TO THE SHS

A. Moment Closure Method

In both systems depicted in Section IV and V, we have
shown that the steady-state moments can be computed by
solving the following infinite-dimensional system of linear
equations

A∞µ∞ = b∞. (70)

However, the fact remains that any moment of a particular
order will depend on higher-order moments and so on (hence
the infinite dimension aspect of the above system). This infinite
aspect of the system renders solving the above linear system
impossible. Researchers have studied this type of system
extensively as they are prevalent in many applications such
as chemical kinetics [38], physics [39], population dynam-
ics/epidemiology [40]. Concretely, the primary approach in
the literature to address this issue is referred to as the moment
closure technique. To understand this method, let us suppose
that we are only interested in the dynamics of moments up
to a particular order k. To that end, we can summarize the
steady-state dynamics of these moments as follows

A∞|kµ∞|k +Bµ∞ = b∞|k, (71)

where 1) µ∞|k denotes the moments up till order k, 2) µ∞
refers to the set of moments of order higher than k that



µ∞|k depends on, 3) A∞|k denotes the section of A∞ that
relate the moments µ∞|k to one another, 4) B depicts the
relationship between the moments µ∞|k and µ∞, and 5) b∞|k
consists of the section of b∞|k relevant to µ∞|k. As can be
seen, the main issue from here on is to find the best way to
approximate the higher-order moments µ∞. By doing so, the
system becomes closed and fully determined, and one can then
find the solution µ∞|k of the finite linear system. To carry out
this approximation, several methods have been proposed in the
literature

• One of the most straightforward approaches is to ignore
the higher-order moments and suppose that all the com-
ponents of µ∞ are equal to zero [41].

• Another technique consists of writing the components
of µ∞ as non-linear functions of µ∞|k. An example of
this technique consists of adopting a derivatives matching
method to find this non-linear function form [42].

• In a different line of work, researchers assumed a specific
distribution for the higher-order moments, which can
allow us to close the system. The examples of such
approaches range from simple Gaussian distribution as-
sumptions as done by Whittle back in 1957 [43] to more
elaborate methods such as entropy maximization recently
proposed in [44].

We refer the readers to [45] for a thorough review on the
moment closure techniques proposed in the literature. In the
sequel, we will provide a step-by-step motivation for the
approach that we will adopt in our framework.

The best way to understand our approach is for us to go back
to the simple example we have considered back in Section
II-B. Given the ODE previously reported in eq. (22), and by
taking the derivatives to zero in the steady-state regime, the
infinite-dimensional system of interest isA∞µ∞ = b∞ where

µ∞ =

µ
1
∞
µ2
∞
...

 b∞ =

−1
0
...



A∞ =


0 −a1 0 · · · · · · · · ·

2 0 −a1 0
. . . · · ·

0 3
. . . . . . . . . . . .

0 0
. . . . . . . . . . . .

 (72)

Let us suppose that we are only interested in considering
the steady-state dynamics of the age moments up till order
4. By proceeding with a moment closure approach, we can
summarize the dynamics of these moments by using eq. (71)

with

µ∞|4 =


µ1
∞
µ2
∞
µ3
∞
µ4
∞

 b∞|4 =


−1
0
0
0

A∞|4 =


0 −a1 0 0
2 0 −a1 0
0 3 0 −a1

0 0 4 0



B =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −a1

µ∞ =


0
0
0
0
µ5
∞

 (73)

To motivate our proposed approach, let us consider that the
value of a1 is high. In this regime, the transition of the age
process back to zero happens at a significantly high rate.
Therefore, we can expect the age process x(t) to be generally
small. Specifically, we expect the age process to be smaller
than 1 with a high probability. This itself will lead to a small
first-order moment. Given that the function f(m) = cm is
decreasing when c < 1, we can also expect higher-order
moments to be even smaller. For example, by fixing a1 to
100, we obtain through Monte Carlo simulations the following
steady-state moments

Order Moment Value
1 0.0785
2 0.01
3 0.0016

TABLE I: Age moments in the illustrative example for a1 =
100.

With this in mind, let us focus our attention on the moments
up till order m. To close the linear system, we suppose that the
moment of order m+1 is equal to the moment of order m. This
is motivated by the fact that as m grows, both these moments
will be significantly small to the point that the difference
between them can be neglected. Therefore, the closure of the
system will come at a minor penalty. To illustrate this, we plot
below the curve of the estimate of the average age (i.e., µ1

∞)
using our closure method when we vary m.
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Fig. 3: Implementation of the proposed moment closure
method for a1 = 100.

As can be seen in Fig. 3, by adopting our proposed method,
we can approach the actual value of the average age by closing



the system at a high m1. Getting back to our linear system,
we can conclude that it is sufficient to solve a linear system
of dimension 100 to get an accurate estimate of the average
age.

Now, let us suppose that we tune a1 back to a small value.
In this case, the transitions that set the age back to zero happen
infrequently. We can therefore expect the age to be larger than
1 with a high probability. Accordingly, we cannot proceed
in the same way since the higher-order moments will be
significantly large, and therefore, approximating the moment
of order m+ 1 by that of order m will be highly inaccurate.
For example, by fixing a1 to 0.1, we can obtain through Monte
Carlo simulations the following steady-state moments

Order Moment Value
1 2.55
2 10.27
3 52.4

TABLE II: Age moments in the illustrative example for a1 =
0.1.

Let us now see how our proposed approach works in this case.
To that end, we plot below the curve of the estimate of the
average age using our closure method when we vary m.
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Fig. 4: Implementation of the proposed moment closure
method for a1 = 0.1.

It can be easily seen from the results in Fig. 4 that our
approach fails in this case. Therefore, how can we use our
proposed method when the age processes are not generally
small? To solve this issue, we proceed by tweaking the
differential equations reported in eq. (22). Specifically, instead
of following the evolution of the age process x(t), we track
the evolution of a scaled process z(t) = x(t)/c where c ≥ 1
is a large fixed number. In this case, the ODE will become

cmdE[zm(t)]

dt
= mcm−1E[zm−1(t)]− a1c

m+1E[zm+1(t)].

