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Abstract—This paper presents analyses and experimental re-
sults on the jitter transfer of delay-locked loops (DLLs). Through a

-domain model, we show that in a widely used DLL configuration,
jitter peaking always exists and high-frequency jitter does not get
attenuated as previous analyses suggest. This is true even in a first-
order DLL and an overdamped second-order DLL. The amount of
jitter peaking is shown to trade off with the tracking bandwidth
and, therefore, the acquisition time. Techniques to reduce jitter
amplification by loop filtering and phase filtering are discussed.
Measurements from a prototype chip incorporating the discussed
techniques confirm the prediction of the analytical model. In en-
vironments where the reference clock is noisy or where multiple
timing circuits are cascaded, this jitter amplification effect should
be carefully evaluated.

Index Terms—Delay-locked loop (DLL), injection locking, jitter
peaking, jitter transfer, multiplying delay-locked loop (MDLL),
phase-locked loop (PLL).

I. INTRODUCTION

DELAY-LOCKED loops (DLLs) have been widely used
as frequency synthesizers and clock deskewing circuits

in radio-frequency (RF) transceivers [1], [15], interchip com-
munication interfaces [2], [3], and clock distribution networks
[4], [5]. Although these functions can also be performed with
phase-locked loops (PLLs), DLLs are often preferred due to
their ease of design, better immunity to on-chip noise, and sta-
bility. In particular, a phenomenon known asjitter accumula-
tion makes PLLs more susceptible to power-supply and sub-
strate noise [2], [6], [14]. In cases where a significant amount
of noise-generating digital circuitry is present on the same chip,
DLLs are preferred because any jitter created by the on-chip
noise is completely corrected when a clean reference clock edge
arrives at the input of the DLL [1], [3], [15]. In some cases, how-
ever, the reference clock itself might have significant jitter, and
the utilization of a DLL does not always guarantee superior jitter
performance compared to a PLL.

Jitter peaking refers to the amplification of jitter from an input
to an output over a certain frequency band and is an important
performance metric in systems where multiple PLLs or DLLs
are cascaded (such as in repeaters and clock distribution net-
works). It has been widely known that the traditional PLL in-
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herently has jitter peaking that cannot be eliminated [7]. Tech-
niques to minimize it by overdamping the loop or to remove it
altogether through an architectural modification have been dis-
cussed in the literature [7]. This paper shows that in a widely
used configuration, a DLL also has jitter peaking that cannot be
eliminated, contrary to previous analyses [11], [12]. It is shown
that this jitter peaking trades off with the tracking bandwidth
and, therefore, the acquisition time of the DLL. Furthermore,
unlike a PLL, high-frequency jitter in the reference clock does
not get attenuated in a DLL. We introduce two techniques—loop
filtering and phase filtering—to attenuate the high-frequency
jitter transfer of a DLL. When a DLL is compared with other
clocking architectures (e.g., a PLL) for jitter performance, the
effect of jitter amplification needs to be evaluated carefully be-
cause any advantage a DLL has in correcting the self-noise
might be completely offset by the amplification of a noisy ref-
erence clock.

Section II provides a general background on different types
of DLLs. Section III gives a -domain model of the Type I DLL
to show that jitter amplification exists, and a physical explana-
tion is given to show why it exists. Section IV discusses several
techniques to reduce high-frequency jitter transfer. Section V
presents the experimental results, and Section VI concludes with
a summary.

II. BACKGROUND

Previous DLL designs can be divided into two categories,
which we call Type I and Type II, according to their jitter
transfer characteristics. Type I and Type II DLLs are shown
in Fig. 1(a) and (b), respectively. This paper is focused on the
Type I DLL, which, unlike the Type II DLL, always exhibits
jitter peaking. Generally speaking, a DLL is a servomechanism
in which a delay path is adjusted in order to produce a desired
phase relationship between two signals. The distinction here
is whether one signal is derived from the other. In a Type I
DLL, the reference is compared with the delayed version of
itself. This architecture is widely used in DLL-based frequency
synthesizers [1], [3], [4], multiphase clock generators [8], [9],
and clock deskewing circuits [2], [5]. In a Type II DLL, the
reference is compared with the delayed version of an uncor-
related signal. This architecture is widely used in DLL-based
clock recovery circuits [10]. In previous publications, the same
analysis is used for both types of DLLs, although it is only
valid for Type II DLLs. We briefly review this analysis here
[11], [12].

