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Transistor and Circuit Design for 100–200-GHz ICs
Zach Griffith, Member, IEEE, Yingda Dong, Dennis Scott, Yun Wei, Navin Parthasarathy, Mattias Dahlström,

Christoph Kadow, Vamsi Paidi, Mark J. W. Rodwell, Fellow, IEEE, Miguel Urteaga, Richard Pierson, Petra Rowell,
Bobby Brar, Sangmin Lee, Nguyen X. Nguyen, and Chahn Nguyen

Abstract—Compared to SiGe, InP HBTs offer superior electron
transport properties but inferior scaling and parasitic reduction.
Figures of merit for mixed-signal ICs are developed and HBT
scaling laws introduced. Device and circuit results are summa-
rized, including a simultaneous 450 GHz and 490 GHz max

DHBT, 172-GHz amplifiers with 8.3-dBm output power and
4.5-dB associated power gain, and 150-GHz static frequency di-
viders (a digital circuit figure-of-merit for a device technology). To
compete with advanced 100-nm SiGe processes, InP HBTs must
be similarly scaled and high process yields are imperative. De-
scribed are several process modules in development: these include
an emitter-base dielectric sidewall spacer for increased yield, a
collector pedestal implant for reduced extrinsic cb, and emitter
junction regrowth for reduced base and emitter resistances.

Index Terms—InP heterojunction bipolar transistor, static
frequency divider, millimeter-wave amplifier, dielectric side-
wall-spacer, collector pedestal, emitter regrowth.

I. INTRODUCTION

DESPITE formidable progress in CMOS, bipolar transistors
remain competitive due to the larger breakdown voltages

obtainable and the larger lithographic feature sizes required
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for a transistor at a given bandwidth. Compared to SiGe, InP
heterojunction bipolar transistors (HBTs) have 3.5:1 higher
collector electron velocity and 10:1 higher base electron
diffusivity. Consequently, at the same scaling generation InP
HBTs would have 3:1 greater bandwidth than SiGe HBTs.
Today the maturity of advanced silicon processes has enabled
SiGe HBTs to be fabricated with 100-nm emitter junctions
with minimal extrinsic parasitics, while efforts to similarly
scale InP HBTs have just begun. With that, SiGe HBTs have
demonstrated simultaneous 300 GHz and 350 GHz [1]
and 102 GHz static frequency dividers [2], while InP DHBTs
have obtained simultaneous 450 GHz and 490 GHz
[3], 176 GHz power amplifiers with 5-dB power gain [4], and

150 GHz static frequency dividers [5]–[8]. Consequently, the
two technologies today have comparable bandwidth, with SiGe
offering much higher levels of integration. Improved bandwidth
and integration of InP HBTs therefore requires great consider-
ation be given to scaling laws and limits, and the requirements
placed upon transistor design for wide-band circuits must be
clearly understood, where the ensuing fabrication processes
must provide high yield at 100-nm scaling [9].

II. HBT PERFORMANCE METRICS

Although readily measured and widely reported in the de-
vice literature, transistor asymptotic unity current gain and
unity power gain cutoff frequencies are of limited value in
predicting the speed of logic, mixed-signal, or optical transmis-
sion ICs, and transistors designed exclusively for high values of
these parameters may perform poorly in circuits. For HBTs, an
emitter-coupled logic (ECL) master–slave (M-S) latch is a rep-
resentative small-scale mixed-signal circuit. Such latches serve
as decision circuits in optical receivers, as latched compara-
tors in ADCs, and as timing control elements in larger ICs. An
M-S latch with inverting feedback (Fig. 1) forms a 2:1 static
frequency divider, the maximum clock frequency of
which serves as a convenient and popular speed benchmark of a
mixed-signal IC technology. From charge control analysis, [10],
[12], is approximately a sum of de-
lays . Table I lists the delay coefficients
and Table II the components of for an HBT design with
target 260 GHz [10], [11]. is the logic
voltage swing, the load resistance, the collector cur-
rent, and the emitter and base parasitic series resis-
tances, the emitter depletion capacitance, and the
components of the collector depletion capacitance external
to and internal to the sum of base and collector
transit times, and the propagation delay on the signal wiring
bus (Fig. 1).

0018-9200/$20.00 © 2005 IEEE
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Fig. 1. Circuit schematic; 2:1 static frequency divider.