(74)
By multiplying the whole equation by 1/cm−1, and by taking
the left-hand side equal to zero, we can proceed similarly as
before to obtain a linear system for us to solve for the scaled
process. We can then close the infinite linear system up to

1Note that the fluctuations originate from the differences between closing
the system at an odd or even value of m.

an order m. Given that c is large, we can then use the same
method of approximating the moment of order m+ 1 by the
moment of order m. Afterward, we can deduce the steady-
state first-order moment E[z1(∞)] and scale it back up by
multiplying it by c to conclude the average age of the original
process. The results of this approach are reported in the figure
below.
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Fig. 5: Implementation of the scaled random variable approach
for a1 = 0.1.

As we can see in Fig. 5, we were able to avoid the issues that
arose in Fig. 4 and approximate with precision the average age
of interest. Note that this same approach can be adopted for the
multiple processes case by scaling each individual age process
using the large fixed number c ≥ 1. In essence, our approach
consists of scaling the ODE by a sufficiently large constant
c ≥ 1 when necessary and simply approximate the high order
moments by lower-order ones in this regime. As discussed,
the literature on moment closures techniques is rich, and many
new methods are being proposed to this day. However, given
that this method performs well, as seen in the above example,
and given its simplicity and ease of implementation, we will
adopt it in the rest of this paper.

Remark 1. The choice of the moment order m∗ beyond which
all higher moments may be ignored will depend on the system
in question. Note that based on Theorem 2, we can see that the
dependency between the moments of any order m on higher-
order moments is contingent on the polynomial degree of λl(·).
Accordingly, we can see that the resulting matrix of the linear
system that we wish to solve is typically very sparse. Therefore,
the complexity of solving the linear system can be reduced
even for large values of m [46]. With this in mind, one can
proceed as follows: 1) define a grid of moments order cut off
[m0,m1, . . . ,mimax ] with a predefined step size M = mi+1 −
mi, 2) solve the linear system in ascending order until the
incorporation of a larger set of high order moments does not
lead to a significant increase in the accuracy of the average
AoI. In other words, one can take m∗ = mi once the average
AoI estimation at mi and mi+1 are within a certain predefined
threshold ε.



B. Parameters Optimization

The above moment closure technique has provided us with a
simple way to compute the average age of any system modeled
through the SHSs tool depicted earlier. Specifically, we were
able to show that by scaling the ODE using a sufficiently large
constant c ≥ 1, and by solving a linear system of a sufficiently
high dimension m, we can obtain an approximation of the
average age as follows

∆ w cdTµ∞|k = cdTE−1b∞|m, (75)

where the matrixE takes into accountA∞,B, and our closure
technique of the higher-order moments of the scaled ODE.
On the other hand, the vector d allows us to extract the first-
order components of the moments vector that we are interested
in. Now, let us go further than this and try to optimize the
average age by calibrating the transitions rates parameters to
achieve the best possible age performance. Specifically, let us
suppose that there exists a set of parameters η ∈ X that can
be controlled by the designer, where X is a compact set. For
example, in the illustrative example reported in Section II-B,
we have η = a1. Our goal becomes to find the optimal η∗ to
minimize the average age. In other words, we can formulate
our optimization problem as follows

minimize
η∈X

∆(η) = cdTE−1(η)b∞|m(η) (76)

To solve the above problem, we note that finding a closed-
form of the objective function in (76) is not always feasi-
ble. Therefore, we circumvent this difficulty by employing a
sequential convex approximation approach. To that end, the
proposed SCA approach can be summarized below

η̂[k] = argmin
η∈X

Υ(η,η[k]), k = 1, 2 . . . , (77)

where

Υ(η,η[k]) = ∆(η[k])+∇∆(η[k])T (η−η[k])+
1

2αk
||η−η[k]||22.

(78)
The term 1

2αk
||η − η[k]||22 is a regularization term that is

employed to keep the points close enough so that the model
is accurate. We will report conditions on αk to ensure the
convergence of the approach in Proposition 5. Since the
problem in (77) is convex, we can solve it using standard
convex solvers such as CVX [47]. After finding the solution
of (77), at each iteration, we set η[k + 1] = η̂[k]. The next
step consists of finding the expression of the gradient of the
average age. To do so, we observe that

∂∆(η)

∂ηi
= cdT

∂E−1(η)

∂ηi
b∞|m(η) + cdTE−1(η)

∂b∞|m(η)

∂ηi
.

(79)
Using the following identity

∂K−1

∂xi
= −K−1 ∂K

∂xi
K−1, (80)

we can conclude that

∂∆(η)

∂ηi
=− cdTE−1(η)

∂E(η)

∂ηi
E−1(η)b∞|m(η)

+ cdTE−1(η)
∂b∞|m(η)

∂ηi
(81)

Based on the above equation, the gradient vector ∇∆(η) can
be found. We summarize our approach in Algorithm 1.

Algorithm 1 Proposed SCA approach

1: Input Stopping criterion ε and two feasible points
η[1], η̂[1] ∈ X

2: Initialize Set k = 1
3: Iterate
4: η[k + 1] := η̂[k]
5: k := k + 1
6: Solve the convex problem in (77) to find η̂[k]
7: Until ||Υ(η̂[k],η[k])−Υ(η̂[k − 1],η[k − 1])|| < ε
8: Output η[k]

In the sequel, we provide a convergence analysis of the
Algorithm presented above. To proceed in that direction, we
first lay out the following definition.

Definition 5 (Stationary points of a function). Let f : D → R
be a function where D ⊆ Rn is a convex set. A point x∗ ∈ D
is a stationary point of f(.) if ∇~df(x∗) ≥ 0 for all ~d ∈ D
such that x∗ + ~d ∈ D.

Equipped with the above definition, we present the following
convergence results.

Proposition 5. The sequence
{

Υ(η̂[k],η[k])
}+∞
k=1

is conver-
gent for αk ≥ L

2 , k ∈ N where L is the Lipschitz constant
of the function ∇∆(η). Moreover, the limit point of the
sequence

{
η[k]

}+∞
k=1

generated by the SCA procedure (77) is
a stationary point of the problem in (76).

Proof: The proof can be found in Appendix H.
Therefore, the SCA algorithm provided above guarantees that
we obtain a stationary point η∗ of the average age.

