1306

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 5, JUNE 2008

Event-Driven Modeling of CDR Jitter Induced
by Power-Supply Noise, Finite Decision-Circuit
Bandwidth, and Channel ISI

Marcus van lerssel, Member, IEEE, Hisakatsu Yamaguchi, Ali Sheikholeslami, Senior Member, IEEE,
Hirotaka Tamura, Member, IEEE, and William W. Walker, Member, IEEE

Abstract—This paper describes the modeling of jitter in
clock-and-data recovery (CDR) systems using an event-driven
model that accurately includes the effects of power-supply noise,
the finite bandwidth (aperture window) in the phase detector’s
front-end sampler, and intersymbol interference in the system’s
channel. These continuous-time jitter sources are captured in the
model through their discrete-time influence on sample based phase
detectors. Modeling parameters for these disturbances are di-
rectly extracted from the circuit implementation. The event-driven
model, implemented in Simulink, has a simulation accuracy within
12% of an Hspice simulation—but with a simulation speed that is
1800 times higher.

Index Terms—Clock jitter, clock-and-data recovery (CDR) mod-
eling, discrete-time simulation, event driven.

1. INTRODUCTION

ANY modern high-speed signaling systems do not
Mtransmit a clock signal, relying instead on the data
transitions (zero crossings) to recover the clock. These zero
crossings however are displaced from their original positions
when subjected to the limited bandwidth and group delay
variation of the transmission channel [1] and decision circuits
[2], [3]. In addition, the power-supply noise and other circuit
noise [4], [5] also interfere with the zero crossings. As a result,
the recovered clock at the receiver includes a combination of
deterministic jitter and random jitter [6] that affects the overall
performance of the system.

Previous works [7] derive the relationship between the zero
crossing and the channel intersymbol interference (ISI) in the
form of equations using a linearized clock-and-data recovery
(CDR) model and frequency-domain analysis. This approach,
however, does not apply to the nonlinear behavior of bang—bang
[8] CDR architectures which require the use of time-domain

Manuscript received September 29, 2006; revised July 2, 2007. This paper
was recommended by Associate Editor J. S. Chang.

M. van Ierssel was with the Department of Electrical Engineering, Univer-
sity of Toronto, Toronto, ON MS5S 3G4, Canada. He is now with Snowbush
Microelectronics, Toronto, ON M5G 1Y8, Canada (e-mail: vanierssel @ snow-
bush.com).

H. Yamaguchi and H. Tamura are with Fujitsu Laboratories Ltd., Kanagawa
223-8522, Kawasaki, Japan (e-mail: yamaguchi @gp.fujitsu.com; tamura.hiro-
taka@jp.fujitsu.com).

A. Sheikholeslami is with the Department of Electrical Engineering, Univer-
sity of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: ali@eecg.toronto.edu).

W. W. Walker is with the Fujitsu Laboratories of America, Inc., Sunnyvale,
CA 94085 USA (e-mail: walker @fla.fujitsu.com).

Digital Object Identifier 10.1109/TCSI.2008.916454

simulations. These simulations are often of long duration due
to the CDR loop filter having a bandwidth that is orders of mag-
nitude lower than the operating frequency. To reduce the dura-
tion of these time-domain simulations, recent works have been
presented that use discrete-time simulation techniques [9]-[11].
Howeyver, these simulations focus on architectural level behavior
and, aside from supply noise coupling to the voltage-controlled
oscillator (VCO) [12], they do not include the above mentioned
jitter sources.

In this work, we strive to extend these discrete-time simula-
tion techniques to incorporate the effect of jitter due to supply-
noise, channel ISI, and the limited bandwidth (finite aperture
window) of the front-end samplers. These techniques are im-
plemented in Matlab using an event-driven model, a class of
discrete-time simulation model. Using this model, we demon-
strate a simulation accuracy close to that of continuous-time
simulations and a simulation speed close to that of traditional
discrete-time simulations.

The rest of this paper is organized as follows. Section II pro-
vides an introduction to event-driven CDR modeling. This in-
cludes a simplified event-driven CDR model that serves as a
baseline model for the subsequent sections. Section III describes
the modeling of jitter due to power-supply noise. Section IV
describes the impulse response characterization of the CDR’s
front-end samplers. Section V describes a discrete-time filter
implementation that models the effects of limited bandwidth of
the channel and front-end samplers. Section VI compares the
CDR jitter predicted by the proposed event-driven model with
the CDR jitter predicted by Hspice [13]. This section also com-
pares the two simulation approaches in terms of their speed. Fi-
nally, Section VII summarizes the paper and concludes.

II. EVENT-DRIVEN CDR SIMULATION

An event-driven simulation refers to a class of discrete-time
simulations where each simulation time step corresponds to the
occurrence of an event [14]. As aresult, the simulation time step
is determined by the interval between events. This is in contrast
with another class of discrete-time simulations, called unit-time
simulations, where the simulation time step is fixed and the oc-
currence of an event is determined by the simulator. The dif-
ference between these two classes of discrete-time simulations
is illustrated in Fig. 1 through the relationship between simu-
lation-time and simulation-state (e.g., voltage, current, etc.) in
two examples. Both examples model a simple system with only

1549-8328/$25.00 © 2008 IEEE

VAN IERSSEL et al.: EVENT-DRIVEN MODELING OF CDR JITTER

state update

update
event-time

update
event-time

(a) (b)

Fig. 1. Simulation time/state flow chart of: (a) unit-time model and (b) event-
driven model.

one state variable, say v[t,], where t,, denotes the nth simula-
tion time step. In the unit-time simulation, ¢,, is advanced by a
constant increment, At, and the value of v[t,] is calculated, as
shown in Fig. 1(a). In the event-driven simulation, on the other
hand, the value of v[t,] is used to calculate the next event-time:
tnt1 = tn + f(v[tn]), as shown in Fig. 1(b). That is, the time
step in this case is a function of the simulation state.

While the unit-time simulation is often simple to implement,
it requires a At small enough to guarantee that events are not
missed between time steps. The event-driven simulation, on the
other hand, uses a coarse but variable time step that captures all
events of interest, resulting in faster simulations.

