
744 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 3, MARCH 2012

Design and Analysis of a Hardware-Efficient
Compressed Sensing Architecture for Data

Compression in Wireless Sensors
Fred Chen, Member, IEEE, Anantha P. Chandrakasan, Fellow, IEEE, and Vladimir M. Stojanović, Member, IEEE

Abstract—This work introduces the use of compressed sensing
(CS) algorithms for data compression in wireless sensors to ad-
dress the energy and telemetry bandwidth constraints common
to wireless sensor nodes. Circuit models of both analog and dig-
ital implementations of the CS system are presented that enable
analysis of the power/performance costs associated with the design
space for any potential CS application, including analog-to-infor-
mation converters (AIC). Results of the analysis show that a digital
implementation is significantly more energy-efficient for the wire-
less sensor space where signals require high gain and medium to
high resolutions. The resulting circuit architecture is implemented
in a 90 nm CMOS process. Measured power results correlate well
with the circuit models, and the test system demonstrates contin-
uous, on-the-fly data processing, resulting in more than an order of
magnitude compression for electroencephalography (EEG) signals
while consuming only 1.9 W at 0.6 V for sub-20 kS/s sampling
rates. The design and measurement of the proposed architecture is
presented in the context of medical sensors, however the tools and
insights are generally applicable to any sparse data acquisition.

Index Terms—Biomedical electronics, circuit analysis, com-
pressed sensing, electroencephalography, encoding, low power
electronics, sensors, wireless sensor networks.

I. INTRODUCTION

O VER the past two decades, advancements in microelec-
tronics have enabled relatively cheap, distributed sensor

nodes capable of moderate scale sensing, data collection, com-
putation and communication. In turn, wireless sensor networks
have emerged as a research area that spans a broad range of
applications from agriculture to health care. Although the ap-
plications are diverse, many of the technical challenges facing
the field are similar. From the protocol layer down to the cir-
cuit level most of the challenges are related to the stringent
energy constraints of each sensor node [1]. In most applica-
tions, whether because of cost or utility, there is a need for
each sensor node to have a lifetime in the 10 year range or be-
yond. For example, even with a sensor lifetime of 10 years, a
network with 4000 nodes, such as in a large office building,
requires on average a battery changed per day [2]. Similarly,
for patients who require implantable medical devices, limiting
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Fig. 1. Energy costs and power consumption for typical circuits in bio-sensor
applications. It is assumed that the DSP filters some data and that the TX power
scales with data rate.

the frequency of replacing batteries both reduces costly surg-
eries and improves the quality of life. With the energy density
of modern portable batteries in the range of 1 W-hr/cc, even a
10 year device lifespan requires the sensor to consume on the
order of 10 W of average power per cubic centimeter of bat-
tery volume.
Medical monitoring is an emerging application area that ex-

emplifies the stringent energy constraints imposed on wireless
sensor nodes and their corresponding circuits. Fig. 1 shows the
typical circuit blocks used in sensors for medical monitoring and
their associated energy cost and power consumption at a given
sample rate. As Fig. 1 shows, the cost to wirelessly transmit data
is orders of magnitude greater than for any other function. With
the exception of ultra-wideband (UWB) radios, which have lim-
ited range and reliability issues, state-of-the-art radio transmit-
ters exhibit energy-efficiencies in the nJ/bit range while every
other component consumes at most only tens of pJ/bit. This cost
disparity suggests that some data reduction strategy at the sensor
node should be employed to minimize the energy cost of the
system. In applications such as implantable neural recording ar-
rays, the high energy cost to transmit a bit of information and the
radio’s limited bandwidth actually necessitate data compression
or filtering at the sensor in order to reduce both energy consump-
tion and data throughput [3].
Existing strategies for implementing integrated data com-

pression or filtering solutions under these constraints largely
revolve around detecting and extracting specific signal data
[3]–[7]. However, the filtered data often contains limited infor-
mation. For example, in neural recorders, the data is typically
limited to just the time and amplitude of a neural spike event
rather than the signal itself [3], [5]. Even when the event de-
tection is used to trigger a full signal capture [4], the system is
susceptible to missing events entirely if detection thresholds are
not properly set. Meanwhile, feature extraction approaches re-
quire training, are usually signal specific and typically provide
only macro level decisions based on the original signals [6],
[7]. For these signal processing strategies, there is a tradeoff
between data reduction, robustness, implementation cost, and
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Fig. 2. Relative merits of CS compared to different data acquisition and compression approaches used in wireless sensors.