VII. NUMERICAL IMPLEMENTATIONS

With our complete theoretical analysis laid out, this section
aims to showcase the usefulness of the SHSs tool provided in
this paper. To that end, we implement the age-aware CSMA
scheme depicted in Section V-A. By leveraging the results
of the SHS analysis presented in our paper, we optimize this
age-aware CSMA scheme using the SCA approach detailed in
Section VI-B. As a benchmark, we consider a CSMA scheme
where users employ a constant back-off rate when accessing
the channel. In this case, the AoI-optimal back-off rate was
previously found in [18]. Note that it is evident that the age-
aware CSMA scheme offers more degrees of freedom and,
therefore, has the potential of improving the AoI compared to
the latter approach. Given that our SHS analysis will allow
us to extract this performance improvement, the question that



remains is how significant this gain in performance is. To
put this into perspective, let us consider a 2 users scenario
with H1 fixed to 1 and H2 being variable. To obtain the best
comparison between the two schemes, we implement them in
a realistic IEEE 802.11 environment and plot the performance
gain of the age-dependent CSMA compared to the traditional
age-optimal CSMA in function of H2.
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Fig. 6: Performance gain between age-aware and age-blind
CSMA.

As shown in Fig. 6, the age-aware CSMA can reduce the
average age by as much as 20% compared to the optimal age-
blind approach. This puts into perspective the usefulness of
the SHSs tool analysis provided in this paper as it opens up
the gate to various new applications/systems to be studied and
performance gains to be revealed.

VIII. CONCLUSION

In this paper, we have studied a general status update system
modeled using the SHSs tool where the system’s transition
dynamics are allowed to be functions of the AoI. To analyze
this system, we have shown several critical aspects that the
AoI-dependent SHS model verifies. We have also proved
the Lagrange stability of the ODEs involved, along with the
positive recurrence of the age processes. Additionally, we
have proposed a moment closure technique that allows us
to compute the average age of the system. Equipped with
this method, we have also provided an SCA approach to
optimize the system’s parameters. Finally, an age-dependent
CSMA system was implemented to showcase the performance
advantage that the age-dependency provides. To that end, the
results of this paper provide a framework that will allow the
study of more elaborate and complex status update systems in
the future.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, March 2012, pp.
2731–2735.

[2] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–
1210, 2021.

[3] A. Maatouk, S. Kriouile, M. Assad, and A. Ephremides, “On the
optimality of the whittle’s index policy for minimizing the age of
information,” IEEE Transactions on Wireless Communications, vol. 20,
no. 2, pp. 1263–1277, 2021.

[4] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of
multiple information flows,” in IEEE INFOCOM 2018 - IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS),
2018, pp. 136–141.

[5] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Timely
Status Update in Massive IoT Systems: Decentralized Scheduling for
Wireless Uplinks,” arXiv e-prints, p. arXiv:1801.03975, Jan. 2018.

[6] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp.
2637–2650, Dec. 2018. [Online]. Available: https://doi.org/10.1109/
TNET.2018.2873606

[7] P. Popovski, F. Chiariotti, K. Huang, A. E. Kalør, M. Kountouris,
N. Pappas, and B. Soret, “A perspective on time towards wireless 6g,”
2021.

[8] P. Zou, O. Ozel, and S. Subramaniam, “Waiting before serving: A
companion to packet management in status update systems,” IEEE
Transactions on Information Theory, vol. 66, no. 6, pp. 3864–3877,
2020.

[9] Z. Jia, X. Qin, Z. Wang, and B. Liu, “Age-based path planning and data
acquisition in uav-assisted iot networks,” in 2019 IEEE International
Conference on Communications Workshops (ICC Workshops), 2019, pp.
1–6.

[10] A. Maatouk, M. Assaad, and A. Ephremides, “The age of updates in
a simple relay network,” in 2018 IEEE Information Theory Workshop
(ITW), 2018, pp. 1–5.

[11] A. Maatouk, Y. Sun, A. Ephremides, and M. Assaad, “Status updates
with priorities: Lexicographic optimality,” in 2020 18th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOPT), 2020, pp. 1–8.

[12] Y. Sun, Y. Polyanskiy, and E. Uysal-Biyikoglu, “Remote estimation of
the wiener process over a channel with random delay,” in 2017 IEEE
International Symposium on Information Theory (ISIT), June 2017, pp.
321–325.

[13] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of
incorrect information: A new performance metric for status updates,”
IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2215–2228,
2020.

[14] M. Bastopcu and S. Ulukus, “Minimizing age of information with soft
updates,” Journal of Communications and Networks, vol. 21, no. 3, pp.
233–243, 2019.

[15] M. Costa, M. Codreanu, and A. Ephremides, “Age of information
with packet management,” in 2014 IEEE International Symposium on
Information Theory, June 2014, pp. 1583–1587.

[16] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, Nov 2017.

[17] R. D. Yates and S. K. Kaul, “The age of information: Real-time
status updating by multiple sources,” IEEE Transactions on Information
Theory, vol. 65, no. 3, pp. 1807–1827, March 2019.

[18] A. Maatouk, M. Assaad, and A. Ephremides, “On the age of informa-
tion in a csma environment,” IEEE/ACM Transactions on Networking,
vol. 28, no. 2, pp. 818–831, 2020.

[19] ——, “Minimizing the age of information in a csma environment,” in
2019 International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOPT), 2019, pp. 1–8.

[20] ——, “Minimizing the age of information: Noma or oma?” in IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2019, pp. 102–108.

[21] R. D. Yates, “Status updates through networks of parallel servers,”
in 2018 IEEE International Symposium on Information Theory (ISIT),
2018, pp. 2281–2285.

[22] S. K. Kaul and R. D. Yates, “Age of information: Updates with priority,”
in 2018 IEEE International Symposium on Information Theory (ISIT),
June 2018, pp. 2644–2648.

[23] A. Maatouk, M. Assaad, and A. Ephremides, “Age of information with
prioritized streams: When to buffer preempted packets?” in 2019 IEEE
International Symposium on Information Theory (ISIT), 2019, pp. 325–
329.

https://doi.org/10.1109/TNET.2018.2873606
https://doi.org/10.1109/TNET.2018.2873606


[24] C. Kam, J. P. Molnar, and S. Kompella, “Age of information for queues
in tandem,” in MILCOM 2018 - 2018 IEEE Military Communications
Conference (MILCOM), 2018, pp. 1–6.