0018-9200/03$17.00 © 2003 IEEE



LEE et al.: JITTER TRANSFER CHARACTERISTICS OF DELAY-LOCKED LOOPS 615

(a)

(b)

Fig. 1. DLL architecture. (a) Type I DLL. (b) Type II DLL.

Fig. 2. S-domain model of DLL.

Fig. 2 shows the -domain representation of a charge-pump
DLL. Although in most cases the loop filter consists of only a
capacitor (an integrator), in certain situations an extra pole (de-
noted by here) is introduced [3], [8], [9]. represents the
delay line gain in radians per volt. represents the charge
pump and loop filter gain. In terms of the charge pump cur-
rent and the loop filter capacitance , is equal to

. The jitter transfer is given by

(1)

In cases where the loop filter consists of only a capacitor (
), the jitter transfer contains a single pole ( ) and

exhibits no jitter peaking. For the more general case, the jitter
transfer is a second-order system and there is a possibility of
jitter peaking. By overdamping the loop, however, jitter peaking
is eliminated. This analysis also shows that high-frequency jitter
is filtered out. In the next section, we show that these conclu-
sions do not apply to Type I DLLs.

III. JITTER AMPLIFICATION IN TYPE I DELAY-LOCKED LOOPS

The problem with the above analysis is that it does not take
into account the fact that in Type I DLLs is derived from

. We use a -domain analysis here to express this effect, al-
though a more refined-domain analysis that incorporates a
delay relationship between and works as well. Fig. 3
shows the representation of Type I DLLs in thedomain.
is the delay line gain in radians per cycle per volt, where a cycle
refers to a sampling period (also a reference clock period). For
the special case of a multiplying DLL [3], automatically
includes the effect of the multiplication ratio because it refers
to the accumulated phase over one reference clock cycle in the
reference clock phase domain (i.e., one reference clock cycle
is ). In some systems, the reference clock buffers before the

Fig. 3. Z-domain model of Type I DLL.

DLL are also under the control of the loop for signal condi-
tioning and can be modeled by in radians per volt. How-
ever, is usually negligible compared to and can be
safely ignored. The block represents the fact that the phase
detector compares the current reference clock edge with the os-
cillator output derived from the previous reference clock edge.
For the first part of the analysis, we assume that the loop filter
consists of only a capacitor, as is commonly the case. In this
case, is given by

(2)

is the charge pump and loop filter gain in volts per cycle
per radian. In terms of the charge pump current,, and the
loop filter capacitance, , is equal to ,
where is the sampling period. The jitter transfer is given by

(3)

which contains a pole at and a zero at . For
nonzero , jitter peaking can never be eliminated. Fig. 4 shows
the magnitude of the jitter transfer up to half the sampling fre-
quency for ns, radians per cycle per volt, and

volts per cycle per radian (e.g., A,
pF). Jitter above this frequency gets aliased down be-

cause of the discrete-time nature of the system. The maximum
jitter peaking can be calculated with (at half the sam-
pling frequency) and is given by

(4)

In this example, the maximum jitter peaking is 0.66 dB. It can be
seen that a higher tracking bandwidth and a smaller lock time,
both desirable features, increase the amount of jitter peaking.
Assuming that the reference clock jitter is white, the root-mean-
square (rms) jitter would be amplified by 0.63 dB. This is almost
the same as the maximum jitter peaking and is due to the fact that
all frequencies above the pole are amplified by the maximum
jitter peaking.

Jitter peaking occurs in Type I DLL because it cannot dis-
tinguish between input clock jitter and output clock jitter. For
example, when the phase comparator seeslag , it could
mean that has a sudden lagging jitter or that the delay be-
tween and suddenly became smaller. The former re-
quires that the delay be decreased and the latter increased in
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Fig. 4. Jitter transfer function of first-order Type I DLL.

Fig. 5. Timing diagram illustrating jitter peaking.

order to prevent any jitter in . The two scenarios have con-
flicting requirements. Since the Type I DLL adjusts the delay
between and , the latter must be done in order to pre-
vent positive feedback. This means that any sudden jitter in
is temporarily amplified until this jitter propagates to and
the loop reacts in the correct direction.

Fig. 5 depicts jitter peaking in the time domain. We use a
simple case where the input and the output are the same fre-
quency and the DLL attempts to lock them 360out of phase.
The input and output both follow the ideal clock until a posi-
tive phase step, , occurs in the input clock. Since this phase
step has not propagated to the output, the phase detector sees
an instantaneous phase difference between input and output and
interprets it as a decrease in the delay. The delay is increased
by , resulting in an overall phase jitter of at the next
output clock edge.

