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Abstract

This paper reports a 176×144-pixel smart image sensor designed and fabricated in a 0.35µm CMOS-

OPTO process. The chip implements a massively parallel focal-plane processing array which can output

different simplified representations of the scene at very low power. The array is composed of pixel-level

processing elements which carry out analog image processing concurrently with photosensing. These

processing elements can be grouped into fully-programmable rectangular-shape areas by loading the

appropiate interconnection patterns into the registers at the edge of the array. The targeted processing

can be thus performed block-wise. Readout is done pixel-by-pixel in a random access fashion. On-chip 8b

ADC is provided. The image processing primitives implemented by the chip, experimentally tested and

fully functional, are scale space and Gaussian pyramid generation, fully-programmable multiresolution

scene representation — including foveation — and block-wise energy-based scene representation. The

power consumption associated to the capture, processing and A/D conversion of an image flow at 30fps,

with full-frame processing but reduced frame size output, ranges from 2.7mW to 5.6mW, depending on

the operation to be performed.
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I. INTRODUCTION

Image processing is usually divided into three consecutive steps: i) low-level tasks, where both

inputs and outputs are images, ii) medium-level tasks, where inputs are images but outputs are

attributes extracted from inputs and iii) high-level tasks, which perform the cognitive functions

associated to vision from the result of low- and medium-level tasks. The main feature of low-

level tasks is their intrinsic parallelism as they are equally defined for each pixel, usually as a

function of its own and its immediate neighborhood’s value. This makes the conventional imager-

memory-DSP architecture rather unsuited to carry out low-level image processing. The speed

of the digital processor must be high in order to handle the massive data flow and the repeated

memory accesses, what drastically affects the power consumption [1]. Alternative architectures

can be proposed to handle low-level image processing tasks more efficiently. They can take

advantage of the moderate accuracy usually required in early vision models [2]. For instance,

instead of delivering the already captured raw data, a simplified representation of the scene can

be elaborated with relatively coarse circuitry at the focal plane. Higher level vision tasks can be

implemented then by conventional digital architectures, now operating on a reduced processing

load, and consequently lowering the overall power consumption.

This architectural scheme has been incorporated to either general-purpose vision chips [3],

[4] or to application-specific smart image sensors [5], [6]. Mainly thanks to the ability of

CMOS processes, unlike CCD technology, to integrate imaging with signal processing. The

basic idea behind these approaches is to incorporate a processing element (PE) next to the

photosensor at every pixel, obtaining thus focal-plane processing arrays. In such arrays, the Single
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Instruction Multiple Data (SIMD) paradigm, sketched back in 1958 [7], is usually applied. All

the PEs execute the same instructions while making computations on different data. Although

SIMD-based focal-plane processing arrays composed of digital PEs have been proposed [8], [9],

currently the analog implementations continue to be more area- and power-efficient than their

digital counterparts.

In this paper, we present a vision chip intended for applications with really strict power

budgets [10], [11]. It is based on a focal-plane processing array comprised of analog PEs. These

PEs exploit the large signal behaviour of the transistors in order to achieve very high efficiency

in terms of both area and power consumption. The image processing primitives implemented

permits enough flexibility to generate different degrees of simplification of the scene according

to the requirements of the vision algorithm. These primitives are:

• Progressive spatial filtering and subsequent subsampling. It leads to scale space and Gaus-

sian pyramid generation [12], [13], permitting image analysis on the desired spatial frequen-

cies. The chip can perform this operation over rectangular-shape user-defined subimages.

• Fully-programmable multiresolution scene representation. Different resolutions can be ob-

tained by grouping pixels in rectangular-shape user-defined blocks. Progressive coarse-to-

fine resolutions can be also programmed in order to achieve foveation, that is, to keep full

resolution only in regions of interest (ROI) within the scene.

• Block-wise energy-based scene representation. This primitive, along with the progressive

spatial filtering, permits to efficiently segment spatially-repetitive patterns and high contrast

zones at different scales within the scene.

All these primitives have been tested and are fully functional in a chip manufactured in the

AMS 0.35µm CMOS-OPTO process. This CMOS process does not incorporate any special

device for image sensing. Indeed, it only differs from the standard AMS 0.35µm process in an
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anti-reflective coating and an EPI substrate which reduces the dark current. The chip contains

around half million transistors, 98% of them working in analog mode.