[25] R. Bellman, “Limit theorems for non-commutative operations. I.” Duke
Mathematical Journal, vol. 21, no. 3, pp. 491 – 500, 1954. [Online].
Available: https://doi.org/10.1215/S0012-7094-54-02148-1

[26] A. Bergen, “Stability of systems with randomly time-varying parame-
ters,” IRE Transactions on Automatic Control, vol. 5, no. 4, pp. 265–269,
1960.

[27] A. R. Teel, A. Subbaraman, and A. Sferlazza, “Stability analysis for
stochastic hybrid systems: A survey,” Automatica, vol. 50, no. 10, pp.
2435–2456, 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0005109814003070

[28] S. Lang, First course in calculus. Springer, 2012.
[29] G. Yin and C. Zhu, Hybrid switching diffusions: properties and appli-

cations. Springer, 2010.
[30] M. H. A. Davis, “Piecewise-deterministic markov processes: A general

class of non-diffusion stochastic models,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 46, no. 3, pp.
353–388, 1984. [Online]. Available: http://www.jstor.org/stable/2345677

[31] Azaı̈s, Romain, Bardet, Jean-Baptiste, Génadot, Alexandre, Krell,
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APPENDIX A
PROOF OF THEOREM 3

To proceed with our proof, let us start with some useful
definitions. To that end, let Jmax = max

l
Jl be the maximum

degree of the transitions rates, and l∗ be the index such that
Jl∗ = Jmax. Now let us suppose that µm(t) is arbitrarily large.
In other words, for any ε > 0, we have

µm(t) ≥ 1

ε
. (82)

Given the Jensen’s inequality results reported in eq. (38), we
can conclude that

µm+Jmax(t) ≥ [µm(t)](m+Jmax)/m ≥ µm(t)

εJmax/m
. (83)

The above inequality tells us that if the moment of order m
is arbitrarily large, then the moment of order m+ Jmax grows
at an even larger pace. If Jmax = 0, then we go back to the
case studied in [17] where the stability was established, and
the finiteness can be consequently obtained. More generally,
when Jmax ≥ 1, we note that the moment of order m + Jmax
has a strictly negative coefficient in eq. (36). Given that a
negative coefficient is tied to the highest order moment (i.e.,
µm+Jmax(t)), and the inequality provided in eq. (83), we can
assert that there exists a certain ε0 such that for all ε ≤ ε0, we
have

dµm(t)

dt
< 0. (84)

In other words, as µm(t) grows larger, eventually the derivative
of µm(t) becomes negative and the value of the moment of
order m is pulled back towards the origin. Accordingly, we
can conclude that there exists a large enough ball centered
around the origin of radius Um such that µm(t) ∈ B(0, Um)
for t ∈ [0,∞).

APPENDIX B
PROOF OF PROPOSITION 1

Let us consider the following twice differentiable function

Wm(x) = k − (x+ 1)m, ∀x ∈ D, (85)

where the constants k and m are to be specified. We apply
the SHS extended generator previously reported in eq. (15) on
this function Wm(x). We end up with

LWm(x) = −m(x+1)m−1+

L∑
l=1

[(x+1)m−(c+1)m][

Jl∑
j=0

a
(l)
j x

j ].

(86)
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Given that D has a compact closure, we can deduce that there
exists U ≥ 1 such that

1 ≤ x+ 1 ≤ U. (87)

Based on the above, we can also conclude that there exists
U∗ ≥ 0 such that

Jl∑
j=0

a
(l)
j x

j ≤ U∗, l = 1, . . . , L. (88)

By keeping the above inequality in mind, and given that c ≥ 0,
we can deduce that

LWm(x) ≤ −m(x+ 1)m−1 + ((x+ 1)m − 1)LU∗

= (x+ 1)m−1(−m+ (x+ 1)LU∗)− LU∗

≤ (x+ 1)m−1(−m+ ULU∗)− LU∗ (89)

Therefore, it sufficient to choose m > ULU∗ for the above
Right Hand Side (RHS) to be strictly negative. In this case,
there exists a sufficiently small ε > 0 such that

LWm(x) ≤ −ε. (90)

Lastly, given eq. (87), we can easily choose a constant k > 0
such that Wm(x) ≥ 0 for any x ∈ D. All in all, we can
conclude that Wm(x) is a Lyapunov function. Let us now
define τD(t) = min{t, τD}. Given that Dynkin’s formula is
applicable (see [32, Theorem 1]), we obtain

Ex[Wm(x(τD(t))]−Wm(x) = Ex[

∫ τD(t)

0

LWm(x(u))du]

≤ −εEx[τD(t)]. (91)

Given that Wm(·) is non-negative, we get

Ex[τD(t)] ≤ Wm(x)

ε
. (92)

Next, we note that

Ex[τD(t)] = Ex[τD1{τD < t}] + Ex[t1{τD > t}]. (93)

Given the above equation, along with eq. (92), we can con-
clude that

tPrx(τD > t) ≤ Wm(x)

ε
. (94)

Letting t→∞, we obtain

Prx(τD =∞) = 0. (95)

This tells us that τD(t) → τD almost surely when t → ∞.
Now, by applying Fatou’s lemma, we obtain

Ex[τD] ≤ Wm(x)

ε
<∞. (96)

APPENDIX C
PROOF OF THEOREM 4

To prove our desired results, we first note that any non-
empty open set D ⊂ [c,∞] with compact closure D can
be written as ]α, β[ for some α > c and β < ∞. Next, by
leveraging the results of Proposition 1, we know that we exit
the set D and enter Dc in finite time. To that end, let us
consider the two sets Dinf = [c, α] and Dsup = [β,∞). It is
evident that Dc = Dinf ∪Dsup. Therefore, let us suppose that
after exiting D, we end up in Dinf. By leveraging the results
of Proposition 1, we know that we exit the set Dinf in finite
time. Given the way the AoI evolves, it is evident that we can
only enter D when we exit Dinf. Accordingly, we can conclude
that we reach D from Dinf in finite time. To show that this
is also the case from Dsup, we proceed in a different fashion.
Specifically, we consider that x ∈ Dsup and we first aim to
show that we exit Dsup in finite time. In other words,

Ex[τDsup ] <∞, ∀x ∈ Dsup. (97)