As mentioned earlier, jitter peaking can be reduced by de-
creasing the loop gain. This degrades the tracking bandwidth
and the lock time. In DLL applications, tracking bandwidth is
not very critical for canceling the self-noise of the circuit, as
phase error is not accumulated over multiple reference cycles.
In cases where lock time is important, a special turbo mode, in
which the loop bandwidth is increased during acquisition, can be
implemented. The steady-state loop gain should be minimized
in order to reduce jitter peaking.

IV. JITTER AMPLIFICATION REDUCTION

This section is concerned with the reduction of high-fre-
quency jitter transfer in Type I DLLs. There are two benefits
of these techniques. First, if the input noise spans a wide range
of frequencies (e.g., white), the output jitter is significantly re-
duced. Second, high-frequency jitter is often more detrimental
than low-frequency jitter. For example, in clocked digital cir-
cuits, cycle-to-cycle jitter is more important than peak-to-peak
jitter since cycle-to-cycle jitter directly reduces the frequency
of operation and stresses the clock distribution network by
requiring the clock buffers to pass a skinnier pulse. A larger
cycle-to-cycle jitter for a given amount of peak-to-peak jitter
corresponds to a higher jitter frequency.

The first technique, calledloop filtering, places an additional
filter within the DLL. In some systems, this loop filter is inherent
to the chosen architecture and does not need explicit design [3],
[8], [9]. The second technique, calledphase filtering, places a
filter after the DLL.

A. Loop Filtering

As mentioned earlier, even when the reference clock jitter
spans a wide range of frequencies, significant jitter amplifica-
tion still occurs because all high-frequency jitter is amplified.
One way to reduce high-frequency jitter amplification without
compromising loop bandwidth is by introducing a high-fre-
quency noise filter within the DLL. The simplest form is a
first-order filter with a pole located at . In this case, in
Fig. 3 is given by

(5)
where . The jitter transfer becomes

(6)

It is convenient to express the jitter transfer in the above form
because root locus techniques can be used to derive the locations
of the closed-loop poles and zeros as a function of the loop gain

, as shown in Fig. 6. The closed-loop poles and zeros start from
the open-loop poles at and for . As increases,
they move toward each other, with the closed-loop poles moving
at a faster rate. Therefore, even when the loop is overdamped
(before the closed-loop poles become complex), jitter peaking
still exists, as shown in Fig. 7. Notice that a-domain pole or
zero can be converted to an-domain pole or zero by

(7)

for . Therefore, a larger gives a smaller and
vice versa. The high-frequency jitter peaking now becomes

(8)
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Fig. 6. Root loci of the closed-loop poles and zeros.

Fig. 7. Jitter peaking in second-order Type I DLL.

where the first terms in the numerator and the denominator are
due to the added pole. Since in order for the system to be
stable, . However, compared to a first-order system, the
high-frequency jitter peaking has been reduced by

(9)

where is given by (4). Fig. 8 shows the jitter transfer for
the above example with an additional pole at 6.5 MHz, which
makes the loop slightly overdamped. Because of the filtering by
the additional pole, the maximum jitter peaking reduces slightly
to 0.63 dB. More importantly, the high-frequency jitter peaking
has been reduced to0.1 dB. For white phase noise in the ref-
erence clock, the overall jitter amplification has been reduced to
0.18 dB.

Fig. 9 shows white noise amplification and the maximum
jitter peaking versus the loop pole location. Although the max-
imum jitter peaking remains approximately the same, white
noise amplification decreases significantly with a lower pole
since more high-frequency components within the loop are fil-
tered out. When the pole falls below the vertical line, however,
the loop becomes increasingly oscillatory and unstable. The
-domain pole location where the damping factor equals to one

and below which the loop begins to show oscillatory behavior,
according to Fig. 6, is given by

(10)

Fig. 8. Jitter transfer function of second-order Type I DLL.

Fig. 9. Effect of the loop pole location on noise amplification and jitter
peaking.

This expression can be converted to frequency (Hertz) using (7).
The pole location should be set close to this value for reasonable
input jitter filtering and overdamped loop dynamics.

Finally, it should be mentioned that a higher order loop filter
further decreases the high-frequency jitter transfer. The jitter
transfer can be calculated by a routine extension of the above
analysis. For the sake of brevity, we will not expand on it fur-
ther.