the granularity of information captured. In each case, the goal
is to minimize the number of bits transmitted (to minimize
the average radio power) while reliably preserving the signal
information at a minimum implementation cost.
In this work, we introduce the design and implementation of

a sensor architecture based on the theory of compressed sensing
that offers an improved set of tradeoffs toward achieving this
goal. As Fig. 2 shows, a CS based sensor system combines
the positive qualities of existing data acquisition and compres-
sion systems: it provides a flexible and general interface like
an analog-to-digital converter (ADC), yet still enables data
compression proportional to the signal information content,
which is consistent with the performance of source coding. For
wireless sensor applications, this combination of characteristics
is particularly attractive as it would enable a single hardware
interface across many applications while simultaneously ad-
dressing the energy cost of wireless transmission. Traditional
data acquisition architectures have been based on the principles
of Shannon’s sampling theorem which requires that the sam-
pling rate must be greater than twice the maximum frequency of
the signal being sampled. Compressed sensing is an emerging
field whose theory leverages known signal structure to acquire
sampled data at a rate proportional to the information content
rather than the frequency content of a signal [9]. In theory, this
would enable far fewer data samples than traditionally required
when capturing signals with relatively high bandwidth, but a
low information rate. As shown in Table I, many biophysical
signals of interest fall into this category where their required
sampling rates far exceed the information rate (frequency of
event occurrences). Although these examples are in the context
of medical applications, they can be generally applied to any
field where the signals of interest are sparse.
To demonstrate the practicality of the proposed system, a

CS encoder [10] is designed and fabricated in a 90 nm CMOS
process based on circuit modeling and power analysis tradeoffs
discussed in the remainder of the paper. Section II begins by pro-
viding background on CS theory and addresses its applicability
to data compression. Section III specifies the hardware param-
eters of the CS framework that are used to compare implemen-
tation costs. Based on these parameters, Sections IV and V de-
velop the circuit-level power/performance cost models for im-
plementing the CS framework in the analog and digital domains.

TABLE I
CHARACTERISTICS OF COMMON MEASURED BIO-SIGNALS [4]

Section VI then analyzes the implementation tradeoffs and de-
scribes the actual system implementation. Section VII presents
measurement results where the system demonstrates the ability
to blindly encode EEG signals at a high compression factor, and
shows that developed circuit cost models correlate well with the
experiment. Finally, Section VIII discusses more generally the
possible extensions of the power model and the CS architecture
before concluding the paper.

II. COMPRESSED SENSING BACKGROUND

In this section, we provide an overview of the basic principles
of CS and the relevance of each principle to the proposed sensor
system.1 CS is based on the following key concepts which will
be discussed hereafter: signal sparsity, signal reconstruction and
incoherent sampling.

A. Signal Sparsity

CS theory relies first and foremost on the signal of in-
terest, , having a sparse representation in some basis,

such that or equivalently:

(1)

where is the coefficient vector for under the basis . For
to be sparse in , the coefficients, , must be mostly zero or

1The background provided is only meant to give sufficient context under
which the proposed system hardware design can be discussed. For a more the-
oretical and thorough background on compressed sensing, please refer to [9],
[11], [15].
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Fig. 3. CS sampling framework where is the signal being sampled, is the set of compressed measurements, is the measurement matrix, is the signal
basis under which is sparse, is the resulting coefficient vector when finding the sparse solution and is the reconstructed signal.

insignificant such that they can be discarded without any per-
ceptual loss. If has the most compact representation in ,
then should be compressible if captured in some other basis.
So sparseness also implies compressibility and vice versa. A fa-
miliar example of such a signal is a sine wave which requires
many coefficients in time to represent, but requires only one
non-zero coefficient in the Fourier domain. Fortunately, many
sensor signals such as the bio-signals from Table I have sparse
representations in either the Gabor or wavelet domains [12],
[13] thus making them suitable for data compression using CS.