TABLE I
TOP—DELAY COEFFICIENTS a FOR AN ECL M-S LATCH, WHERE

T = (2f ) = �a R C . BOTTOM—PROPORTION OF T
DELAY FOR A 300-nm SCALING-GENERATION HBT, WITH TARGET

260 GHz CLOCK RATE

The base and collector transit times play a relatively minor
role in logic speed, with only 24% of arising from for
the HBT of Table II. This is in contrast to the much stronger
relative contribution of transit times to , with typically
contributing 80% of . Depletion capacitance
charging times dominate over transit delays in
digital circuits because , as is required for digital
noise margin. Examining the total delay in terms of
resistances, 49% of is associated with the load resistance

TABLE II
TECHNOLOGY ROADMAPS FOR 40, 80, 160 Gb/s ICs, ASSUMING AN MS
D-LATCH MAXIMUM CLOCK FREQUENCY 1.5:1 HIGHER THAN THE DATA

RATE. MASTER-SLAVE LATCH DELAY INCLUDES 10% INTERCONNECT DELAY

. High current density is thus essential. For adequate
logic noise margin, must be at least ,
hence increased current density must be accompanied by
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reduced emitter resistance, so as to maintain a small .
Although not evident in Table I, thus has a large indirect
effect on , as increased forces increased . Ex-
amined in terms of capacitances, 58% of arises from the
depletion capacitances , even given the assumed HBT
design having small ratios. For logic and mixed-signal
ICs, low charging time is critical, necessitating
very high current density, minimal excess collector junction
area, and very low emitter access resistance.

For reactively-tuned amplifiers [13] in radio transceivers,
defines the highest frequency at which power gain can be

obtained, and is therefore directly relevant. has significant
but secondary importance; when tuned for maximum power
gain, a transistor with a high ratio requires a high ratio
of load resistance to transistor input resistance. The required
high impedance tuning ratio aggravates matching-network
resistive losses—already considerable in 100 GHz ICs—and
thereby reduces gain. In receivers, amplifiers are tuned not
for maximum gain but for minimum noise figure, while in
transmitters, amplifiers are tuned for maximum efficiency and
for maximum saturated power output. Gain expressions under
such constraints are complex.

At a given scaling generation, the HBT base and collector
layers can be thinned for highest feasible while sacrificing
both and logic speed, but such transistors are of limited
value in circuits. Of greater value are balanced and proportional
reductions of all transistor parasitics, such that all circuits
employing the transistor exhibit a proportional increase in
bandwidth.

III. SCALING: LAWS, LIMITATIONS, AND ROADMAPS

Approximate HBT scaling laws derived in [11] are here sum-
marized. For a bandwidth increase in an arbitrary circuit
using the transistor, all transistor capacitances and transit delays
must be reduced while maintaining constant all parasitic
resistances, all bias and signal voltages, the transconductance

, and the operating current . Reducing the collector de-
pletion layer thickness by and base thickness
by reduces by the required proportion but would
increase if junction areas were held constant. Reducing
the emitter and collector junction areas in proportion to
then results in the desired reduction in . Because
the total base resistance is only weakly dependent upon the
emitter junction width (contact and link resistance dominate
over spreading resistance) but varies as the inverse of the emitter
junction stripe length, reducing the emitter and collector junc-
tion widths in proportion to will maintain constant
while effecting the needed reduction in emitter junc-
tion area. With constant , but with the emitter junction area
reduced in proportion to , the emitter current density
increases: . This is feasible within the limits imposed
by the Kirk effect, as . Because the emitter
parasitic resistance must remain constant in the presence
of a reduction in emitter junction area , the normal-
ized emitter contact resistivity must be reduced
rapidly, with . Because operating increases in
proportion to the bandwidth squared, the maximum reliable

TABLE III
SUMMARY OF SIMULTANEOUS PARAMETER SCALING FOR A  : 1 INCREASE

IN HBT AND CIRCUIT BANDWIDTH

power density is a more significant
applied voltage limit than the low-current breakdown voltages

or .
Scaling requirements for the base contact resistivity and for

the emitter depletion thickness are not easily summarized here
[11]. The emitter depletion layer thickness need not be scaled
as rapidly as that of the collector, hence becomes progres-
sively less significant with scaling. If the base Ohmic contacts
lie above the collector-base junction, then their width must re-
duced to obtain the requisite reduction in ; this ne-
cessitates a reduction in the base contact resistivity

. It the contacts do not lie above the junction, their resistivity
can remain unchanged. These scaling laws are summarized in
Table III.

Consider specifically the impact of this scaling on ECL logic
speed. With a scaling, the collector thickness is reduced

, the current density increased , and the dominant
delay reduced . The parasitic voltage drop

remains constant only because is reduced
rapidly, being proportional to

Base and emitter contact resistivity, thermal resis-
tance , and fabrication yield of submicron features are the
key barriers to further scaling [11], [14]. Current density must
increase, and emitter and base contact resistivities must decrease
in proportion to the square of circuit bandwidth. Thermal re-
sistance normalized to the emitter junction area , must
also be reduced in proportion to the square of circuit bandwidth.
Table II shows a prospective HBT scaling roadmap for increased
digital logic speed; note in particular that at 260 GHz target
clock rate, the emitter contact resistivity must be m ,
the current density 12 mA/ m , and the normalized thermal re-
sistance m /mW.