Event-driven simulation can be used to model systems where
the system behavior can be described by discrete-time state
variables defined at times coinciding with the major system
events (such as a clock edge). This is self evident with dig-
ital logic. With continuous-time analog circuits, this involves
summarizing the circuit behavior in the span between major
events as state variables defined at those events. For example,
charge-pump behavior may be described by the total charge
sunk between events.

This approach has sufficient flexibility to model a wide range
of systems, so long as they experience major synchronizing
events. Since most communication circuits (i.e., transceivers)
transfer digital data from one chip to another, they must have a
clocked interface somewhere in the receiver. Thus, most trans-
ceivers fall into the category of systems that can be modeled
using event-driven techniques.

Fig. 2(a) shows a simplified transceiver where a transmitter
sends internally generated data over an ideal channel to a CDR.
The event-driven model of this system is shown in Fig. 2(b),
consisting of three blocks: an event scheduler, a transmitter
event-routine, and a CDR event-routine. The event scheduler
maintains the times at which it must next trigger the TX
tix,n and the CDR %, ,, and generates these trigger signals
accordingly. For example, if the next TX and CDR trigger
times are 250 and 300 ps, respectively, the event scheduler will
set the current simulation time to 250 ps, and generate a TX
trigger. This trigger will cause the TX to generate new data
Vix[tex.n] and to calculate the next time it needs to be triggered
(say tix,n+1 =310 ps). This completes one event. Next, the
event scheduler sets the current simulation time to 300 ps and
accordingly generates a trigger for the CDR. The CDR recovers
a new data bit vy [t] and calculates the next time it should

1307
(a) recovered
TX clk‘ TX } channel data > CDR data
ecovered
clock
channel data Vyxl s,]
v, [t 1 recovered
tx"tx, n data
(b) X o [
event-routine |2 curren
sim
TX trigger next TX time
event-time
tx,n+1
Lo n = 250ps
tn = 300ps
Event Lon+1 = 310ps
Scheduler Loy n+1 = 350ps
(Y1)
ooo
(T

Fig. 2. Simple transceiver system. (a) Block diagram. (b) Event-driven simu-
lation model.

be triggered (say t.xn4+1 =350 ps). The latter information is
sent back to the event scheduler, and the process continues.

This technique can be used to capture the functionality of the
bang—bang CDR [15] shown in Fig. 3(a), using the event-rou-
tine described below. We will use this event-routine throughout
this paper to simulate CDR clock jitter. The CDR consists of
a bang-bang phase detector, a discrete-time loop filter, and a
phase interpolator that adjusts the phase of an independent ref-
erence clock. To create a corresponding event-routine, we first
identify the triggering events. For this CDR, edges of the recov-
ered clock are the natural choice for these events, as all changes
of digital state are synchronized with them. In addition, the pur-
pose of our simulation is to analyze jitter in the recovered clock,
and this can be accomplished directly by analyzing the sequence
of event times if they coincide with the clock edges.

The resulting event-routine, representing only the basic CDR
functionality, is represented by the unshaded blocks in Fig. 3(b).
The logical functionality of the digital portions of the CDR, the
phase detector and discrete-time loop filter, are inherently well
suited to reproduce in the discrete-time event-routine, as shown
in the top half of the figure. When the event-routine is triggered
(at the time of the next recovered clock edge), the model of these
blocks update the state of the recovered data vyx[tyx »] and that
of the phase code, which controls the phase interpolator. The
block modeling the phase interpolator takes the updated state
(the phase code) and uses it to generate the next CDR event
time £,y ,,1. As shown in the bottom of the figure, this is ac-
complished by adding the period of the reference clock ¢y to
the current simulation time ¢, ,, and then introducing a phase
offset determined by changes in the phase code.

The accuracy of this model in jitter prediction relies heavily
on the accuracy of the event-times, defined as the times of the re-
covered clock edges. This event time, as discussed earlier, is not
uniform, and is influenced by the supply noise, by channel losses
(through ISI), and by the limited bandwidth in the front-end
samplers (also through ISI). These influences are not captured
by the typical event routine described above. In this work we
use the shaded blocks in Fig. 3(b) to capture these influences as

1308

channel Bang-bang —p reccovered data
data DPl;an early/late (yiscrete-time
ctector Loop Filter
(@) —
recovered
clock

Ref CLK Phase phase code
Interpolator

State-update vt]
recovered data N\X o rn

loop
channel phase detector carly/ filter
data logic late | logic
v, [t] filter [~ function] function2|
txLtx, n phase
code
Pi-bits
(b) Event-time update 1

phase interpolator

next CDR elk-time
event time sampling- changg
Ly n+ 1]Jime offset
current R
sim. time! phase-to-time
I > v conversion
rx, n \ S — — — — — — —

Fig. 3. Typical architecture of a bang—bang CDR. (a) Functional block dia-
gram. (b) Event-routine block diagram.

a perturbation of the sampling process occurring in the CDR
front-end. More specifically, we will introduce the data filter
block to capture perturbations of the sample value, and the sam-
pling-time offset block to capture perturbations of the sample
timing.

In the CDR shown in Fig. 3(a), supply noise can potentially
cause jitter when applied to any of the analog blocks. How-
ever, if we assume differential signaling in the data-path and
good common-mode rejection in the samplers, then effects of
supply noise will be limited to the perturbation of the recov-
ered clock, and hence the sample timing. This is modeled by the
sampling-time offset block in Fig. 3(b). The characterization and
implementation of the sampling-time offset block is described
in Section III.

Limited bandwidth in the data path, encompassing the
channel and receiver’s front-end samplers, also introduces jitter
into the CDR. It does this by perturbing the sample value of the
front-end phase-detector samplers. While models of the channel
preceding the CDR are often available, models describing the
bandwidth of the phase-detector samplers are not well known.
Section IV describes a technique to characterize the impulse re-
sponse of the phase-detector samplers. For modeling purposes,
the impulse responses of the CDR’s channel and phase-detector
samplers can be combined into a single filter, the data filter
block in Fig. 3(b), preceding the ideal samplers in our CDR
event-routine. We provide an event-driven implementation of
this filter in Section V.