B. Signal Recovery From Incomplete Measurements

CS theory also proposes that rather than acquire the entire
signal and then compress, it should be possible to capture only
the useful information to begin with. This generalized sampling
framework is shown in Fig. 3 where the -dimensional input
signal, , is encoded into an -dimensional set of measure-
ments, through a linear transformation by the mea-
surement matrix, , where . When such that
the system is underdetermined, there are an infinite number of
feasible solutions for . However, when the signal to be recov-
ered is known to be sparse in some basis, where ,
then the sparsest solution (fewest significant non-zero ) out of
the infinitely possible is often the correct solution. A common
and practical approach to find the sparse solution is to solve the
following convex optimization problem:2

(2)

where is the basis matrix and is the coefficient vector
from (1). The recovered signal is then where is the
optimal solution to (2). The problem of minimizing the -norm
in (2) has been shown to be solved efficiently [14]. Its feasibility
implies that an -dimensional signal can be recovered from a
lower order number of samples, , provided that the signal is
sparse under some basis.We rely on this result to reduce the data
that the sensor must transmit; the ratio is essentially the
data compression factor (CF) realized by the CS system and is
proportional to the radio power that would be saved.

2In practice there are many viable approaches to finding the “sparse” solu-
tion for the underdetermined system of equations described by . We
simply present minimization as one approach whose complexity is known to
be tractable and thus demonstrates the practicality of the reconstruction process.

C. Incoherent Sampling

In addition to sparseness, CS also relies on incoherence be-
tween the sensing modality and the signal model to
minimize the number of measurements needed to recover
the signal. Coherence measures the largest correlation between
any row of and column of and can be defined by the oper-
ator as

(3)

where can range between 1 and [15]. The less coher-
ence between and , the fewer the number of measurements
needed to recover the signal. A lower bound on the number of
measurements needed to recover the overwhelming majority of
terms in an -sparse signal (a signal with significant non-zero
terms out of in the basis ) was shown to be

(4)

where is a small known constant (empirically [16])
and is the dimensionality of the signal to be recovered [15].
Since is a measure of the information in the signal, this lower
bound shows that the number of samples required to recover
a signal in a CS framework is proportional to the information
content of the signal.
In terms of hardware cost and complexity, it is desirable if

the signal basis, , does not need to be known a priori in order
to determine a viable sensing matrix, . Fortunately, random
sensing matrices with sufficient sample size exhibit low coher-
ence with any fixed basis [17]. As suggested in [17], this means
that a random sensing matrix can be employed as a universal
encoder and acquire the sufficient measurements needed to en-
able signal reconstruction of any sparse signal without knowing
a prioriwhat the proper basis for the signal is. We leverage
this principle to build a generic infrastructure for data acquisi-
tion and compression that is agnostic to the type of signals being
acquired, provided that they are sparse.

III. CS IMPLEMENTATION PARAMETERS

In order to improve the energy efficiency of the system, the
overhead to process and compress the data cannot outweigh
the energy savings gained at the transmitter from data reduc-
tion. Thus, for CS to be a practical solution for wireless sensor
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nodes, an energy efficient hardware implementation of the en-
coder must be realized. Given the relative immaturity of the
field, there have been few works that discuss the tradeoffs or
costs of realizing CS in hardware [18]–[20] and even fewermea-
sured results [20].
The CS parameters described in Section II can be translated

into a set of required hardware specifications. As shown in
Fig. 3, the CS encoder essentially amounts to performing
a linear projection from the -dimensional input, , to an
-dimensional set of measurements, , using the matrix, . In

the context of data compression, this amounts to transforming
every block of samples of into measurements . We
define and as the bits needed to represent the dynamic
range of each sample in and respectively. Thus, the effec-
tive compression factor is .3 A common
approach to facilitate an efficient hardware implementation
of is to use a pseudo-random Bernoulli matrix where each
entry, , is [18], [19]. This minimizes the size of
and subsequent matrix-multiply operations by representing
each matrix entry with only a single bit. Any other choice of
a full rank matrix would result in additional circuit
complexity, data storage, and computation requirements.
As with traditional signal processing algorithms, the CS en-

coding can be implemented in either the analog or digital do-
mains. In early proposed applications of CS, the linear projec-
tion was applied in the analog domain prior to digitization either
because the dominant consumer of power was the sensingmech-
anism [21] or to reduce the required sampling frequency of the
ADC [18], [19]. However, unlike previously proposed applica-
tions for CS, wireless sensor applications are rarely limited by
ADC performance. Thus, the next two sections will model the
dependencies and costs of both systems. In an effort to provide
a level comparison between these implementations, the analysis
of circuit costs are described in terms of the required system pa-
rameters: , and the signal bandwidth in
Hertz.