Consider a future HBT having 1 THz and . Its emitter
width would be nm, feasible with present lithographic
tools. But, to be properly scaled so as to enable, e.g., 500 GHz
digital clock rates m /mW thermal resistance and

m emitter contact resistivity would be required. It is
not yet clear how to obtain such parameters.

IV. TRANSISTOR AND IC RESULTS FOR MESA HBTS

At a given scaling generation, defined by the minimum
emitter feature size, different transistor layer structures are
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Fig. 2. Fabricated and measured results of UCSB static frequency divider.
(a) Circuit photograph of static divider signal bus, (b) Output spectum of
divide-by-2 circuit at 71 GHz, f = 142 GHz.

preferred so as to obtain a differing balance of device para-
sitics that are more suited for the particular application—i.e.,
mm-wave tuned amplifiers benefit from high and can
tolerate moderately lower , whereas digital IC speed benefits
from devices having simultaneously high values of and

, and demands low and low .
Amongst different HBT designs, numerous device and circuit
results have recently been reported.

Two device designs intended for use in high-speed logic
have been investigated at the University of California at Santa
Barbara (UCSB) with 150-nm and 120-nm drift-collector
thickness . The HBT having 150-nm obtained a simulta-
neous 391 GHz , 505 GHz , and ps/V
when biased at mA/ m and V. The
common-emitter breakdown voltage was 5.1 V [15].
From this device design, ECL static frequency dividers were de-
signed and fabricated at UCSB and at GCS (Fig. 1). Divide-by-2
circuits fabricated at UCSB produced an GHz
(Fig. 2), [15], and utilizing the same collector structure an

GHz static divider (Fig. 3) was demonstrated from
GCS [5]. For the 150 GHz divider, the key device parameters of
the HBTs within the circuit at their respective bias conditions
are given in Table IV.

From the 120-nm design, 450 GHz , 490 GHz ,
and ps/V were obtained at a bias of

mA/ m and V. was 3.9 V [3]. The DC
common-emitter IV characteristics and measured microwave
gains are shown in Fig. 4.

Devices with a collector nm were explored to
investigate the effectiveness of the InGaAs/InAlAs chirped-
superlattice base-collector grade [16] at higher current densi-

Fig. 3. Measured results of 150 GHz static frequency divider—UCSB design,
GCS fabrication. (a) Output spectum of divide-by-2 circuit at 75 GHz, f =

150 GHz, (b) Input signal sensitivity plot.

TABLE IV
KEY DEVICE PARAMETERS (FIG. 1) OF THE 150-GHz STATIC DIVIDER

ties. 491 GHz , 415 GHz , and ps/V
was measured at mA/ m and V, while

V [17]. mA/ m , at V.
Thermal failure is at 25–30 mW/ m , hence the devices can be
biased at V while carrying 13 mA/ m . The devices
thus far discussed have a 0.6 4.3 m emitter junction area

, a collector to emitter width , and employ an
evaporated self-aligned base contact. The reduced
ratio of the HBTs with nm reflects insufficient lateral
scaling of the emitter and collector junctions.

Devices intended for power amplifiers employing a 210-nm
collector obtained a simultaneous 276 GHz , 451 GHz
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Fig. 4. DC and RF performance of a narrow-mesa InP-DHBT—120-nm
collector, 30-nm base. (a) Common-emitter I-V characteristics at high power
density, (b) Measured microwave gains at peak f , DC-110 GHz, (c) Measured
microwave gains at peak f , DC-110 GHz.

, and ps/V, with V. An
ensemble of different medium power amplifiers were fabri-
cated from this collector structure and have been reported
[4]—among them include a 176-GHz common-base amplifier
with 8.3-dBm output power and 4.5-dB associated power
gain, shown in Fig. 5. The common-base configuration is em-
ployed because it has higher maximum stable gain (MSG) than
common-emitter. This MSG is further increased by minimizing
the base feed inductance and collector-emitter overlap capaci-
tance . Stage gain was limited on this amplifier due to
decreasing ( 300 GHz) to below design values (450 GHz) on
the wafer carrying amplifiers.

Fig. 5. Fabricated and measured results of InP-DHBT power amplifiers.
(a) Circuit photograph of 172-GHz one-stage MMIC amplifier. (b) Small-signal
S-parameters, 140–220 GHz. (c) Amplifier power gain at 172 GHz.