III. MODELING POWER-SUPPLY NOISE

This section describes the characterization of CDR jitter due
to power-supply noise, although the same approach is appli-
cable to other sources of noise such as ground/substrate noise.
Fig. 4 shows the clock path of the CDR described in Section II,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 5, JUNE 2008

Vad-pr

metastable
hase code output
phasc €0 Phase
ref clockyJ ihterpolator

Fig. 4. CDR clock path and sampler.

consisting of a phase interpolator, clock buffer, and a front-end
sampler in the CDR’s phase detector. When noise is applied
to the power supply of any of these blocks, it will perturb the
clock signal. This will in turn affect the sample timing of the
phase-detector sampler. The difference between the resulting
sample times of a noisy and a noiseless power supply is the sam-
pling-time offset.

We calculate the sampling-time offset as a function of the
supply noise using a time-varying sampling-time sensitivity
function (STSF) for the circuits to be modeled. The STSF,
represented by I'(7), expresses the change in the phase detector
sampling time as a function of the time that an impulse of noise
is applied to the power supply of the circuit being modeled.
The time of the applied noise impulse is measured relative to
the clock edge applied to the sampler. The sampling time offset
A, at the nth clock edge occurring at ¢,, for an arbitrary noise
source Vyoise(t) is then expressed by

Ad)n = /OO ‘/noise(T - tn)F(T)dT (1)

J —o0

This technique is similar to that used by Hajimiri [16] to
model the effects of noise in oscillators using an impulse sen-
sitivity function (ISF), but differs in two ways: First, in oscilla-
tors the ISF is periodic, while with this technique the STSF is
of finite duration. Second, in oscillators, the supply noise is ap-
plied to an oscillator stage and the resulting jitter measured by
the shift in the zero-crossing at the output of that stage, while
our technique applies the supply noise to the component being
modeled, and measures the resulting sampling-time offset by the
change in the phase detector’s sample timing. In the following
part of this section, we apply the above technique to determine
the sampling-time offset for the clock buffer shown in Fig. 4.

First, we apply an impulse of noise to the buffer’s power
supply and measure the resulting sampling-time offset. This
process is performed repeatedly, each time applying the noise
impulse at a different time. By definition, plotting the sampling-
time offset against the impulse time produces the STSF. Note
that while the noise impulse is applied to the buffer (the circuit
being characterized), the quantity being measured is the sam-
pling-time offset of the sampler.

We use circuit simulation to determine the sampling-time
offset needed for this characterization process. Fig. 5 shows the
schematic of the sampler used in our CDR, as well as the sim-
ulated waveforms of the important nodes in this circuit. The
CDR’s received signal (vin_p, vin_n) is applied to the clocked
differential pair and feed the back-to-back inverters on the top
to create rail-to-rail values. When the sampler is in reset mode
(clock low), the outputs are pre-charged high. When the sampler
is enabled (clock high), the outputs start to drop. If a constant

VAN IERSSEL et al.: EVENT-DRIVEN MODELING OF CDR JITTER

clock H ’_“: ,-\:'l_i | clock
out_n dk out_p

Yo ¥
| vin_n

Voltage

] output (latched)

-50ps Ops 50ps 100ps

Time

Fig. 5. Sampler schematic and switching waveform.

nonzero differential voltage is applied to the data inputs, the out-
puts will split and the positive feedback of the back-to-back in-
verters will eventually cause the sampler to latch with rail-to-rail
values. If the differential input voltage is zero, however, the out-
puts will not split, and instead converge to an intermediate value
(i.e., a zero differential output). The circuit can also become
metastable when it is clocked during a data transition between
two non zero, and opposite differential voltages. We define the
sampling-time by the timing of a data transition, with respect to
the clock edge, which results in a metastable output.

In simulation, a noise impulse is applied to the power supply,
and the clock timing is adjusted until the circuit is judged to be
metastable. The adjustment of the clock timing is accomplished
using the parameter optimization feature in Hspice; the clock
timing is optimized to produce a minimum differential output
voltage ata pointin time sufficiently pastthe clock edge to demon-
strate metastability. The change in clock timing caused by a noise
impulse at time 7 past the clock edge provides a point solution to
the STSF, I'(7). Full STSF characterization is then achieved by
sweeping the impulse time using multiple simulations.

Fig. 6 shows the STSFs (in terms of picoseconds of sam-
pling-time offset in response to the area (in volts picoseconds)
under a perturbation impulse) of the three individual compo-
nents in Fig. 4: The phase interpolator, the clock buffer, and the
sampler. The STSF of the phase interpolator is much longer in
duration than those of the clock buffer and the sampler. This in-
dicates that the buffer and sampler are only sensitive to supply
noise during their transient states (at the clock edges), while the
phase interpolator has internal analog nodes that remain sensi-
tive to noise throughout the clock cycle. The resulting greater
area under the phase interpolator’s STSF implies that it is far
more sensitive to supply noise.

1309

— clock buffer I\
= = latch
- = phase interpolator

STSF: ps/(V.ps)

-1.5¢ i /' .

L L

300 200 100 0
Time relative to clock edge (ps)

2500 400

Fig. 6. STSF for buffer, sampler, and phase interpolator.

Having determined the STSF of these blocks, we now use (1)
to determine the sampling-time offset due to a sinusoidal noise
defined by sin(27 froiset + 6)

A¢, = / SIN(27 froise (T — tn) + 6)T(7)dT 2

J —oo

which for ¢,, = 0 simplifies to

T (s s ()
(5700 =) = 500 + i)) TS

(& ej0
r noise) — —F* noise
i) = 51 (i)

= sin(f)real[T'(fnoise)] — cos(0)imag[l(froise)] 3)
where I'(f) is the Fourier transform of I'(7). To determine A¢,,
when ¢,, # 0, we can still use (3), but capture the noise sinu-
soid’s phase with an equivalent phase ¢ at ¢,, = 0. During an
event-driven CDR simulation A, is then determined using (3)
at each sample point. Because the STSF only needs to be ex-
tracted once for each design, the overhead of modeling the noise
effects is limited to the evaluation of (3) once per sample.