IV. ANALOG CS ENCODER POWER MODEL

Fig. 4 shows the block diagram and example circuits for an
analog implementation similar to those described in [18] and
[19]. In the circuits shown, the input is amplified through an
operational transconductance amplifier (OTA) while the multi-
plication is realized with a double-balanced passive mixer. The
sample-and-hold (S/H) circuit following the mixer acts as an in-
tegrating (summing) stage as well as the S/H input to the ADC.4

Although there are many possible alternative circuit realiza-
tions, the example provided is representative of how hardware
costs in this architecture will scale.

3Note that in the remainder of the text, we will commonly refer to the ratio
as the compression factor (CF) to highlight dependencies on compression

performance and resolution. In practice, the required value for scales with
such that does not vary much over resolution such that
is representative of the compression factor.

4A reset switch to a common mode voltage and at least one more S/H cir-
cuit (not shown) need to be time multiplexed with the circuit shown to enable
continuous integration of the input while the ADC quantizes the previously in-
tegrated sample.

Fig. 4. Block diagram and example circuitry for an analog implementation of
the CS linear transformation. The passive mixer is driven by the matrix coeffi-
cients at a rate of . During the sample phase , the sample-and-hold
(S/H) circuit also acts as a passive integrator.

A. Analog-to-Digital Converter

In the architecture shown in Fig. 4, the matrix coefficients,
, need to be applied at the Nyquist frequency, , of the

signal or higher in order to avoid aliasing [19]. However, the
sampling frequency of each ADC only needs to be where

and is the number of integration samples per
compression block. The output of each ADC produces one mea-
surement result, , so the resolution of the ADC should be
equal to the required measurement resolution, . The resulting
power of the array of ADCs is then

(5)

where the figure-of-merit (FOM) of the ADC is a design specifi-
cation. In subsequent analysis, the FOM used to show tradeoffs
is 100 fJ/conversion step, which is consistent with the general
performance of modern ADCs over a wide range of resolutions
and sampling speeds [22].5

B. Integrator and Sample/Hold

The simplified Norton and Thevenin equivalent noise circuits
in Fig. 5 show that the constraints on the sampling circuit are
partially dictated by the mixer and OTA. When the sampling
circuit is tracking the input, the noise bandwidth of the system
is set by the sampling capacitor and the series resistance of the
CMOS switch , mixer and the OTA output resis-
tance . For practical purposes, should be dominant to in-
sure that the OTA looks like a current source and so that the com-
bined circuit acts like an integrator where the appropriate noise
model more closely resembles the Norton equivalent model. As
described in [19], if the S/H is assumed to be a perfect inte-
grator, then the frequency response of the integrator is a sinc

5For sensor applications, it is assumed that the required resolution and band-
width of the ADC are low enough so that the ADC efficiency is not noise limited
such that the ADC power will scale 2X with resolution rather than 4X (i.e., the
FOM will stay constant as the performance requirements scale).
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Fig. 5. Simplified Norton and Thevenin equivalent noise models for the OTA,
mixer and integrator.

pulse where the gain and noise bandwidth of the
integrator can be expressed as

(6)

where the integration period is . However, to the extent
that is not infinite then the equivalent noise model moves
closer to the Thevenin equivalent model where the noise band-
width is given by the low-pass filter response over a finite inte-
gration window:

(7)

where it is assumed that the equivalent resistance seen by the
capacitor is dominated by . The circuit properly approxi-
mates an ideal integrator for integration periods where

. The bandwidth of the unloaded OTA, assumed to
be set by a single dominant pole , should at least
match the required bandwidth of the signal, , so
the lower bound on the size of the integrating capacitor to func-
tionally act as an integrator can be described by6

(8)

where is the capacitance at the dominant pole, and is
the maximum number of samples to compress. The power due
to switching the integrator and S/H circuits is then modeled by

(9)

where is the total gate capacitance of the switches. In (9)
it is assumed that the single-ended voltage swing is between

6To the extent that the integrator is non-ideal will essentially introduce errors
in the matrix entries (weights of each input sample) and require a means to back
out the actual matrix applied as in [19].

and , and that the common mode reset
voltage is at . Even if is unrealistically assumed to
consist of only parasitics and wiring, a reasonably useful value
of would still require to be on the order of
3 pF in most modern processes. Thus, the power attributed to
switching the switches themselves is negligible compared to
.