V. ADVANCED INP HBT PROCESS MODULES

A. Dielectric Sidewall Spacers—LSI Level Device Yield

The mesa HBTs described above suffer limited yield from the
self-aligned emitter-base etch/liftoff process. Further, doubling
circuit speed requires emitter m and narrow 200-nm
base contacts. Dielectric sidewall spacer processes eliminate
the need for evaporated self-aligned base contacts [18], and by
doing so, emitter-base short-circuits associated with liftoff are
avoided. Furthermore, the sidewall spacer allows for very thin
emitter semiconductor layers, minimizing undercut during mesa
formation. Fig. 6 shows an early prototype HBT with an emitter
dielectric sidewall. More advanced processes at Rockwell Sci-
entific have produced high HBT yield at 0.25- m emitter width,
demonstrating devices with 326 GHz , 305 GHz , and

ps/V [19].
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Fig. 6. Dielectric sidewall spacer process. (a) Sidewall process schematic.
(b) SEM cross section of a fabricated device.

B. Collector Pedestal Implant—Reduced

At the 0.25- m emitter (width) scaling generation, a signif-
icant challenge is maintaining an acceptably small collector
to emitter junction area ratio . While the base contact
transfer length is 200 nm for a base contact m
to an , 200-nm-wide base contacts present chal-
lenges in process design for high yield fabrication, and in
addition present significant bulk metal resistance along the
length of the base contact. Closely following the SiGe device
structure [20], an implanted collector pedestal reduces the
capacitance underneath where the base contact lies [Fig. 7(a)],
permitting somewhat higher base contact resistivities and wider
base contacts at a given level of device performance. The
pedestal also substantially reduces the associated with
the large base-pad interconnect used in some device technolo-
gies. Pedestals can be used with mesa, dielectric-sidewall, or
regrown emitter-base junction HBTs.

Initial pedestal HBT results from UCSB [21] have demon-
strated high quality regrowth of the active device layers with ex-
pected common-emitter I–V characteristics shown in Fig. 7(b).
Gummel characteristics of these devices show low leakage cur-
rents ( pA at V) with collector and base
ideality factors of and , respectively.
RF device performance suffered from high emitter resistance
( m ) due to errors made in device fabrication
and only 170 GHz and 150 GHz were measured. With
pedestal implants, there has been observed both significantly re-
duced [Fig. 7(c)] together with moderately increased device

Fig. 7. Topology and electrical performance for a UCSB pedestal InP HBT.
(a) Pedestal process schematic. (b) Common-emitter I-V characteristics for the
pedestal HBT. (c) Amount of C reduction for varying pedestal width.

breakdown voltage—where on the same wafer V
and 3.3 V (at A) for a 100-nm drift-collector
with and without the pedestal, a 20% increase. The high-field
region of the drift-collector for the pedestal device is now buried
within the collector mesa (above the pedestal implant), such that
surface breakdown effects associated with the cm
( -type) surface state charge density typical of ill-passivated
InP surfaces have a reduced effect. Increased breakdown in col-
lector pedestal InP DHBTs has also been observed and reported
in [22].

C. Emitter Junction Regrowth

Dielectric sidewall and collector pedestal processes address
neither base nor emitter contact resistivity scaling limits. Again,
closely following the SiGe device structure, there has been
developed an HBT process flow [Fig. 8(a)] in which a low-
resistivity polycrystalline InAs regrowth forms a T-shaped
emitter whose ohmic contact is much larger than the emitter
junction for reduced . Such reductions of emitter resistance
through an increased contact/junction area ratio is an alternative
to materials engineering for reduced emitter access resistance.
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Fig. 8. Regrown-emitter InP-HBT topology and results from UCSB.
(a) Schematic of regrown-emitter III–V HBT. (b) SEM cross section of regrown
HBT. (c) Measured microwave gains at peak f and f .

Recall that an emitter m is targeted for 260-GHz
clock rate, a resistivity better than the best reported
results thus far obtained [17]. The emitter regrowth process
also permits an extrinsic base region of cm
doping and a total extrinsic and intrinsic thickness of 100 nm
for reduced base resistance . Self-aligned refractory base
ohmic contacts lie under the extrinsic emitter regions.

Regrown-emitter devices from UCSB have demonstrated
280 GHz and 148 GHz in such processes [23], shown
in Fig. 8(b). Presently, device performance is limited by both
difficulties in emitter regrowth over the edges of the emitter etch
window [Fig. 8(c)] and by partial passivation of the base doping
by hydrogen associated with the PECVD Si N deposition
process. The fabrication process is now being substantially re-
vised, where a fully epitaxial regrown-emitter InP HBT process
is now being pursued with initial results reported in [24].
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