To prove this, we follow the same procedure of the proof of
Proposition 1. Particularly, let us consider the following twice
differentiable function

W (x) = x, ∀x ∈ Dsup. (98)

We apply the SHS extended generator previously reported in
eq. (15) on this function W (x). We end up with

LW (x) = 1 +

L∑
l=1

[c− x][

Jl∑
j=0

a
(l)
j x

j ]. (99)

As discussed in the proof of Lagrange stability, the highest
order monomial has a negative coefficient. Accordingly, we
have that as x grows, there exists a certain boundary beyond
which we get LW (x) < 0. Therefore, there exists a certain
constant U such that if x > U , we get LW (x) < −ε for
a certain ε > 0. To that end, let us consider the set Dint =
[β, U ] ⊂ Dsup, and let τDint denote the exit time of Dint. If
x ∈ Dint, and given the deterministic evolution of the AoI, we
have

τDint < U − β <∞. (100)

In fact, either a transition occurs that reduces the AoI to the
value c, and hence takes us back to the set Dinf, or the AoI
keeps growing until we enter the set Dsup \Dint after at most
U − β. Consequently, we have τDint < ∞. Recall that if we
reach the set Dinf, we are guaranteed to enter D in finite time.
Therefore, given the strong Markov property, it is sufficient
to examine what happens to the process if we start with x ∈
Dsup \Dint. To that end, and as previously explained, we have
W (x) ≥ 0 and LW (x) < −ε for a certain ε > 0 for any
x ∈ Dsup \ Dint. Therefore, W (x) is a Lyapunov function.
Accordingly, we can proceed in the same way as the proof of
Proposition 1 to show that τDsup\Dint <∞. Given the dynamics
of the system, exiting Dsup \ Dint takes us back to Dinf. By
leveraging the strong Markov property, and knowing that from
Dinf we enter D in finite time, we can conclude that we are



guaranteed to return to D in finite time if we start from Dsup \
Dint. All in all, for any non-empty open set D with compact
closure D, if we start from any point in D, we are guaranteed
to return to D in finite time. This concludes our proof.

APPENDIX D
PROOF OF PROPOSITION 2

For any (x, q) ∈ D × Q, let us consider the following
function for

Wm(x, q) = k − (x1 + 1)m1(x2 + 1)m2 . . . (x2n + 1)m2n︸ ︷︷ ︸
A

,

(101)

where the constants k and mi for i = 1, . . . , 2n are to be
specified. We apply the SHS extended generator previously
reported in eq. (15) on this function Wm(x, q). By consider-
ing q = 0, we end up with

LWm(x, 0) = −
n∑
i=1

mi(x1+1)m1 . . . (xi+1)mi−1 . . . (x2n+1)m2n .

(102)
Given that D has a compact closure, we can deduce that there
exists U ≥ 1 such that

1 ≤ xi + 1 ≤ U, i = 1, . . . , 2n. (103)

With that in mind, we can conclude that if mi > 0 for i =
1, . . . , n, then

LWm(x, 0) ≤ −
n∑
i=1

mi < 0. (104)

Next, let us examine the SHS extended generator for any
state k 6= 0. Before doing so, and for ease of notation, let
us consider

Ai = (x1+1)m1 . . . (xi+1)mi−1 . . . (x2n+1)m2n , i = 1, . . . , 2n.
(105)

With this in mind, we get for k = 1, . . . , n

LWm(x, k) = −
n∑
i=1

miAi−mn+kAn+k+Hk[k−Ak−k+A],

(106)
where

Ak =(x1 + 1)m1 . . . (xn+k + 1)mk . . . (xn+k−1 + 1)mn+k−1

(xn+k+1 + 1)mn+k+1 . . . (x2n + 1)m2n . (107)

Given that Ak ≥ 0, we can upper bound LWm(x, k) as
follows

LWm(x, k) ≤ −
n∑
i=1

miAi −mn+kAn+k +HkA

= −
n∑
i=1

mi
A

xi + 1
−mn+k

A

xn+k + 1
+HkA

≤ A[Hk −
1

U
(

n∑
i=1

mi +mn+k)]. (108)

Therefore, it sufficient to choose
∑n
i=1mi > UHk for the

above RHS to be strictly negative for any k 6= 0. In this case,
there exists a sufficiently small ε > 0 such that

LWm(x, k) ≤ −ε, k = 0, 1, . . . , n. (109)

Lastly, given eq. (103), we can easily choose a constant k > 0
such that Wm(x, q) ≥ 0 for any x ∈ D. All in all, we can
conclude that Wm(x, q) is a Lyapunov function. Given that
Dynkin’s formula is applicable (see [32, Theorem 1]), then we
can leverage it along with Fatou’s lemma as done in the proof
reported in Appendix B to obtain to obtain

Ex,q[τD] ≤ Wm(x, q)

ε
<∞. (110)

APPENDIX E
PROOF OF PROPOSITION 3

As a first step, we can notice from Fig. 2 that the chain
corresponding to q(t) is irreducible. On top of that, we note
that the number of states is finite as it is equal to n+1, where n
is the number of wireless nodes in the network. Therefore, we
can conclude that all states are recurrent (see [48, Proposition
2.3]). Additionally, let us define τqq as the time for q(t) to
return to state q given that it started in state q. By leveraging
[48, Proposition 2.4], we know that it is enough to prove that
E[τqq] < ∞ to conclude that all states are positive recurrent
and that the expected time to go from any state q to another
state q′, which we denote by E[τqq′ ], is also finite. To that end,
let us consider that q = {0}, and let us define the following
exit time

τ0 := inf{t ≥ 0 : q(t) 6= 0}, (111)

given that q(0) = 0. Now, given the dynamics of the age
processes reported in Section V-D, we know that the age at
the monitor of each link i increases linearly with time. On top
of that, we recall that we have xi(t) 6= 0 for i = 1, . . . , n.
Note that a transition happens when any of the n exponential
clocks with rates aixi(t) ticks. To that end, we have that a
tick happens with a rate larger than min

i
aixi(0) > 0. Given

that the clocks are exponential, we can conclude that this
happens with an average time smaller than 1

min
i
aixi(0) < ∞.