B. Phase Filtering

When a DLL is used as a clock multiplier (a multiplying
DLL, or MDLL), it is advantageous to add a phase-domain filter
to further reduce jitter transfer at high frequencies. One possi-
bility of this phase filter is a PLL. To prevent excessive jitter
accumulation, the PLL can be easily designed to have a high
bandwidth as its sampling frequency is at the multiplied fre-
quency. At the same time, high-frequency jitter can be signif-
icantly reduced. For example, with a 125-MHz reference clock
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Fig. 10. Multiplying DLL and slave oscillator.

and a multiplication factor of 8, the MDLL produces a 1-GHz
clock, which is also the sampling frequency of the PLL. To pro-
vide a significant high-frequency jitter filtering while retaining
a high tracking bandwidth to suppress jitter accumulation, the
bandwidth of the PLL can be easily designed to be, for instance,
20 MHz (only 1/50 of the sampling frequency). This means that
the DLL output jitter above this frequency is heavily attenuated.1

On the other hand, a bandwidth of 20 MHz is also much higher
than that which can be achieved if a PLL is used directly to
multiply the reference clock. The stability of the PLL usually
requires the bandwidth to be below 1/20 of the sampling fre-
quency for adequate design margins. In our example, this would
make the upper bound of a multiplying PLL’s tracking band-
width 6 MHz.

The traditional second-order and third-order PLLs, however,
add significant complexity. A simpler phase filter can be imple-
mented using injection locking [13]. An implementation based
on a CMOS ring oscillator is shown in Fig. 10 [3]. The refer-
ence clock is multiplied by an MDLL. For a multiplication
factor of , the delay line output is fed back (configured as a
ring oscillator) for cycles before the front-end multiplexer
(mux) selects the reference clock. The select logic counts the
number of edges and determines when to inject into
the ring oscillator. A regulator adjusts the delay of the delay el-
ements while isolating them from supply noise. (Please refer to
[3] for implementation details of the MDLL.) The slave oscil-
lator uses the same delay element as the MDLL and runs at nom-
inally the same frequency. The injection strength is defined as

and is approximately the amount of cor-
rected phase per injection divided by the phase error between the
master and slave oscillators. For small phase errors, the system
can be modeled as shown Fig. 11. Note that since the sampling
frequency of this -domain model is equal to the reference clock
frequency, the effective coupling coefficient in the sampling fre-

1It can be shown that if the DLL output jitter is assumed white, then the noise
bandwidth for an overdamped second-order PLL is approximately 30 MHz in
our example.

Fig. 11. Z-domain model of MDLL and slave oscillator.

quency domain, , is related to the coupling coefficient in the
multiplied frequency domain, , by . We
use a second-order DLL [see (5)] for the following analysis. The
MDLL and the slave oscillator are coupled through two paths.
The output of the MDLL is injected into the slave oscil-
lator and the control signal of the MDLL sets the oscilla-
tion frequency of the slave oscillator. represents the gain of
the slave oscillator. If the coupling through is ignored for
the moment, then the jitter transfer of the slave oscillator from

to is given by

(11)

This is a simply a first-order low-pass filter with a single pole
located at

(rad/s) (12)

where is the injection frequency. Notice that, again, because
injection occurs at the multiplied frequency, the bandwidth of
this phase filter can be high to suppress its own jitter accumu-
lation while still filtering out a significant amount of high-fre-
quency jitter. If we assume is equal to , the coupling
of the MDLL and the slave oscillator through modifies the
jitter transfer of the slave oscillator as follows:

(13)

(14)

where , and are given by (6). The first term in (13)
is identical to (11). Root locus techniques similar to Fig. 6 can
be used to show that the second term in (13) exhibits similar
peaking behavior as the jitter transfer of the second-order Type I
DLL described by (6) and Fig. 8. The important differences here
are that the peaking starts earlier and the poles coincide with
the zeros of (6). Thus, the peaking range for the second term of
(13) is wider than that for (6). Equation (13) indicates that the
addition of a slave oscillator not only filters out high-frequency
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Fig. 12. Effect of the slave oscillator on the jitter transfer of second-order Type
I DLL.

Fig. 13. Effect of the slave oscillator injection strength on noise amplification
and jitter peaking.

jitter but also possibly increases jitter peaking, as is the case
when a PLL is used for phase filtering. Fig. 12 compares the
jitter transfer functions of

1) a second-order Type I DLL only;
2) a second-order Type I DLL plus a slave oscillator, without

considering coupling;
3) the peaking term in (13) due to coupling;
4) a second-order Type I DLL plus a slave oscillator, with

coupling.
The loop parameters are identical to the examples above. The
injection strength is 1/10, which corresponds to a slave oscil-
lator bandwidth of about 20 MHz. Fig. 13 shows the maximum
jitter peaking and white noise amplification versus the injection
strength . The lower bound of the injection strength is con-
strained by self-noise correction and lock range of the slave os-
cillator and the peaking due to the second term of (13), which
increases as the injection strength decreases.