II. ARCHITECTURE

The architecture of the chip is depicted in Fig. 1. The analog core is a 176×144 array of

PEs with concurrent photodiodes. The PEs are 4-connected. Each of these connections can be

enabled or disabled column-wise and row-wise across the array. The focal plane can be divided

into independent rectangular blocks whose size is defined by the user by selecting which columns

and rows of PEs are interconnected. Note that the size of the blocks could vary across the

focal plane. Once this block-based division is set, the control logic for diffusion and/or energy

computation generates the corresponding signals to perform any of the processing primitives

mentioned in Section I. All the circuitry and signals involved until eventually carrying out a

certain primitive are detailed in Section III.

The outcome of the processing can be read out pixel-wise by selecting the column and row

where the desired pixel is located. The value of the pixel is buffered at the column bus and

delivered to a 8b SAR ADC, which finally outputs the digitalized result. Although the inclusion

of only one ADC prevents the chip from reaching high frame rates as a full-resolution imager,

it greatly reduces the power consumption while still allowing a remarkable throughput for the

simplified representations of the scene achievable at the focal plane.

The main characteristics of the chip are summarized in Table I. A microphotograph with a

close-up of the photosensors is shown in Fig. 2. Experimental results are reported in Section IV

along with a comparison to other chips in the literature.
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III. IMAGE PROCESSING IMPLEMENTATION

A. Diffusion-based filtering

The elementary cell of the analog core is depicted in Fig. 3, and a timing diagram with the

control signals and the waveform of the voltage at the most relevant nodes of the basic cell

is shown in Fig. 4. The nominal reset voltage of the photodiode and the sensing capacitance

CP is 2.5V. It can be extended to 3.3V though accuracy of the analog blocks is compromised

because the MOS-based resistors become more nonlinear. The control signals ‘rst’ and ‘read’

implement an electronic global shutter (see Fig. 4). The analog pixel value is represented by

the voltage Vij after integration time. CP is 4-connected to its neighbors through MOS-based

resistors, implementing a MOS-based RC network. Note that each linking MOS-resistor is shared

with the corresponding neighbor cell. The equivalent resistance Req of these transistors, tailored

as reported in [14], along with the value of the CP determine the time constant of the network

τ = ReqCP . As it will be more evident later, the value of the time constant is related with our

ability to control the duration of the diffusion. We have implemented an internal VCO to clock

finer steps in the duration of the diffusion. Frequencies up to 150MHz can be implemented.

Correspondingly, the smallest diffusion step, tmin, will be 6-7ns. On the other hand, as a system

specification, we considered that Gaussian filters with widths below σ = 1 must be achieved.

Thus, really gradual scale spaces can be generated. Since σ =
√

2t/τ , as explained shortly,

a value of τ around one order of magnitude greater than tmin is enough to fulfill this system

specification by far. Nominal τ was decided to be 85ns, granting margin of error to the maximum

frequency reachable by the VCO. With this value, the design procedure starts by selecting the

value of the capacitor CP . As it is the sensing capacitance, a trade-off between sensitivity and the

minimization of the reset error leads to CP = 1pF. Then, continues with an automatic search for

a transistor implementing 85kΩ. The initial guess for the design of the corresponding transistor
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is given by the formula in [14].

The key aspect from the point of view of the image processing is that the connection between

any two neighbor nodes can be controlled through the gate voltage of the transistor which links

them, namely signals SCi−1,i
, SCi,i+1

, SRj−1,j
and SRj,j+1

in Fig. 4. When off, the corresponding

nodes are disconnected. When on, the linking transistor behaves as a resistor of value Req.

This control, performed column-wise and row-wise, has two objectives. First of all, a perma-

nent disconnection between certain consecutive columns and rows across the array determines

the boundaries of the blocks in which the focal plane is divided. Secondly, a time-controlled

connection between consecutive columns and rows implements a spatially-discretized diffusion

process over the voltages Vij within the respective blocks. The equation which defines this

process is:

τ
dVij

dt
= −4Vij + Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 (1)

whose solution is formally the scale-space representation of 2-D discrete signals [12]. Notice that

the dynamics of those cells located just at the edge of a block is not determined by a complete

4-connected neighborhood but by a reduced 2- or 3-connected one. It is equivalent to consider

mirroring boundary conditions at every time instant for the edges of every block. By applying

the DFT to Eq. (1) and solving in time, we obtain the following transfer function:

Ĥuv(t) =
V̂uv(t)

V̂uv(0)
= e−

4t
τ [sin

2(πu
W )+sin2(πv

H )] (2)

where V̂uv(0) represents the DFT of a W ×H block defined by the corresponding voltages Vij

just after capturing a new frame and V̂uv(t) is the DFT of the same block defined by the voltages

Vij after letting the charge stored in CP diffuse for a time t. This transfer function approximates
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a continuous-plane Gaussian spatial filter with σ =
√
2t/τ . The scale parameter associated to

the scale-space representation is defined as:

ξ = σ2 = 2
t

τ
(3)

Therefore, thanks to the MOS-based RC network, it is possible to generate a scale space within

user-defined divisions of a scene. This reconfigurable operation entails crucial advantages from

the point of view of simplifying the representation of a scene. Firstly, Gaussian pyramids can be

easily built by subsampling each image of the scale space according to the scale [13]. It permits

to directly extract from the focal-plane processing a representation of the scene containing only

the spatial frequencies of interest. Secondly, notice from Eq. (2) that a long enough diffusion

(t → ∞) filters all the spatial frequencies except the dc component. It means that the final

value of all the pixels after a complete diffusion will be the average of their initial values. This

property, along with the reconfigurability of the array, permits to achieve fully-programmable

multiresolution representations of a scene by binning pixels.

In order to achieve a fine control of the diffusion time, i. e. fine-grain selection of the spatial

bandwidth of the filtering performed by the network, a diffusion control module, common to the

pixels array, is implemented. Its main component is a 12b shift register (SHR) that shapes the

diffusion control signal driving the MOS-resistor gates. In order to provide some guard time for

internal timing of the operation, the first two bits introduced into the SHR, that is, the first two

bits defining the diffusion time, must be set to zero. Thus, only 10 bits are effectively employed

to define the pulse duration. An external clock or an internal VCO can be employed to shift the

register. The combined effect of two parameters, N1, which is the number of logic ‘1’s stored

in the SHR and fCLK , the frequency of the clock, leads to a diffusion time given by:
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t =
N1

fCLK
(4)

If the internal VCO selected, the parameter fCLK depends in turn on a fine adjustment of its

control voltage. The VCO is a fifteen-stage ring oscillator based on pseudo-NMOS inverters

whose load current is controlled by an external biasing signal in order to vary the propagation

delay of each stage and, consequently, the frequency. Frequencies ranging from 0.5MHz to

around 150 MHz can be attained. It means that t could ideally take any value within the interval

[6.66ns, 20us] by simply realizing a fine setting of N1 and fCLK . The minimum value of t is

around one order of magnitude smaller than τ . It entails the possibility of generating really fine

scales since the scale parameter depends on the quotient t/τ , as pointed out in Eq. (3).

B. Image energy computation

The progressive spatial filtering performed during the generation of the scale space also allows

for further simplified scene representations. Let Vij(t) be the voltages at the nodes of a W ×H

block after a certain interval of diffusion t. The total energy of the block is defined as:

E(t) =

W∑

i=1

H∑

j=1

|Vij(t)|2 =
W−1∑

u=0

H−1∑

v=0

|V̂uv(t)|2 (5)

Eq. (5) along with Eq. (2) imply that the amount of energy that remains in the block accounts

for the filtering undergone during the diffusion. In other words, the energy at each time instant

is a measure of the evolution of the diffusion process. The longer t the less E(t). The energy

lost between two consecutive points in time during the difussion corresponds to that of the

spatial frequencies filtered. In this way, the single value of the energy along the scale space

summarizes the frequency content of the block. In order to efficiently compute the block energy

at the focal plane, we are making use of the MOS transistor square law and the summation
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of the contribution of the individual pixels in the form of currents. It is implemented by the

transistor ME (Fig. 3), working in saturation, the capacitor CE , the switches SE and Spre and

MOS switches for charge redistribution which average the voltages VEij
within the block. Firstly,

as we are interested in the computation of the energy associated to the previously defined blocks

of the image, the same block division as for the voltages Vij(t) is established by the selection

signals SCEm,m+1 and SREn,n+1 . Then, all the capacitors CE are precharged to VDD, 3.3V, by

switching on both SE and Spre (see this happening twice, one before diffusion and one after

diffusion, in the diagram of Fig. 4). Then, Spre is switched off while SE is kept on during a

time interval TE, 20ns in our case, discharging CE through ME. Once SE is definitely switched

back off, the voltage at CE would be, with respect to VDD, proportional to the pixel energy:

VEij
= VDD − TE

CE

β[Vij(t)− Vth]
2 (6)

where Vth is the threshold voltage and β the transconductance parameter of ME . However, due

to the charge redistribution realized through the MOS resistors, the following value is eventually

reached:

VEij
= VDD − βTE

WHCE

W∑

i=1

H∑

j=1

[Vij(t)− Vth]
2 (7)

which is, again with respect to VDD, proportional to the total energy of that block t seconds

after the diffusion started. In the ideal case in which all the ME transistors perfectly match, the

offset introduced by Vth will not affect the computation of the energy associated to any spatial

frequency other than the dc component. In the real chip, Vth is subject to across die variations,

as are other transistor parameters. This induces FPN to appear. We have measured the amount

of FPN present in the energy representation of each individual pixel. First, while keeping the

capacitors CE on reset, the output is sampled several times in order to filter out the temporal
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noise contribution. The result is a a standard deviation of 1.12% referred to the full signal range

of the output corresponding to the readout of the energy representation. In addition, we have

allowed the capacitors to discharge for a uniform image in the middle of the range, i. e. 2.0V at

node Vij , also for a number of times. Subtracting the averaged values obtained before from these

later ones the standard deviation is now 7.85%. This value summarizes the contribution of the

mismatch of Vth, amplified by the transistor square-law, the mismatch in the transconductance

of ME , and the switching errors introduced by SE and Spre, because they need to be switched

for the computation of the energy and CE is not as large as CP . However, this computation is

hardly applied to individual pixels. It is usually employed to represent the energy content of a

group of pixels. This constitutes a spatial lowpass filter that reduces the influence of FPN. In

order to achieve the reduced representation of the scene, only one pixel out of every block needs

to be read as all the capacitors within the block will be at the same voltage defined by Eq. (7).

This simplified representation of the scene makes possible to efficiently segment spatially-

repetitive patterns by monitoring the value of the energy along the scale space. Besides, the

difference between the initial value of the energy and the energy after a complete diffusion (t

long enough) accounts for the contrast within the block considered. The more the value of this

difference, the more the intensity changes which determine the frequency content of the block.

This information allows for a first estimation of the salient regions of the scene [15].

C. Block division control logic

It comprises the column-block and row-block control logic modules in Fig. 1. These modules

generate the appropiate selection signals to configure the image sub-blocks. Links between cells

within the same block are enabled. Disabling a column/row across the array establishes one of

the boundaries of the adjacent blocks. We are going to focus on the column-block control logic

(Fig. 5) as its description is directly applicable to the row-block control logic. The operation
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is based on a SHR which is externally loaded and clocked. Each bit of the register determines

the link between two columns of PEs. Thus the bit ‘i’ storing a logic value ‘1’ determines that

columns ‘i’ and ‘i+1’ are linked. On the contrary, the bit ‘i’ storing a logic value ‘0’ establishes

that columns ‘i’ and ‘i+1’ are unlinked. This scheme allows for an easy and fast reconfiguration

of the blocks by adequately shifting the patterns loaded into the registers. Besides, it is specially

suited for a microcontroller as only four pins — two for the column register and two for the row

register — suffice to define the focal-plane division. The internal, active-high, signal diff ctrl

comes from the diffusion control logic. This signal controls the time interval t of diffusion

filtering within the blocks once the focal-plane division is set. The signal ‘energ en’ enables

in turn the computation of the block energy. Notice that each and every signal SCm,m+1 and

SCEm,m+1 — correspondingly SRn,n+1 and SREn,n+1 in the row-control logic — must be buffered

in order to achieve an accurate timing of the control logic across the array. It benefits the accuracy

of the processing. In fact, all the signals which must nominally reach the whole array at the

same time are carefully buffered.