This approach can be extended to include the effect of peri-
odic supply noise other than sinusoidal. In general, the convo-
lution of the STSF and the noise waveform produces a solution
for (1) over the entire noise period. This result is stored in a
look-up table in the model, and the sampling-time offset block
need only keep track of the current position within the noise
waveform during each sample, and use this position as an index
into the lookup-table.

In our event-driven model A, is introduced into the model
using the sampling-time offset block shown in Fig. 3(b). When a
data transition occurs near the sample time, this allows the CDR
model to determine if the supply noise changes the sampling
time sufficiently to alter the sampler’s binary output. This will
in turn change the early/late decision of the phase detector.

Model Verification: To verify the accuracy of the model de-
scribed above, we compare the sampling-time offset predicted
by our model to the results of Hspice simulations using a sinu-
soidal noise source of 100 mV sin(27 fpeiset + 6), with various
fnoise and 6. The circuit we use for this verification is the phase
interpolator within the clock path shown in Fig. 4, designed in
a 0.11-x m CMOS process.

The results of this comparison are shown in Fig. 7, confirming
the accuracy of our modeling approach. The results show a very

—j6

1310

> —— Hspice 1GHZI_>/_ N
Z 200 [==STSF Model

p—

2

=

£ 100F

172]

fem)

(5]

w

5}

7] 0

5

£

= -100 |

oh

E

=9

£ -200F y

< = I L L
« 0 90 180 270 360

Noise Phase - degrees (0)

Fig.7. MatLab versus HSpice simulated sample-time offset for various fioise-

good agreement between the Hspice and Matlab simulations.
In the worst case, for a 50-mV, 1-GHz sinusoidal supply noise
our model predicts a peak jitter of 12.8 ps, compared to a peak
jitter of 11.4 ps by Hspice—a 12% error. Note however, that the
MatLab simulations complete in less than a second, while the
Hspice simulations required many hours to complete.

IV. SAMPLER IMPULSE RESPONSE

An ideal sampler samples its input voltage instantaneously.
In reality, the sampling is performed over a window of finite
duration, known as the aperture window. We can describe this
process by a sampling function s(¢) applied to the input voltage
v(t) at time ¢,

B(tn) = /U(T)S<T —t)dr. @

In the ideal case, where s(t) = §(¢), this produces the instan-
taneous sample v (¢,).

This sampling function becomes easier to incorporate into a
system level model if we apply a variable substitution g(t) =
s(—t) to (4)

O(ty) = /.’U(T)g(tn —T7)dr

=v(t) ® g(t)]e=t., &)
where ® denotes the convolution operation. This shows that the
sampling process is equivalent to applying v(t) to a filter with
impulse response ¢(t), followed by an ideal sampler triggered
at time t,,. This is depicted in Fig. 8, along with a quantization
block that slices the sampled value into one of two logical levels
(in the case of binary signaling). Our goal here is to find a g(t)
such that the system shown in Fig. 8 will have the same input-
output characteristics as that of the circuit shown in Fig. 5.
Given an arbitrary input v(t), g(¢) can be determined if we
can extract z(t), the output of the g(¢) filter block, from the
circuit of Fig. 5. However, z(¢) does not exist in the physical
circuit implementation, neither is it observable from the output
of the quantizer, except for when z(t) becomes zero. At z:(t) =
0, the output of the quantizer is undefined and the output of the
circuit becomes metastable. By finding a set of input signals that

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 5, JUNE 2008

produce this output condition, we can reconstruct the sampler’s
impulse response.

A set of input signals that satisfy this condition are of the form
A16(t—1t1)+ Aa, where A; and As can be determined for each
t so as to produce the metastable output. At the output of the
filter g(¢), this input signal results in

o(t) = [A10(t — 1) + A2] ® g(t) = A1g(—t) + A2G(0) = 0
(6)

where G(0) is the dc component of g(t).
Since the input to the quantizer is the solution to (6) att = 0,
the metastable output condition can only occur when

z(t) = Arg(—t1) + A2G(0) = 0. @)

This can be rearranged as

g(—t1) = —Az%?)- (8

This implies that if we keep A; constant, then g(—t1) be-
comes directly proportional to the dc component, As, of the
input signal that causes the sampler to become metastable. Sim-
ulating to find this value provides the required indirect measure-
ment of the filter g(—t).

To determine g(t) for a given value of t;, we first perform
a simulation to find the amplitude of the dc level, A, required
to cause metastability. As in the previous section, our simula-
tion uses Hspice optimization to find this metastable point. For
a given t1, we optimize A, with the goal of producing a dif-
ferential output voltage of zero. By sweeping the timing of the
delta function, ¢1, across the sampler’s aperture window, and at
each point determining A,, we determine the scaled and time re-
versed impulse response of the sampler. The exact value of the
proportionality constant, G(0) /A1, is irrelevant, as the quantizer
output is a function of only the sample’s polarity. A flowchart
summarizing this procedure is shown in Fig. 9.

Fig. 10(a) shows the simulated voltages for the input, output
and clock nodes of the sampler in Fig. 5, showing both the case
of fully switched outputs, as well as metastable outputs.

Fig. 10(b) shows the normalized value of A, (and hence
g(—t)) found through simulation. The results show that the
impulse response begins when the clock input reaches nMOS
threshold voltage (~ 400 mV), turning on the clocked nMOS
device, and ends when the output nodes drop by a pMOS
threshold voltage (~ 400 mV), turning on the pMOS devices
of the back-to-back inverters. The reader notes that Fig. 10(a)
shows only one of many simulations used to derive the impulse
response shown Fig. 10(b). The purpose of their juxtaposition
in this figure is to illustrate the timing relationship between the
impulse response and the clock timing of the latch. The input of
the latch can only influence its output within the time window
of the impulse response [Fig. 10(b)].