Fig. 14. Die photo of the MDLL and slave oscillator circuits.

Fig. 15. Experimental setup of jitter transfer measurement.

Finally, it should be mentioned that the phase filtering tech-
niques presented in this section filter out high-frequency jitter
not only transferredfrom the reference clock but alsogener-
atedwithin the DLL itself. The jitter generated within a multi-
plying DLL, for example, often contains more high-frequency
components compared with that transferred from the reference
clock. The reasons are the higher oscillation frequency and the
spurious tones caused by the reference clock injection [1], [15].
The phase filtering techniques described here are equally appli-
cable to these high-frequency noise sources.

V. EXPERIMENTAL RESULTS

A system comprising a multiplying DLL with a slave oscil-
lator, as shown in Fig. 10, has been fabricated in a 0.18-m
CMOS technology [3]. Fig. 14 shows the die micrograph of a
clock multiplier composed of an MDLL and a slave oscillator.
The clock multiplier supplies a maximum of 1.56-GHz clock
source for four serializers and four deserializers running at a
maximum bit rate of 3.125 Gb/s. The active area of the clock
multiplier is 80 m by 1 mm. The loop filter in the MDLL is a
simple charge pump described by (2). Since the regulator creates
an additional pole within the loop, the expected jitter transfer is
similar to Fig. 8 without a slave oscillator and Fig. 12 with a
slave oscillator. The design parameters are approximately the
same as those in the examples presented above for a 125-MHz
reference clock and a multiplication factor of 8.

Fig. 15 shows the experimental setup for jitter transfer
measurement. A clock source with twice the required reference
clock frequency and a modulating sinusoid are applied to
a high-gain buffer. The resulting waveform contains both
sinusoidal jitter and sinusoidal duty-cycle distortion since
the modulating sinusoid varies the switching threshold of the
high-gain buffer. A divide-by-two circuit is used to remove this
duty-cycle distortion, resulting in a reference clock with the
required frequency and phase modulation. A spectrum analyzer
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Fig. 16. Measured jitter transfer of the multiplying DLL with and without a
slave oscillator.

measures the sideband amplitudes of the input and the output
of the device under test (DUT) across a range of modulating
frequency to obtain the jitter transfer function. Fig. 16 shows
the measured jitter transfer functions. The four curves are for

1) a 125-MHz reference clock and a multiplication factor of
8 with a slave oscillator;

2) a 250-MHz reference clock and a multiplication factor of
4 with a slave oscillator;

3) a 125-MHz reference clock and a multiplication factor of
8 without a slave oscillator;

4) a 250-MHz reference clock and a multiplication factor of
4 without a slave oscillator.

As expected, a higher multiplication factor leads to a larger
jitter peaking since the loop gain is larger. The peaking in-
creases slightly when a slave oscillator is added. It also creates
a 20-MHz pole in the jitter transfer, filtering out a significant
amount of high-frequency jitter. These results are consistent
with the predictions of our analytical model. The location of
the pole indicates that the injection strengthis about 1/10.
Notice that for the two cases without a slave oscillator, the
high-frequency jitter transfer is smaller than that predicted by
(8) and Fig. 8 for a second-order Type I DLL. This is due to the
presence of higher poles within the DLL.

VI. SUMMARY

Through a -domain model, we have shown and verified that
in Type I DLLs, jitter peaking always exists and high-frequency
jitter does not get attenuated, as previous analyses suggest. This
is true even in a first-order DLL and an overdamped second-
order DLL. To avoid significant amplification of the reference
clock jitter, the loop gain should be minimized. Jitter transfer
attenuation techniques through loop filtering and phase filtering
have also been discussed in detail. These techniques extend the
usefulness of DLLs to cases where the reference clock is noisy.
A multiplying DLL incorporating the techniques presented in
this paper has been fabricated. The measurement results have
been shown to be consistent with the prediction of our analytical

model. The reference clock jitter amplification effect described
in this paper should be carefully evaluated against the self-noise
jitter accumulation effect described in previous literature [2],
[6], [14] to determine the best overall jitter performance.
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