C. Mixer

The passive mixer shown in Fig. 4 is described in [23] where
it is shown to have a theoretical voltage conversion gain
ranging between 3.92 dB and 2.1 dB and a measured noise
figure (NF) of 3.8 dB. The primary impact of the mixer per-
formance is its impact on the specifications for the OTA. For a

3 dB and a 3.8 dB, the current noise density at
the output of the mixer, , is then

(10)

where is the noise current density out of the amplifier (into
the mixer). For a pseudo-random bit sequence (PRBS) of
samples, the resulting noise accumulated during an integration
window is times the output noise of a single sample, where
the output noise density is filtered by the gain and effective noise
bandwidth of an integrator with th the integration period.
The total integrated output noise needs to be less than the quan-
tization noise of the ADC leading to7

(11)

D. OTA

The lower bound on power consumption in the amplifier is
typically set by the input referred noise requirement.
A figure of merit that captures the relationship between
and power consumption in the amplifier is the noise efficiency
factor (NEF) which was first introduced in [24] and captures the
effective number of transistors contributing noise:

(12)

where is the total amplifier current, is the thermal
voltage and is the bandwidth of the amplifier.
Measured NEFs in state of the art low-noise amplifiers fall in
between 2 and 3 [25]–[27]. For future analysis, a NEF of 3 will
be used8 and the required power for the array of amplifiers can
then be calculated by rewriting (12) as

(13)

7The noise term due to the sampling switch of the S/H circuit has been omitted
since it will be insignificant for any practical values of and . The mixer
power is dominated by the clocking and logic to generate the sequence of matrix
coefficients, , which is discussed later.
8In practice, a realistic NEF for each application must be determined in order

to properly weigh the costs. For the purpose of analysis, the NEF chosen is on
the low-end of what has been generally published in state-of-the-art amplifiers
for bio-applications to establish a lower bound on the amplifier power.
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The output noise constraint in (11) can then be rewritten in terms
of such that9

(14)

where is the total voltage gain from the input of the ampli-
fier to the input of the ADC. The required value of varies
by application and the expected dynamic range of the input
signal, but a common specification used in previously published
bio-sensor applications is 40 dB [3], [25], [27]. This constraint,
however, assumes that the total gain is set such that the input
range of the ADC is perfectly accommodated. Since we are in-
tegrating over samples, the instantaneous voltage (variance)
on the integrator can be expected to grow by a factor of
and cannot be allowed to exceed the available headroom such
that . This constraint reduces the available
headroom and thus the required noise floor for a given resolu-
tion. Combining this additional constraint with (13) and (14)
results in the minimum amplifier power required:10

(15)

E. Analog CS Encoder Power

The total power for the analog implementation of the CS
encoder, excluding the matrix generation and mixer (multiply)
cost, can be summarized as

(16)

As expected, the costs of all components scale with the number
of measurements, , but they are also dependent on the input
signal bandwidth. So even if the number of samples in the CS
framework is independent of the signal bandwidth, the cost to
implement the circuits is not.

9In (11), the noise bandwidth of the OTA is simplified from to
which implies % margin on the required bandwidth to accommodate the
signal.
10The instantaneous voltage can be allowed to be as large as since we

are assuming a differential system where corresponds to the differential
ADC input range. The resulting power gain then becomes instead of
.

Fig. 6. Block diagram and circuitry for a digital implementation of the CS
encoder.

V. DIGITAL CS ENCODER POWER MODEL

Fig. 6 shows the block diagram and circuits for an equivalent
digital implementation of the CS encoder. The input signal is
first amplified and then digitized by a single ADC sampling at
the Nyquist rate, . The ADC output is passed to parallel
accumulators that accumulate the incoming sample based on
their respective sequence of matrix coefficients, . Recall
that the coefficient matrix is a Bernoulli random matrix where
all elements are . Thus, the multiplication function can be
simply implemented with an XOR gate and the carry-in input of
the accumulator. The output of the accumulator is then captured
every samples at which time the accumulator is reset.