To implement this modeling technique in an event-driven
CDR simulation, the filter modeling the finite bandwidth of
the sampler is combined with the filter modeling the lossy data

VAN IERSSEL et al.: EVENT-DRIVEN MODELING OF CDR JITTER

sampler
r—_- - - - --= e
V(1) = Agd(t-t)+ Ay | x(1) 2
. . g(1)
received signal |
L - - — —_——d
A1g(l‘—t1)+ A2
Fig. 8. Model of sampler.
C initialize t;, A} g A,)
—— > Apply 4,3(1-1)) + 4,
—>
NO output
Increment A, metastable?
YES
Increment t; g(-t)) = ﬂ“z%
Initialize A] & A2 1

*—C store function value)

Fig. 9. Extraction procedure of sampler’s impulse response.

12 N
o INPUT S T
sn 1.0 =
S / N -
< 0.8 /// Niecizzzz OUTPUT
>) . -
_g 0.6 (a) CLK/// OUTPUT N . ,___MFI/___SI{__B_LE
/ ~o
z 04 // LATCHED \}\ metastability
0.2 / i ">~ measure point
[| : ~—_.
0y o ; LT
100 200

Time (ps)

Normalized impulse response

200

100

Time (ps)

Fig. 10. Sampler. (a) Node voltages. (b) Normalized impulse.

channel as the data filter shown in Fig. 3(b). The implementa-
tion of this combined filter is discussed in Section V.

Model Verification: To verify our model, we test it with wave-
forms representative of what would be experienced when the
sampler is integrated into a CDR. The only sampler outputs that
are of interest in this case are those that could produce either a
high or a low output given a small perturbation, that is, when
the sampler is clocked near transitions in its input data signal.
Our verification simulations examine the output of our sam-
pler when clocked near data transitions, using varying transition

1311

quantizer
19z, Ajg(-t)+Ay; =0
| _-F sampler output
only uniquely
observable output
Ag(-ty) + A,
(@ dataOXdatal data—pld glpmetastable
[”'I?H.\‘ OUtPUt
clk —pp
clk ‘
Is70.
(b)
1.8 T T T T
S 16} sampler output=datal . . SARSNRN e e)
= 14 modeling error
2 | imulated
— simulate :
= 12 : : 1
& metastability % modeled
© 1p - boundary -metastability]
£ (Hspice) boundary
L 08} (Simulink)]
c
S 06 e d :]
8 . :
0.4 sampler output=data0 -
02+ L . J
0 1 1 1 1

0 20 40 60
transition time (ps) ¢

80 100

trans

Fig. 11. Model verification. (a) Simulation testbench. (b) Simulation results.

times, tiyans, to emulate the data dependent slew rate resulting
from channel ISI.

The simulation testbench is illustrated in Fig. 11(a). A data
signal that is transitioning between data 0 and datal is applied
to the simulated sampler, along with a rising clock edge.
This setup is then simulated, using Hspice, to determine the
sampling-time offset, tsTo, required to generate a metastable
output. We then determine the sampling-time offset again,
this time by convolving the impulse response we previously
extracted with the data signal, and locating the zero-crossing.
This comparison is performed for varying data transition times,
and the results are illustrated in Fig. 11(b). The upper- left
and lower-right portions of the figure show the timing regions
where both methods indicate that the sampler will output datal
and data0, respectively. The shaded region in the center shows
where the methods disagree, with its upper and lower boundary
curves denoting the metastability points for the Hspice and
impulse response models, respectively. In other words, for all
combinations of t.,s and tsTo, both Hspice and Simulink
produce the same Q output, except for the points residing in the
gap (the shaded area). This gap corresponds to less than 0.3 ps

1312

(@) Data Filter
h(t) = /(1) fg(1)
Ch | Sampler
x(1) anne o)
g(t
(b)
x[n-N], ..., x[n] '
leading edge
t t, T dot contribution
n-No> «=+ > ‘n
s(1) product
- look-up — "
table
‘i ¥
sample time
x[n-N], ..., x[n-1]
thN+s s § T dot
n-N+1> - > I s(t) / product trailing edge
- look-up contribution
A table
sample time

Fig. 12. Data filter. (a) Conceptual system. (b) Implementation based on step
response.

of timing error. This is expected to result in a jitter prediction
error of similar magnitude in the CDR simulation.

V. EVENT-DRIVEN IMPLEMENTATION OF THE DATA FILTER

This section describes the event-driven implementation of the
data filter in Fig. 3(b). As shown in Fig. 12(a), this filter models
the ISI from the lossy data channel and the limited bandwidth of
the phase-detector samplers. Formally, its effect on the received
data sequence can be represented by

y(t) = x(t) ® h(t) ©)
where the transmitted signal x(¢) is convolved with the com-
bined impulse response of the data channel and phase detector
h(t) to generate y(t) the input to the idealized CDR sampler.

Unlike discrete time filter implementations, the filter imple-
mentation required in a CDR operates in the presence of jitter
and changing cycle times. Because of the resulting irregular
time steps, a filter implementation using z-domain techniques
is not possible. Instead, we calculate the filter output using the
step-response s(t) of the system and exploit the fact that the
transmitted signal is not an arbitrary waveform, but rather a se-
ries of pulses of nonuniform duration. In other words, we can
express (t) as the following:

sty ="y alnl(ult - t)
—u(t = tai1)),

where z[n] is the nth transmitted data symbol, u(t) is the ideal
step function, and ¢,, and ¢,,; are the start and end times of the
symbol, respectively.

(10)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 5, JUNE 2008

signal level

Time

Fig. 13. Step response samples versus Hspice simulation.

Substituting this into (9) allows us to express the filter output
as

y(t) = aln](s(t —ta) = s(t = taya)). (1)
n=0

Since the step response is usually limited to only a few bit
periods in duration, we only need to evaluate the first few ele-
ments in this summation. In addition, the step response can be
predetermined and stored in a lookup table for use during sim-
ulation. Since we use binary signaling and normalize the trans-
mitted data symbols z[n] to {1, 0}, the filter implementation is
reduced to a small number of table lookups and additions (or
subtractions). A block-level implementation of this concept is
shown in Fig. 12(b), where the summation in (11) is simplified
to only include the effect of the previous N data symbols. The
computation can be further simplified by realizing that the table
lookups required for the trailing edge calculation are a subset
of those required for the leading edge contribution and can be
shared. Note that in the trailing edge calculation we discard the
current data bit because, by definition, its trailing edge has not
yet occurred. The summation of the leading and trailing edge
contributions produces the signal level at the input to the re-
ceiver’s ideal sampler.