Accordingly, we have

Ex[τ0] ≤ 1

min
i
aixi(0)

<∞. (112)

Now, let us suppose that the transition takes us to any of
the states k 6= 0. By construction, we go back to state 0 in
an exponentially distributed time with rate Hk. Hence, we
conclude that for any initial continuous state x(0)

Ex[τ00] ≤ 1

min
i
aixi(0)

+
1

min
i
Hi

<∞. (113)

Consequently, the stochastic process {q(t) : t ≥ 0} is positive
recurrent.
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Let us start our analysis by looking at the transitions out of
state 0. Specifically, we have that the rate of these transitions is
equal to aixi(t) for i = 1, . . . , n. Therefore, starting from any
time instant t0, let Gi be an exponential clock of rate aixi(t)
and let us investigate the probability that a tick takes place
after a certain time ε > 0 elapsed from t0. Using the notion
of survivor function and hazard rate (see [49, Chapter 2]), we
obtain

Pr(Gi > ε) = exp[−
∫ t0+ε

t0

aixi(t)dt]
∆
= pi(ε) > 0, i = 1, . . . , n,

(114)
where the strict positivity is a consequence of Lemma 4. Given
the above expression, we can conclude that for ε1 < ε2

Pr(ε1 < Gi < ε2) = exp[−
∫ t0+ε1

t0

aixi(t)dt]

− exp[−
∫ t0+ε2

t0

aixi(t)dt] > 0, i = 1, . . . , n,

(115)

where the strict positivity comes from the fact that the age of
each link grows linearly with time in state 0. We recall that our
goal is to show that every set U = D × {q} ∈ Ddefinition ×Q
where D is a non-empty open set with compact closure is
positive recurrent. First, we note that, by definition, any open
set D can be considered as the union of open balls. Therefore,
it is sufficient to prove the positive recurrence of any set of the
form U = B(x, ε)× {q} where B(x, ε) ⊂ Ddefinition is a ball
of center x and radius ε > 0. With this in mind, we recall that
the vector space to which x(t) belongs is finite dimensional.
Therefore, all norms are equivalent and, accordingly, let us
consider the∞-norm ||x(t)||∞ = max

i
xi(t). Using this norm,

the ball B(x, ε) is a square shaped open set. Next, given the
particularity of the domain Ddefinition, we detail below the form
that B(x, ε) can have. For example, in state q = {0}, B(x, ε)
can be rewritten as the set of x such that

a1 <x1 < b1,

a2 <x2 < b2,

...
an <xn < bn,

xi = 0, i = n+ 1, . . . , 2n, (116)

where bi − ai = 2ε > 0. Note that the above set is open in
Rn. Similarly, in state q = {k}, we can equivalently consider

the set

a1 <x1 < b1,

a2 <x2 < b2,

...
an <xn < bn,

an+k <xn+k < bn+k,

xi = 0, i = n+ 1, . . . , 2n, (117)

such that bi − ai = 2ε > 0 and xn+k < xi for i = 1, . . . , n.
Note that this set is open in Rn+1. Let us now investigate the
recurrence time of the set U = B(x, ε)×{k}, denoted by τUU .
To do so, let us suppose that we start from a point x ∈ B(x, ε)
and q(0) = k. Without loss of generality, we suppose that
a1 ≥ a2 ≥ . . . ≥ an > an+k > 0. Note that an+k is always
strictly smaller than ai for i = 1, . . . , n since xn+k < xi. The
recurrence time τUU can be decomposed into two components:
the exit time of U and the reentry time in U . By Proposition
2, we have that the exit time τB(x,ε) (and consequently U )
has a finite expectation. Given that the exit time of U is a
stopping time, we can leverage the strong Markov property
and suppose that we have started outside of U . Then, we can
focus on proving that the expectation of the reentry time in
U is finite to prove the positive recurrence with respect to
U . Consequently, let us consider that x(0) /∈ B(x, ε) and
q(0) ∈ Q. Additionally, let us define the following family of
stopping times

σ1
0 = inf{t ≥ 0 : q(t) = 0},
σ1

1 = inf{t ≥ σ1
0 : q(t) = 1},

σ1
2 = inf{t ≥ σ1

1 : q(t) = 0},
σ1

3 = inf{t ≥ σ1
2 : q(t) = 2},

...

σ1
2n−1 = inf{t ≥ σ1

2n−2 : q(t) = n},
σ1

2n = inf{t ≥ σ1
2n−1 : q(t) = 0},

σ1
2n+1 = inf{t ≥ σ1

2n : q(t) = k},
σ1

2n+2 = inf{t ≥ σ1
2n+1 : q(t) = 0},

σ2
1 = inf{t ≥ σ1

2n+2 : q(t) = 1},
σ2

2 = inf{t ≥ σ2
1 : q(t) = 0},

...

σN2i−1 = inf{t ≥ σN2i−2 : q(t) = i},
σN2i = inf{t ≥ σN2i−1 : q(t) = 0},

... (118)

Basically, we track the following trajectory of q(t)

q(0)→ 0→ 1→ 0→ 2→ . . .→ k → 0→ . . .

→ n→ 0→ k → 0→ 1→ . . . . (119)

Using the above trajectory, we will establish the positive
recurrence of the process {

(
x(t), q(t)

)
: t ≥ 0} . To do so, we



first recall that {q(t) : t ≥ 0} is positive recurrent. With this in
mind, and given the strong Markov property of the stochastic
process {

(
x(t), q(t)

)
: t ≥ 0}, we have

Ex,q[σ1
0 ] <∞, (120)

Ex(σN
2i−2)[σ

N
2i−1 − σN2i−2] <∞, ∀x(σN2i−2) ∈ [0,∞)2n,

∀i ∈ {1, . . . , n+ 1},∀N ∈ N∗.
(121)

Essentially, the expected time between these stopping times
is finite, whatever the value of x at the end of the previous
stopping time is. Next, we can notice that σN2i − σN2i−1

is exponentially distributed with rate Hi. Accordingly, we
conclude that

Ex(σN
2i−1)[σ

N
2i − σN2i−1] =

1

Hi
<∞, ∀x(σN2i−1) ∈ [0,∞)2n,

∀i ∈ {1, . . . , n},∀N ∈ N∗,
(122)

Pr[ε1 < σN2i −σN2i−1 < ε2] = exp[−Hiε1]− exp[−Hiε2] > 0,
(123)