A. Accumulator and XOR

Each measurement, , requires an accumulator with at
least bits of resolution which results in flip-flops and
XORs, and a -bit adder. In order to model the delay and en-
ergy costs associated with these circuits, a logical effort (LE)
[28] model is adopted to determine the sizing of each gate and
themethodology for sizing the adder is similar to [29]. A slightly
simplified version of the alpha-power law delay model used in
[30] is used to map the normalized delay of the LE model to real
delay. The LE delay of the accumulator is used to scale
until the timing constraint is just met, resulting in the following
minimum operating

(17)

where and are technology fitting parameters and
and are the LE delay of the flip-flop and the crit-
ical path of a -bit adder.11 The dynamic power consumption

11The adder topology chosen is a ripple carry adder. For sensor applications,
the resolution and speed of the adder are such that the circuit power will likely
be dominated by leakage. Under this assumption, it is appropriate to choose
the most compact adder topology which is a ripple carry adder. If the operating
conditions change then the subsequent analysis can be adopted to other adder
architectures.
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can be calculated by accounting for all of the gate and para-
sitic capacitances at each node along with the switching ac-
tivity at those nodes.12 So for -bit accumulators and XORs
operating at this results in a dynamic switching energy
of

(18)

where is the capacitance of the reference inverter. The
term is added to avoid overflow in the accumulators

during integration and is analogous to the headroom constraint
reflected in (15) of the analog model. Unlike the analog in-
tegrator, the dynamic range of the digital accumulator can be
expanded by extending the headroom rather than lowering the
noise floor such that it does not impact the noise or resolution
requirements of the OTA and ADC.
One component of energy consumption that LE does not ex-

plicitly model is the sub-threshold leakage current. To account
for leakage, an additional normalized parameter is added that
captures the relative leakage current in each gate compared to
the reference inverter.13 Similar to how the normalized delay
in LE was used to model delay, we use the normalized leakage
parameter to arrive at a power consumption expression due to
leakage:

(19)

where is the leakage of the reference inverter
at a supply voltage of .

B. ADC and Amplifier

The constraints on the ADC and amplifier for the digital CS
encoder system are similar to those in the analog system dis-
cussed earlier. For the ADC, it is now dependent on signal res-
olution instead of measurement resolution and sam-
ples at the Nyquist rate such that:

(20)

Similarly for the amplifier, the noise constraint on the amplifier
is now only determined by the quantization noise of the ADC
such that

(21)

with the same assumptions regarding and NEF as before.

12The wires for the accumulator bank are all local and as such are lumped in
with the parasitic portion of the LE delay model. Furthermore, when the design
is leakage dominated, there is relatively no impact from wire estimation errors.
13The simplifying assumptions made in determining the leakage parameter

are that the NMOS and PMOS leakage in the reference inverter are the same,
and that the leakage current scales linearly with gate width and the number of
off branches. The probability of the gate being in a certain leakage state is also
taken into consideration.

C. Digital CS Encoder Power

The total power for the digital implementation of the
CS encoder, excluding the matrix generation cost, can be
summarized in (22) where .

(22)

VI. CS IMPLEMENTATION

For wireless sensor applications, systems are typified by low
sampling frequencies, medium resolutions and small amplitude
input signals. Since the purpose of the CS encoder is for data
compression, a desirable target is for 10X compression. Based
on (4), compression block lengths between 100 to 1000 samples
require roughly 11–17 measurements per significant term to re-
cover the signal. Minimally, the system should be designed to
recover a 1-sparse signal, but a more practical choice is to build
in margin. Thus, to reconstruct 3–4 significant terms per block
requires the following range of specifications for the system:

, , kHz, , ,
and (40 dB).

A. Analog CS Versus Digital CS

To determine which implementation is most suitable for
wireless sensor applications, the power models developed in
Sections IV and V are used to map the power costs based on
technology parameters extracted from the 90 nmCMOS process
intended for the test chip fabrication. These results are captured
in Fig. 7 which plots the relative power of the
analog CS encoder versus the digital CS encoder over the range
of specifications. To help visualize this multi-dimensional
design space, each sub-plot [Fig. 7(a)–(c)] captures the depen-
dencies across only two of the three most sensitive parameters:

and . The remaining parameters, when not swept,
are kept at a specification of dB,

, and Hz, which is shown on
each plot as the target specification. The general conclusion
that can be drawn from the plots in Fig. 7 is that the digital
implementation is more efficient at higher signal gains ,14

14The choice of gain in the system is not arbitrary but rather a reflection of the
magnitude of the input signal relative to the full scale range of the ADC. If the
gain is too low (high) then the amplified signal may underutilize (saturate) the
range of the ADC, and thus achieve a lower effective resolution. The calcula-
tions shown assume that the system is appropriately designed to accommodate
the maximum expected input.
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Fig. 7. Relative power cost of analog vs. digital CS encoder implementations
across the specification space for (a) the compression factor
and amplifier gain , (b) the measurement resolution

and , and (c) and CF. In each plot is fixed so the CF is really a
sweep of . The targeted specification of dB,