IV. EXPERIMENTAL RESULTS

A. Calibration of the time constant for diffusion

The nominal value of the time constant for the time-controlled diffusion at the focal plane

is τ = 85ns, as mentioned in Section III-A. The value of τ is the product of a capacitance

and a resistance, both implemented by MOS transistors. Within the same chip, mismatch from

one pixel to another can be reduced by selecting large area devices (Fig. 3). Simulation using

deviation parameters provided by the foundry is employed to confirm the minimization of the

effect [16]. During the test of the chip no significant signs of anisotropy in the diffusion, due

to time constant mismatch, has been appreciated. However, the value of τ is quite sensitive to

process parameter deviations from chip to chip. It is therefore necessary, for the characterization
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of the chip operation, a calibration process in order to determine its actual value in the sample

under test. The target of the calibration of τ is to obtain an experimental value that can be

employed off-chip to generate the response of an ideal RC network. If the nominal value of

the time constant is employed instead of the measured τ , the response of the chip will greatly

deviate from the ideal response. In order to disaggregate errors due to other causes, the actual

τ implemented by the chip needs to be measured. With this value, the actual bandwidth of

the implemented Gaussian filter can be precisely determined, and thus the goodness of the

approximation can be established.

The calibration process consists in measuring the evolution of the voltage at two coupled pixels

whose initial voltages can be externally set. There is a pair of accessible pixels at each side of

the array, in order to take the across-die variations into account. Before testing any dynamic

magnitude, each pixel’s source follower is characterized in order to extract deviations introduced

by the buffer from node Vij measurements. For each pair, the initial voltages are set to Vmin

and Vmax and then diffusion is allowed to evolve. As demonstrated in [14], the resistance Req

best emulated by the MOS resistor is its instantaneous resistance when the sum of the drain and

source voltages equals Vmin + Vmax. An ideal diffusion between a node set to Vmin and another

one set to Vmax meets this at every time instant. Having meaured enough points within the close-

to-exponential decay of the nodes, a least square fitting of these points with ideal exponential

curves varying τ is realized. The result for the upper left corner is depicted in Fig. 6. Here,

the evolution of the voltages V11 (Chip pixel 1) and V12 (Chip pixel 2) are compared with the

evolution of the corresponding nodes of an ideal network (Ideal pixels 1 and 2) implementing

the τ obtained in the error minimization, i. e. τ = 72.4ns. A RMSE of 2.26% is obtained for

this τ . In the upper right corner, a minimum RMSE of 0.58% is reached for τ = 69.8ns. These

values make perfect sense taking into account that, according to simulations at the corners of the

technology, τ can range from 49ns (WP corner) to 148ns (WS corner). The value of τ that will
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be employed for the comparisons from now on in the text will be the average of the extracted

values, that is, τ = 71.1ns.

B. Scale space

Once τ is calibrated, any on-chip scale space can be compared to its ideal counterpart obtained

by solving the spatially-discretized diffusion equation. A single image is captured to be the initial

image of both the on-chip scale space and the ideal scale space calculated off-chip. This capture is

affected by a 0.72% FPN. It has been calculated by averaging a set of readings of the whole array

without photocurrent integration, in order to skip temporal fluctuations, and then computing the

standard deviation. No FPN removal circuit is included in the chip, neither is performed off-chip.

Back to the scale space, the on-chip scale space is generated by applying successive diffusion

steps to the original captured image. After every step, the image is converted to digital and

delivered to the test instruments to be compared to the ideal image generated by MATLAB R© in

terms of the RMSE (Fig. 7). Some of the diffusion steps are represented in Fig. 8 (first row) and

compared to the ideal images (second row). The last row contains a pictorial representation of

the error, normalized in each case to the highest measured error on an individual pixels, which

are 0%, 24.99%, 19.39%, 6.17%, 3.58% and 6.68%, respectively. Note that these large errors

on certain pixels have little qualitative effect over the images. It can also be seen how noise

eventually becomes dominant at coarse scales. Keep in mind that readout noise is present at the

initial image of both scale spaces, but it is only added to each subsequent image of the on-chip

scale space because of the readout mechanism. It means that while the initially stored noise,

spatial and temporal, is progressively averaged in the ideal scale space, it is resampled for each

picture of the on-chip scale space. As a consequence, there is an increase in the error for a

sufficiently large diffusion duration. The key point here is that the accuracy of the processing

predicted by simulation [14] is very close to that of the first images of the scale space, where
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noise is not dominant yet. Besides, the error is kept under a reasonable level despite no FPN

removal is carried out. This fact together with the efficiency of the focal-plane operation is

crucial for artificial vision applications under strict power budgets.