ISI Model Verification: To verify our model, we use it to pre-
dict the output of a data channel with a random data sequence
applied to it. These results are then compared to the output of
an Hspice simulation of the same system. The result of this sim-
ulation is shown in Fig. 13 where the continuous waveform is
the Hspice output, and the crosses are the sample values deter-
mined using the step response model. The RMS error for the
data samples is 1.1%. Most of the error is due to the truncated
summation used in Fig. 12 (N = 3 in this example), and could
be reduced at the expense of increased computation.

VI. PUTTING IT ALL TOGETHER—SYSTEM-LEVEL
SIMULATION RESULTS

In previous sections, we examined CDR modelling at a com-
ponent level. In this section, we incorporate these component
models in a complete event-driven CDR model. We then com-
pare the simulated jitter in our event-driven CDR model to the
jitter in Hspice simulations of the same CDR. This model com-
parison is performed in two parts: First, we evaluate the use of
the sampling-time offset to capture jitter due to supply noise.
Second, we evaluate the use of the event-driven data filter to
capture jitter due to limited bandwidth in the channel and in the
phase-detector samplers.

VAN IERSSEL et al.: EVENT-DRIVEN MODELING OF CDR JITTER

The CDR being modelled uses the architecture described in
Section II, operating at 3.2 Gbps. It uses 2x oversampling phase
detection, built around the sampler shown in Fig. 5. The loop
filter is a first-order digital low-pass filter, with a bandwidth of 4
MHz. The phase interpolator is built using a current-starved in-
verter architecture [15], and interpolates an ideal 3.2-GHz clock
to generate the local clock. The local clock is then supplied to
the phase detector through an inverter-based clock buffer. The
channel model used in this system has a first-order response,
with a 3-dB bandwidth of 1.6 GHz.

The event-driven model of the above CDR is implemented in
Matlab’s Simulink [17] using the structure shown in Fig. 3(b).
The data filter block is structured in the manner described in
Section V. The impulse response of this filter is the convolution
of the channel and sampler impulse responses, where the sam-
pler impulse response is determined using the process described
in Section IV. The sampling-time offset block is implemented
using the technique described at the end of Section III for peri-
odic supply noise waveforms.

A. Clock Jitter due to Supply Noise

In this section, we compare our event-driven model in Matlab
against Hspice simulations in predicting jitter in the recovered
clock due to supply noise.

For these simulations we choose an FM-modulated supply
noise

d(t) = Asin{2n[fo + Af sin(27 frnt)]t}. (12)

That is, an FM noise having a peak amplitude of A =0.1 V
with the noise frequency centered around f (= 3.2 GHz (the
CDR’s bit rate) and FM modulation with a peak frequency de-
viation of A fy =500 MHz, and with a modulation frequency of
fm = 5 MHz. This FM noise source allows the demonstration
of two properties: First, while the sampling-time offset can be
determined as a continuous time function by convolving the FM
noise source with the circuit’s STSF, it is only sampled during
the clock edge events. This results in the aliasing of the noise
down to a frequency band centered around dc. Second, as shown
in Fig. 7, the sampling-time offset sensitivity drops to less than
half of its low-frequency value between 1 GHz and 4 GHz, over-
lapping the range of instantaneous frequencies of the FM noise
source. The implication of this is that while noise at 2.7 and at
3.7 GHz will both be aliased to 500 MHz, the sampling-time
offset due to the 3.7-GHz noise will be attenuated compared to
that of the 2.7-GHz noise.

The effects of these properties can be seen in Fig. 14, where
the top curve shows the instantaneous frequency of the FM
noise source, the middle and bottom curves show the jitter in the
recovered clock determined using Hspice and event-driven sim-
ulations, respectively. The effect of the aliasing can be seen in
both simulations where the jitter frequency in the CDR output
goes through zero when the instantaneous noise frequency
equals 3.2 GHz. It can also been seen that the jitter amplitude
is lower in both simulations at the higher instantaneous noise
frequencies.

IS

w
o

w

n
o

o

I
Ny
=3

20

CDR lJitter (ps)

CDR litter (ps) Noise Freq (GHz)

o

1313

T T T T T T T T T

Instantaneous Frequency

1 1 1 L

1 L L L L
20 40 60 80 100 120 140 160 180

200

" Hspice Simulation

L L L L L ! L L !

20 40 60 80 100 120 140 160 180

Simulink Simulation

Ll ! L I
20 40 60 80 120 140 160

0 100 180 200
Time (ns)
Fig. 14. Clock jitter due to FM supply noise for Hspice and Simulink simula-
tions.
2 T T T T T T T T
Transmitted Data Sequence
< 1 1
S \ I]
- | |
ST \ LLLLRLLLL
-
80 90 100 110 120 130 140 150 160

170

T T T T

T

T

Hspice Simulation

100 110 120 130 140

Simulink Simulation

40 F

|

=)

=3
T

120 130 140 150 160 170
Time (ns)

I
90 100

®
S

110

Fig..15. Clockjitter due to limited channel bandwidth for Hspice and Simulink
channel simulations.

B. Clock Jitter due to Limited Bandwidth

This section compares the simulated jitter due to lim-
ited bandwidth as modeled by the data filter block in our
event-driven model to the jitter predicted by an equivalent
Hspice simulation. We perform this comparison in two steps:
First, we look at the jitter due to limited bandwidth in the
channel in order to verify the performance of the data filter
block. Second, we examine jitter due to limited bandwidth in
the phase detector’s samplers to verify the characterization of
their impulse response.

To demonstrate jitter due to limited bandwidth, we choose
a data sequence that begins with a repeating sequence of
“11110000” switching to “10101010” after 100 ns. During
transmission of the first sequence, ISI in the received signal
will cause the signal transitions to be delayed compared to the
signal transitions occurring during transmission of the second
sequence. The CDR should track this change of transition
location, producing jitter in the recovered clock.