Ex(σN
2n+1)[σ

N
2n+2 − σN2n+1] =

1

Hk
<∞, ∀x(σN2n+1) ∈ [0,∞)2n,

∀N ∈ N∗, (124)

Pr[ε1 < σN2n+2−σN2n+1 < ε2] = exp[−Hkε1]−exp[−Hkε2] > 0,
(125)

for ε1 < ε2. All in all, we have shown that the expectation
between each pair of stopping times is finite. Next, we aim
to show that the exact same order of the trajectory can be
followed within a specified elapsed time. To that end, let us
define for every ε > 0 the following events

AN2i−1 ={σN2i−1 − σN2i−2 <
ε

2n

⋂
Gj >

ε

2n
for j 6= i},

∀i ∈ {1, . . . , n},∀N ∈ N∗,

AN2n+1 ={σN2n+1 − σN2n <
ε

2n

⋂
Gj >

ε

2n
for j 6= k},

∀N ∈ N∗,

AN2i ={ai − ai+1 < σN2i − σN2i−1 < ai − ai+1 +
ε

2n
},

∀i ∈ {1, . . . , n− 1},∀N ∈ N∗,

AN2n ={an − an+k < σN2n − σN2n−1 < an − an+k +
ε

2n
},

∀N ∈ N∗,
AN2n+2 ={σN2n+2 − σN2n+1 > an}, ∀N ∈ N∗. (126)

In other words, the event AN2i−1 for i = 1, . . . , n is true when
the only transition that takes place between σN2i−1−σN2i−2 is the
transition from state 0 to state i. Additionally, this transition
happens in a time less than ε

2n . Given eq. (114), and by noting
the independence between the different exponential clocks in
state q = 0, we can conclude that for i = 1, . . . , n

Prx(σN
2i−2)(A

N
2i−1) = (1−pi(

ε

2n
))
∏
j 6=i

pj(
ε

2n
)

∆
= ηi(

ε

2n
) > 0,

(127)

and

Prx(σN
2n)(A

N
2n+1) = (1− pk(

ε

2n
))
∏
j 6=k

pj(
ε

2n
)

∆
= ηk(

ε

2n
) > 0.

(128)
As for the event AN2i for i = 1, . . . , n− 1, it is true when the
transmission time is in the interval ]ai−ai+1, ai−ai+1 + ε

2n [.
Given eq. (123) and (125), we have for all N ∈ N∗

Prx(σN
2i−1)(A

N
2i) = exp[−Hi(ai − ai+1)]

− exp[−Hi(ai − ai+1 +
ε

2n
)]

∆
= δi(

ε

2n
) > 0, i = 1, . . . , n− 1,

(129)

Prx(σN
2n−1)(A

N
2n) = exp[−Hi(an − an+k)]

− exp[−Hi(an − an+k +
ε

2n
)]

∆
= δn(

ε

2n
) > 0, (130)

Prx(σN
2n+1)(A

N
2n+2) = exp[−Hkan+k]

∆
= δnk

> 0. (131)

We can see that if all the mentioned events are true for a
particular cycle of transitions N , then we are guaranteed to
return to the set U at a time τ such that σN2n+1 ≤ τ ≤ σN2n+2.
In fact, as it has been discussed in Section V-B, upon a
transition back to state 0 from a state i, the age of link i
becomes equal to the time spent in state i (i.e., equal to xi+n
while xi+n becomes equal to 0). To that end, let us denote by

N∗ = inf{N ∈ N∗ : AN2i and AN2i−1 are true for i = 1, . . . , n+1},
(132)

the first transition cycle such that the events AN2i and AN2i−1

are true for i = 1, . . . , n+ 1. Consequently, we have

τ ≤ σN
∗

2n+2. (133)

Therefore, it is sufficient to show that Ex,q[σN
∗

2n+2] < ∞
to conclude the positive recurrence of the stochastic process
{
(
x(t), q(t)

)
: t ≥ 0}. To that end, let ρ = min

i
{ηi, δi} > 0.

Given the strong Markov property of {
(
x(t), q(t)

)
: t ≥ 0},

we end up with

Prx(0)[N
∗ =∞] ≤ lim

N→∞
[1− ρ2n+2]N = 0. (134)

In other words, we are guaranteed that at some point, all the
events will come true in a single cycle N . Next, given that
the expected time between each stopping time is finite, we
can upper bound them all by a constant M > 0. Accordingly,
the expected time elapsed at every cycle of transitions N ≥ 2
is upper bounded by (2n + 2)M . For N = 1, the expected
time elapsed is upper bounded by (2n + 3)M . With this in
mind, and given the strong Markov property of the stochastic
process {

(
x(t), q(t)

)
: t ≥ 0}, we can conclude that

Ex,q[σN
∗

2n+2] =

∞∑
N=1

Prx(0)[N
∗ = N ]Ex,q[σN

∗

2n+2|N∗ = N ]

≤
∞∑
N=1

[1− ρ2n+2]N (N × (2n+ 3)M) <∞,

(135)

for all x /∈ B(x, ε) and q ∈ Q. Combining this with the fact
that the expected exit time of U is finite, we can conclude



that the expectation of the recurrence time τUU is finite. This
concludes our proof.

APPENDIX G
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To proceed with our proof, let us consider an arbitrary time
instant t ad let us suppose that the process {

(
x(t), q(t)

)
:

t ≥ 0} starts from the initial state (x(0), q(0)). Let us also
consider the open ball D = B(x(0), ε) ⊂ Ddefinition centered
around x(0) of radius ε > 0. We suppose that for each point
x ∈ B(x(0), ε), we have xi ≤ U for i = 1, . . . , 2n, where
U is a finite positive number. We recall from Theorem 5 that
the stochastic process x(t) is positive recurrent with respect
to D. To that end, let us define N∗ such that

τN
∗

DD < t ≤ τN
∗+1

DD , (136)

where τNDD is the N -th recurrence time of the set D. More
precisely, τ1

DD is the time after which the process returns to
D after leaving it for the first time. Similarly, τ2

DD is the time
the process returns to D after it leaves it for the second time.
Now, given that D is bounded and that xi(t) increases at most
linearly with time, we have

xi(t) ≤ U + τN
∗+1

DD − τN
∗

DD︸ ︷︷ ︸
CN∗

, i = 1, . . . , 2n. (137)

In essence, CN∗ is the time elapsed between the two con-
secutive recurrence times. Accordingly, if we are interested in
the moment of x(t) associated with m, previously denoted as
µm(t) = E[xm(t)], then we have

µm(t) ≤ E[(U + CN∗)
m] = E[

m∑
i=0

(
m

i

)
CiN∗U

m−i], (138)

where m =
∑2n
i=1mi. Next, we recall the results of eq. (38)

where Jensen’s inequality was leveraged. Using these results,
we can conclude that if E[CmN∗ ] is finite, then the same can be
said for E[CpN∗ ] for p < m. Therefore, to prove that E[(U +
CN∗)

m] is finite, and given that U is a constant, it is sufficient
to show that E[CmN∗ ] <∞.