C. Gaussian pyramids

Scale-space representations successively become more redundant as the scale parameter in-

creases. A progressive filtering is performed over the scene, starting from the highest spatial

frequencies and continuing until eventually filtering all the frequencies other than the dc compo-

nent. However, in this process, the resolution of the images does not change and the oversampling

of the remaining frequency content constantly increases along the scale space. Pyramid repre-

sentations solve this problem by subsampling the scale-space representations according to the

filtering realized. The control flow for this operation is simple: (1) after image capture, the

diffusion time is set to match the required scale; (2) diffusion is realized; (3) the resulting image

is subsampled at the appropriate rate, 2, 4, etc.; (4) go back to (1) and set the diffusion time to

match the following scale, but taking into account that the stored image is already filtered. As

an example, consider the scale space described in the previous section, where τ = 71.1ns. At

t = 40ns, the components of the spatial Fourier transform at the highest vertical and horizontal

frequencies, denoted respectively as (u, v) = (M/2, 0) and (u, v) = (0, N/2), suffer a decrease

on their magnitude by a factor of 0.1050 —substituting the values in Eq. (2), where the block

in question is the complete image, thus W = M and H = N . This means that their energy is

reduced to just a 1.10% of its value at t = 0, so they have lost nearly 99% of their energy.

It means that a subsampling factor equal to 2 can be applied over the vertical and horizontal

dimensions of the image without significant lost of information. For t = 80ns (not shown

in Fig. 8), both components (u, v) = (M/2, 0) and (u, v) = (0, N/2) have been even more

attenuated and, additionally, (u, v) = (M/4, 0) and (u, v) = (0, N/4) have also lost around the
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99% of their energy. In this case, a subsampling factor equal to 4 can be applied without losing

relevant information. The resulting pyramids for two scale spaces generated on-chip are depicted

in Fig. 9. Subsampling is realized during readout by making use of the capabilities for random

access to the pixels’ value implemented in the chip.

D. Multiresolution scene representations

The reconfigurability of the array together with the possibility of carrying out a complete

diffusion, i. e. charge redistribution, within each block render the representation of a scene

at different resolutions extremely flexible. Several examples directly extracted from the chip

can be seen in Fig. 10. All the images but the last one correspond to different versions of

homogeneous pixel binning. The last image represents a progressive coarse-to-fine division of

the focal plane in order to achieve foveation of the scene. All these scene representations, are

available immediately after photointegration. Apart from the exposure time, no extra time and

no extra power are required to obtain them if the focal plane subdivision is already set.

E. Energy-based scene representations

This primitive has been satisfactorily tested by segmenting salient regions. The results are

depicted in Fig. 11. In these scenes, the focal plane was divided into blocks of 8×8px. The total

energy without any filtering, VEij
, and the remaining energy after a complete diffusion (t long

enough), VEij,DC
= VEij(t→∞), were computed within every block. Thanks to the parallelism in

the processing implemented by the array, the first computation took around 225ns while the

second one, including the time interval of diffusion, around 1.2us. Once VEij
and VEij,DC

were

extracted from the chip, VEij
− VEij,DC

was calculated off-line for each block and normalized

to its maximum value across the image. The same computations were ideally performed with

MATLAB R© over the original image. The accuracy of the chip for this operation is noticeable
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inferior than for the scale space generation. The RMSE for the first example is 8.5% whereas for

the second one is 10.9%, with respect to the ideal processing. The main source of error is the

signal compression taking place at the generation of the energy representation. We have started

with an image represented by the pixel voltages, Vij . Each voltage is converted to a current

by ME according to the square-law of the MOS transistor. Therefore, any inaccuracy in the

generation of Vij is magnified by the square-law of the transistor. Right after that the current

is linearly converted to voltage by discharging capacitor CE. As the signal ranges for VEij
and

Vij are similar, the signal representing the image energy is compressed compared to the signal

representing the pixels’ magnitude. Also second order effects, charge-injection errors, channel

length modulation, transconductance and threshold mismatch, etc., become significant when

millivolt range changes are usual. In any case, the absolute value of each block is not important

in this case. The target of this processing is to segment the zones of the image with the largest

changes of intensity, that is, the relative values among the blocks of the scene representation

are the key point here. As can be seen in Fig. 11, the computation of the energy performed

on-chip is capable of segmenting such zones. A subsequent step for a vision algorithm could be

to realize dynamic foveation around the blocks with the largest values for a finer analysis. The

outcome is depicted in Fig. 12 for the second scene of Fig. 11 Note that these foveated images,

unlike that one in Fig. 10, keep full-resolution in the ROI but the minimum resolution possible,

according to the programmability of the chip, in the rest of the scene.