1314
Transmitted Data Sequence

T ; ; y
£ osf }
[

0 1 Il I 1 1

80 90 100 110 120 130 140
2 10 . T —1as — T
[Hspice Simulation
~ 5
i
2 o0
E

-5
[~
A -0
O -15 L L 1 L L

80 90 100 110 120 130 140
10 : ——— — T
& sk Simulink Simulation B
&
5 0
b=
= -5
< 10
a
O -15 . . s . .

80 90 100 110 120 130 140

Time (ns)

Fig. 16. Clock jitter due to limited sampler bandwidth for Hspice and Simulink
sampler simulations.

The simulated jitter due to limited bandwidth in the channel is
shown in Fig. 15. The top waveform shows the transmitted data
pattern, while the middle and bottom waveforms show the jitter
in the recovered clock for the Hspice and event-driven simula-
tions, respectively. Both simulations show the roughly the same
60-ps change in recovered clock phase.

To demonstrate the jitter due to limited bandwidth in the
phase detector samplers, characterized in Section IV, we arti-
ficially introduced large parasitic capacitors into the samplers
to exaggerate their impulse response. Simulation results using
the data filter to model the limited bandwidth of the modified
samplers are shown in Fig. 16. The top waveform shows the
same transmitted data pattern as before, while the middle and
bottom waveforms show the jitter of the recovered clock for the
Hspice and event-driven simulations, respectively. Once again,
there is a good correspondence between the jitter predictions,
roughly 8 ps, in both simulations.

Despite the similar behavior of CDR jitter as obtained by
Hspice and Simulink, there are some differences in their wave-
forms (both in Figs. 14 and in 15). For example, we observe
from Fig. 14 that the CDR jitter shows a jitter period in Simulink
that is slightly different from its corresponding jitter in Hspice.
This, and other small differences, suggest that Simulink results
should only be used as a measure of CDR “behavior”, and not
as a total replacement for Hspice results.

C. Simulation Time

While the previous section demonstrated the accuracy of our
event-driven CDR simulation techniques, the real advantage of
these techniques becomes apparent when comparing the simu-
lation time required by the two techniques. As shown in Table I,
simulating the CDR to reproduce the results shown in Fig. 14
for about 600 cycles in Hspice takes 2 h, while the same sim-
ulation using a conventional fixed-time-step model with a step
size of 1/32th of the nominal bit rate requires 30 s —a 240x
speed up. In comparison, the event-driven model takes only 4 s,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 5, JUNE 2008

TABLE 1
SIMULATION TIME

Hspice Fixed time-step Event-driven
Simulation Time 2 hours 30 sec 4 sec
Speed-up Ix 240x 1800x

which is 1800 times faster than Hspice and 7.5 times faster than
the fixed-time-step simulation.

VII. CONCLUSION

This paper presented event-driven CDR simulation tech-
niques that allow the quick and accurate prediction of jitter in
the recovered clock. These techniques introduce the modeling
of supply noise, the characterization of bandwidth limitations
in the phase detector samplers, and a discrete-time filter imple-
mentation for nonuniform time intervals.

The supply noise can be modeled as a sampling-time offset in
the phase detector samplers. This sampling-time offset is deter-
mined by taking the dot product of the supply noise waveform
and the STSF of the circuit. We describe the process for charac-
terizing the STSF of the circuit.

The limited bandwidth of the phase detector samplers can be
modeled as a filter preceding an ideal sampler. The process of
characterizing the impulse response of this filter is presented.

A discrete-time filter for nonuniform time steps can be im-
plemented by describing the transmitted data sequence as a se-
quence of rising and falling steps, instead of pulses, and ap-
plying the system’s step-response to each step. This process
simplifies the computation of received sample values to only a
few operations.

The event-driven modeling techniques presented in this paper
offer a simulation accuracy close to that of Hspice, but with a
simulation speed up of 1800 times. This was confirmed through
a CDR simulation in both.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
excellent comments and contributions to this manuscript.

REFERENCES

[1] M. Horowitz, K. Yang, and S. Sidiropoulos, “High-speed electrical sig-
naling: Overviews and limitations,” IEEE Micro, pp. 12-24, Jan.—Feb.
1998.

[2] H. Kobayashi, K. Kobayashi, and M. Morimura, “Sampling jitter and
finite aperture time effects in wide-band data acquisition systems,”
IEICE Trans. Fundam., pp. 335-346, Feb. 2002.

[3] Y. Okaniwa, H. Tamura, and M. Kibune, “A 40-Gb/s CMOS
clocked comparator with bandwidth modulation technique,” IEEE J.
Solid-State Circuits, vol. 40, no. 8, pp. 1680-1687, Aug. 2005.

[4] P. Larsson, “Measurements and analysis of pll jitter caused by dig-
ital switching noise,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp.
1113-1119, Jul. 2001.

[5] P. Heydari and M. Pedram, “Analysis of jitter due to power-supply
noise in phase-locked loops,” in Proc. IEEE Custom Integr. Circuits
Conf., 2000, pp. 443-446.

VAN IERSSEL et al.: EVENT-DRIVEN MODELING OF CDR JITTER

[6] N. Ou, T. Farahmand, A. Kuo, S. Tabatabaei, and A. Ivanov, “Jitter
models for the design and test of gbps-speed serial interconnects,”
IEEE Design Test Comput., vol. 21, no. 4, pp. 302-313, Jul.—-Aug.
2004.

[7] J. Buckwalter and A. Hajimiri, “Analysis and equalization of data-de-
pendent jitter,” IEEE J. Solid-State Circuits, vol. 41, no. 3, Mar. 2006.

[8] B. Lai and R. Walker, “A monolithic 622 Mb/s clock extraction data
retiming circuit,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pa-
pers, Feb. 1991, pp. 144-145.

[91 M. H. Perrott, “Fast and accurate behavioral simulation of fractional-N'
frequency synthesizers and other PLL/DLL circuits,” in Proc. IEEE
Design Automation Conf. (DAC), Jun. 2002, pp. 498-503.