Now that we know our goal, we can proceed with our proof.
To that end, we recall our proof of Theorem 5 where we
have considered the recurrence time of any non-empty open
set of Ddefinition with compact closure. By following the same
procedure, we can consider a specific trajectory of q(t) to
reach the set B(x(0), ε). By doing so, and by leveraging the
strong Markov property, we can obtain similar results to eq.
(135). In essence, to show that the moment of order m of CN∗
is finite, it suffices to show that the moment of order m of the
transition time between any two discrete states i 6= j is finite.
To do so, let Txij denote the first time that the discrete process
q(t) visits state j if it started in i, given the initial state x.
Using the results reported in [50], we can conclude that if
Ex[τm00] <∞ then Ex[Txij ] <∞, where τm00 is the moment of
order m of the recurrence time of the discrete state 0. With
that in mind, we note that the recurrence time can be divided

into two components: the exit time of state 0 and the return
time to state 0. Therefore, we have

Ex[τm00] = Ex[(τexit + τreturn)m] = Ex[

m∑
i=0

(
m

i

)
τ iexitτ

m−i
return ].

(139)
Let us investigate the exit time of state 0. Following the same
analysis found in the proof of Proposition 3, we can conclude
that

Ex[τmexit] ≤ E[Y m], (140)

where Y is an exponential random variable of rate
min
i
aixi(0) > 0. Given that E[Y m] is finite for any m > 0,

we can conclude that the same goes for Ex[τmexit]. Lastly, we
focus on the return time to state 0. To that end, we note
that when we exit the state 0, we end up in any of the
remaining states k 6= 0. Given that the time spent in state
k is exponentially distributed with mean 1

Hk
, and given the

independence between τexit and τreturn, we can conclude that

Ex[τm00] <∞, m > 0. (141)

With this in mind, we can conclude that E[CmN∗ ] < ∞.
Accordingly, the moment of x(t) associated with m such that
mi ∈ N for i = 1, . . . , 2n and

∑2n
i=1mi = m is finite for any

arbitrary time instant t.

APPENDIX H
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To prove the proposition, we need to showcase several key
properties of the SCA function Υ(x,y) in (78) and leveraging
them to demonstrate the intended results. The characteristics
are summarized in the following:
• ∆(x) ≤ Υ(x,y), ∀x,y ∈ X
• limx→y∇~dΥ(x,y) = ∇~d∆(y), ∀~d,y : y, ~d+ y ∈ X
• Υ(x,y) is continuous ∀(x,y) ∈ X × X
• Υ(y,y) = ∆(y), ∀y ∈ X

If the above properties are verified, and knowing that X is
a compact set, we can assert that the assumptions in [51,
Assumption 1] are true. Accordingly, we can use [51, Theorem
1] to show that every limit point of the iterates generated by
the algorithm in (77) is a stationary point of the problem in
(75).
Let us start by examining the first property. To that end, we
recall the objective function below

∆(x) = cdTE−1(x)b∞|m(x). (142)

By construction, the closed linear system being examined is
fully determined, and hence E−1(x) exists. Therefore, we
have that (

E−1
)
ij

=
(−1)i+jMji

det(E)
, (143)

where Mji is the (j, i) minor of E. Given that the transition
rates are polynomial functions, we can conclude that the
entries of

(
E
)
ij

are monomials of the components of x. With
that in mind, we can conclude that the entries

(
E−1

)
ij

are all



rational functions of x with the denominator being det(E).
Therefore, one can deduce that the overall age function ∆(x)
can be written as a rational function of x with non-zero
denominator for any x ∈ X . Consequently, we can affirm that
∆(x) is a continuous and differentiable function on the set
X . The same argument can be made for the gradient function
∇∆(x) and, accordingly, the entries of the Hessian matrix
∇2∆(x). Due to the continuity of the Hessian matrix, and
given that X is compact, we know that there exist a constant
L > 0 such that ||∇2∆(x)|| ≤ L for x ∈ X . By using the
mean value theorem on the function∇∆(x), and by noting the
bound on ||∇2∆(x)||, we can show that ∇∆(x) is a Lipschitz
function. More specifically, there exists a constant L > 0 such
that

||∇∆(x)−∇∆(y)|| ≤ L||x− y||, ∀x,y ∈ X . (144)

Using the above results, we can apply the descent Lemma [52,
Proposition A.24] to show that ∆(x) ≤ Υ(x,y), ∀x,y ∈ X
if αn ≥ L

2 .
Next, we investigate the second property revolving around the
directional derivative of the function Υ(x,y) with respect to
x. More specifically

∇~dΥ(x,y) = lim
λ→0

Υ(x+ λ~d,y)−Υ(x,y)

λ
. (145)

By replacing Υ(x,y) with its value from eq. (78), we can
show that limx→y∇~dΥ(x,y) = 〈∇∆(y)T , ~d〉 = ∇~d∆(y),
where 〈·, ·〉 denotes the dot product.
As for the third property, we can easily show that it holds by
noting the expression of Υ(x,y) in (78) and by taking into
account that ∆(x) and ∇∆(x) were shown to be continuous
∀x ∈ X . Lastly, by simple substitution, we can assert that
Υ(y,y) = ∆(y), ∀y ∈ X . Given that all the above properties
are verified, we can confirm that the limit point of the sequence{
η[k]

}+∞
k=1

is a stationary point of the problem in (76) if αk ≥
L
2 , k ∈ N.
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