To finish this section, Table II summarizes the power consumption for the different combina-

tions of focal-plane processing, conversion and image size. All the figures are given at 30fps,

although these frames are of a reduced size, as indicated in the first column that reflects the

size in pixels of the blocks delivered. Keep in mind that the chip is not intended to deliver full

frame images, but reduced representations of a high informational value. The measured power

include the consumption of the A/D converter and the column buffers: 1.2mW (specifications,
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not measured) and 0.8mW (measured), respectively. As a projection of the power consumption

for a full frame output we can take into account that the current ADC and column buffers are

able to deliver 0.11MSa/s (Table I), for what they need, roughly, 2.0mW. If 176 × 144-pixel

frames are to be delivered at a rate of 30fps, what means 0.76MSa/s, we will need 7 times more

power, i. e. 14.0mW. Notice that the power required for focal-plane processing is the same, as

it is realized full-frame in parallel. The last column of Table II accounts for this projection. It

gives an idea of the efficiency of the focal-plane processing proposed.

F. Comparative analysis

Several reported smart image sensors intend to efficiently implement image filtering and

multiresolution representation. The performance indexes chosen to establish a comparison are

area and power consumption, together with image resolution and throughput. Minimizing area

and power consumption has been the driving force for the design of the FLIP-Q prototype.

Regarding the accuracy of the processing, no comparison can be made in general. In most of

the cases the operation of the reported image sensors is accurate enough for the corresponding

target application but a thorough quantification of such accuracy is never given.

In [17], Gaussian filtering with user-defined σ is performed by means of a resistive network

containing both positive and negative resistors. A very large power consumption is reported

due mainly to the bias currents in the control circuit for the variable resistor. A simpler and

more efficient implementation of this filtering is carried out in [18]. In this case, a solver of the

spatially-discretized diffusion process is implemented by means of a capacitive network. The

variance of the filter is determined by a capacitor ratio, fixed by layout design, and a iteration

number associated to the implicit time discretization of the network. The main argument given

in favour of this implementation instead of another one based on a dynamic RC network is that

usually the time constant of the lattest is so small that sampling becomes difficult [19]. However,
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we have demonstrated with the FLIP-Q prototype that this problem can be overcome by a fine

on-chip control. Better accuracy is thus achieved in spite of the intrinsic nonlinearities of the

transistors while performing not discrete but continuous-time diffusion. Regarding the area and

power consumption associated to the specific operation of Gaussian filtering, no data is given in

[18] to be compared with the performance of our prototype.

Vision chips capable of delivering programmable multiresolution scene representations have

been also previously reported. In [20], capacitive networks outside the array are used to merge

the pixel values. The main limitation of this chip is that its functionality is reduced to this

operation. Besides, the blocks of pixels in which the image is divided must be square. The

power consumption is of the same order of magnitude than that of the FLIP-Q prototype.

The comparison in terms of area is more difficult to establish as the operation in [20] is not

performed in-pixel but during the readout process. The die sizes, equalizing their resolutions by

extrapolation, are very similar. Other processing arrays, like [21] and [22], use the multiresolution

feature as a means to achieve a certain targeted outcome and therefore it is not separately

characterized. In [21], the maximum possible reduction of resolution is by a factor of four

outside the ROI while edge filtering at full-, half- and quarter resolution can be achieved in [22].

Table III summarizes the main reported features of the chips above commented. Although the

functionalities of the prototypes do not exactly match, we have tried to compute a figure of merit

that contemplates the major features of the chips: FOM = (Area · Power)/(Spatial resolution ·

Throughput). From these results, it can be seen that the FLIP-Q prototype, implementing image

processing tasks which are useful for most of vision algorithms, presents very competitive figures,

specially in terms of power consumption. Chips with lower FOM, [20] and [21], do not perform

Gaussian filtering. Those which realize this type of filtering have similar [18] or worse FOM

[17], [22]. No chip delivering energy-based scene representations has been included in Table III.

To the best of our knowledge, this simplificacion of the scene at the focal plane had not been
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previously reported. Examples of other approaches for estimation of salient regions can be found

in [23] and [24].