[10] M. Perrott, M. Trott, and C. Sodini, “A modeling approach for £A

fractional-N frequency synthesizers allowing straightforward noise

analysis,” IEEE J. Solid State Circuits, vol. 37, no. 8, pp. 1028-1038,

Aug. 2002.

Demir, E. Liu, A. L. Sangiovanni-Vincentelli, and I. Vassiliou, “Behav-

ioral simulation techniques for phase/delay-locked systems,” in Proc.

IEEE Custom Integr. Circuits Conf., 1994, pp. 453-456.

[12] J. Kim, Y. Lu, and R. Dutton, “Modeling and simulation of jitter in
phase-locked loops due to substrate noise,” in Proc. IEEE Behav.
Model. Simul. Workshop (BMAS), Sep. 2005, pp. 25-30.

[13] “Star-hspice manual,” Avant! May 2000.

[14] R. Jain, The Art of Computer Systems Performance Analysis.
York: Wiley, 1991, pp. 406-408.

[15] H. Takauchi and H. Tamura, “A CMOS multichannel 10-Gb/s trans-
ceiver,” IEEE J. Solid-State Circuits., vol. 38, no. 12, pp. 2094-2100,
Dec. 2003.

[16] A.Hajimiriand T. H. Lee, “A general theory of phase noise in electrical
oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, Feb. 1998,
Using Simulink, The Mathworks Inc., July 2002..

[17] Using Simulink. Natick, MA: The Mathworks Inc., Jul. 2002.

(11]

New

Marcus van lerssel (S’92-M’07) received the
B.A.Sc. degree in electrical engineering from the
Division of Engineering Science, the M.A.Sc. degree
in the electrical and computer engineering, and the
Ph.D. degree in the electrical and computer engi-
neering all from the University of Toronto, Toronto,
ON, Canada, in 1992, 1995, and 2007, respectively.

He is currently working at Snowbush Microelec-
tronics, Toronto, ON, Canada as an Analog IC De-
signer, focusing on phase-locked loop and SERDES
design.

Hisakatsu Yamaguchi received the graduate degree
in electrical engineering from the Tokyo University
of Science, Chiba, Japan, and the M.S. degree in
electrical engineering from the University of Tokyo,
Tokyo, Japan,in 1994, and 1996, respectively.

In 1996, he joined Fujitsu Laboratories. Ltd.,
Kawasaki, Japan, where he has been engaged in re-
search on DRAMs with high-speed IFs and has been
responsible for developing MPEG4 Codec LSIs. He
is currently working on developing high-speed IFs.

1315

Ali Sheikholeslami (S’98-M’99-SM’02) received
the B.Sc. degree from Shiraz University, Shiraz, Iran,
in 1990 and the M.A.Sc. and Ph.D. degrees from the
University of Toronto, Toronto, ON, Canada, in 1994
and 1999, respectively, all in electrical and computer
engineering.

In 1999, he joined the Department of Electrical
and Computer Engineering, University of Toronto,
3 where he is currently an Associate Professor. His

o’ research interests are in the areas of analog and

- digital integrated circuits, high-speed signaling, and
VLSI memory design (including SRAM, DRAM, CAM, and FeRAM). He has
collaborated with industry on various VLSI design research in the past few
years, including work with Nortel and Mosaid, Canada, and with Fujitsu Labs.
He spent his 2005-2006 research sabbatical year with Fujitsu Labs of Japan and
Fujitsu Labs of America. He presently supervises two active research groups
in the areas of high-speed signaling and VLSI memories. He has coauthored
several journal and conference papers (in both areas), in addition to three US
patents on VLSI memories.

Dr. Sheikholeslami served on the Memory Subcommittee of the IEEE Inter-
national Solid-State Circuits Conference (ISSCC) from 2001 to 2004, and on
the Technology Directions Subcommittee of the same conference from 2002
to 2005. He presented a tutorial on ferroelectric memory design at the ISSCC
2002. He was the program chair for the 34th IEEE International Symposium
on Multiple-Valued Logic (ISMVL 2004) held in Toronto, Canada. He is a reg-
istered professional engineer in the province of Ontario, Canada. Dr. Sheik-
holeslami received the Best Professor of the Year Award in 2000, 2002, and
2005 by the popular vote of the undergraduate students in the Department of
Electrical and Computer Engineering, University of Toronto. In 2006, he re-
ceived the Early Career Teaching Award in recognition of his “superb accom-
plishment in teaching” from the Faculty of Applied Science and Engineering at
the University of Toronto.

Hirotaka Tamura (M’02) received the B.S., M.S.,
and Ph.D. degrees in electronic engineering from
Tokyo University, Tokyo, Japan, in 1977, 1979, and
1982, respectively.

In 1982, he joined Fujitsu Laboratories, Ltd.,
Kawasaki, Japan, where he was engaged in research
on Josephson devices and other exploratory devices.
In 1995, he moved into the arca of CMOS circuit
design. After working on multi-gigabit DRAMs and
ferroelectric nonvolatile memories, he got involved
in CMOS high-speed signaling. His current interest
covers the circuit topology and architecture of high-speed CMOS interfaces.

William W. Walker (M’79) received the A.B. de-

gree in physics and applied math in 1976, and the

M.S.E.E. degree in 1978, both from the University
of California at Berkeley.

From 1978 to 1983, he was a Staff Engineer at

i\ IBM Corporation, East Fishkill, NY, and Burlington

< VT, where he was involved in the development of the

N LDD MOS transistor. From 1984 to 1991 he was a

Senior Engineer at Integrated CMOS Systems, Inc.

in Sunnyvale CA. From 1991 to 2000, he was an En-

gineering Manager at Hal Computer Systems, Inc. in

Campbell, CA where his group developed CAMs, SRAMs, PLLs, and Register

Files for the first 64-bit SPARC microprocessors. Since 2000, he has been em-

ployed at Fujitsu Laboratories of America, where he is currently Vice Presi-

dent in charge of the Circuits and Devices Innovation Group. His research in-

terests include high-speed and low-power digital circuits for microprocessors,

millimeter-wave CMOS, and high-speed wireline CMOS circuits for computer

backplanes and optical communications.