V. CONCLUSIONS

This paper has thoroughly described a smart CMOS image sensor intended for low-power

applications. The prototype can deliver different degrees of simplification of a scene which

alleviate the processing load of subsequent digital processing stages. Large signal behaviour of

the transistors is greatly exploited in order to implement a massively parallel analog focal-plane

array based on the SIMD paradigm. Experimental results show the enormous potential of the

sensor and the energy efficiency of its operation.
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Technology 0.35µm CMOS 2P4M

Vendor (Process) Austria Microsystems (C35OPTO)

Die size (with pads) 7280.8µm × 5780.8µm

Cell size 34.07µm × 29.13µm

Fill factor 6.45%

Resolution QCIF: 176×144 px

Photodiode type n-well/p-substrate

Power supply 3.3V

Signal range [1.5V,2.5V]

FPN 0.72%

PRNU (50% signal range) 2.42%

Sensitivity 0.15V/(lux·s)

Measured power consumption 5.6mW@30fps

(worst case) 22× 18px

Predicted power consumption 17.6mW@30fps

(worst case) 176× 144px

ADC throughput 0.11MSa/s (9µs/Sa)

Internal clock freq. range 0.5-150MHz

TABLE I

SUMMARY OF THE PROTOTYPE CHIP FEATURES.
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Block VCO freq. Diffusion steps Energy Power consumption Predicted power for

(px) (MHz) (N1) comput. (mW) full-frame output (mW)

4×4 VCO off External diffusion control No 2.7 14.7

4×4 5 5 No 2.9 14.9

4×4 50 5 No 3.5 15.5

4×4 150 10 No 5.4 17.4

8×8 150 10 Yes 5.6 17.6

8×8 VCO off No diffusion Yes 2.9 14.9

8×8 VCO off No diffusion No 2.0 14.0

TABLE II

POWER CONSUMPTION OF THE CHIP FOR DIFFERENT FOCAL-PLANE PROCESSING CONFIGURATIONS.
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Author / Tech. (µm) / Processing Die size Array Cell size Power Throughput FOM

Reference Year capabilities (mm2) size (µm2) (mW) (MSa/s) (pJ·mm2/px·Sa)

Kobayashi [17] 2 / 1991 Gaussian filtering 7.9 × 9.2 45×40 170 × 200 2000 0.054 1.49 × 106

Kemeny [20] 1.2 / 1997 Multiresolution imaging 4.8 × 6.6 128 × 128 24 × 24 5 0.49 19.7

Analog histogram equalizer,

Ni [18] 0.8 / 2000 Gaussian and DoG filtering 7 × 7 256 × 256 20 × 20 200 1.57 95.1

and local extrema extractor (worst case)

Multiresolution imaging with

Choi [21] 0.35 / 2007 ROI estimation from 5 × 5 256 × 256 8.9 × 8.9 74.87 1.97 14.5

motion detection

Takahashi [22] 0.35 / 2009 Edge filtering 9.8 × 9.8 64 × 64 123.3 × 124.8 350 2.79 2.95 × 103

Scale space and

This work 0.35 / 2010 pyramid generation, 7.28 × 5.78 176×144 34.07 × 29.13 5.6 0.11 84.5

multiresolution imaging and (worst case)

energy-based representation

TABLE III

COMPARISON OF FOCAL-PLANE PROCESSING CHIP PERFORMANCE
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Fig. 1. Floorplan of the prototype chip.
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Fig. 2. Microphotographs of the FLIP-Q prototype chip.
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Fig. 3. Elementary cell of the array.
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Fig. 4. Timing diagram of the operation of the elementary cell.
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Fig. 5. Column-wise focal-plane division control.
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Fig. 6. Calibration of τ at the upper left corner
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t = 0ns t = 40ns t = 100ns t = 400ns t = 800ns t = 1500ns

Fig. 8. Scale spaces along time. The first row corresponds to the on-chip scale space, the second one corresponds to the ideal

scale space and finally the third one corresponds to their normalized difference.
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Fig. 9. Pyramid representation of two on-chip scale spaces.
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Original image 4×4 px 8×8 px

Original image 12×16 px Foveation

Fig. 10. Examples of multiresolution scene representation
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Original image On-chip processing Ideal processing

Original image On-chip processing Ideal processing

Fig. 11. Examples of energy-based scene representation
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Fig. 12. On-chip abrupt foveation around the blocks segmented by the computation of the energy in the second scene of

Fig. 11.