, and Hz is shown on each plot along with
its corresponding cost contour. All power calculations are based on the 90 nm
CMOS process used for fabrication.

compression factors and measurement resolutions
. For the target specification, even potential inaccuracies

Fig. 8. Power breakdown of the (a) analog CS implementation and the (b) dig-
ital CS implementation over input signal bandwidth for a 90 nm CMOS tech-
nology where , and dB.

in the power models cannot account for several orders of mag-
nitude in power difference, so a digital implementation clearly
presents the more power efficient option.
The common power limitation of the analog implementation

stems from the noise and headroom requirements of the ampli-
fier. In each case, higher signal gain, compression (larger ),
and resolution translates into a lower input referred noise re-
quirement. The steep power cost for low noise in the OTA is then
multiplied by the number of parallel measurements, . The am-
plifier’s power dominance is shown in Fig. 8 where the power
breakdown of both the analog and digital CS implementations is
plotted across operating frequencies (input signal bandwidth).
As expected, the digital implementation is limited by leakage
at low sample rates and the ADC and OTA at higher sampling
rates.

B. Matrix Generation

The problem of generating the measurement matrix co-
efficients is a common problem for both analog and digital real-
izations, and inmany cases it can be the limiting factor for power
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Fig. 9. Block diagram of the measurement matrix generation block. The PRBS
seeds are loaded every th sample in conjunction with the resetting of the
accumulators.

and area. Since the matrix needs to approximate a random ma-
trix, one straightforward approach is to use a look-up table or
a memory to implement the matrix. However, to get compres-
sion factors of 10X or more with an of 50 requires an
greater than 500 which equates to at least 25,000 entries. Al-
though this may seem like a small amount of memory, it would
dwarf the area of the accumulators, ADC and AFE combined
and also dominate the power consumption since it is both large
(leaky) and needs to run at the Nyquist rate. Additionally, the
size of the memory would limit the maximum achievable com-
pression factor of the encoder. Another approach, which was
adopted in [19], is to use an independent PRBS generator for
each measurement, . While this is much more compact than
the memory implementation, it still roughly doubles the size
of the accumulator array when the length of the PRBS gener-
ator polynomial is close to the resolution of the measurement.
For example, generating an independent 2 -PRBS sequence
for each measurement would require 750 (15 50) flip-flops.
Even in [19], where the number of measurements is smaller, the
PRBS generators and associated clocks were the largest contrib-
utor to power consumption.
Since power consumption is paramount in sensor applica-

tions, we propose an alternative realization of the matrix genera-
tion that requires only two PRBS generators. As shown in Fig. 9,
the matrix generation circuit consists of the state of one PRBS
generator XOR’d with the output of a second PRBS generator
to create the columns of on a sample by sample basis. The
seed and sequence length of each PRBS is programmable to en-
able the synthesis of a wide variety of pseudo-random matrices.
It may seem that this same result could be achieved with only
a single PRBS generator since shifted versions of the same se-
quence should appear uncorrelated with one another. However,
because the input is often oversampled, the inner product of a
measurement matrix that is derived from a single shifted PRBS
sequence and the input will appear correlated. Not taking into
account any additional overhead to seed the PRBS generators,
the resulting implementation requires only 65 flip-flops for an
of 50 compared to what would have been 750 flip-flops to en-

able PRBS sequences with the same run length for the approach

described in [19]. With these improvements, the matrix gener-
ation power is reduced to less than 10% of the digital backend
(accumulator) power for the digital CS implementation.15

C. CS System Architecture

Fig. 10 shows the resulting block diagram of the proposed
system annotated with example waveforms of the signal com-
pression and reconstruction. Based on the analysis presented in
Section VI.A, which shows the digital CS encoder to be three
orders of magnitude more efficient for the targeted specifica-
tions, the architecture chosen for implementation is the digital
one shown in Fig. 6. The final implementation uses 16-bit ac-
cumulators in the encoder to avoid overflow for compression
block lengths up to 4000 samples for a 10-bit measurement
resolution target or alternatively an 11-bit resolution for 1000
sample block lengths. For the digital system, there is a small
incremental power cost to allow this additional flexibility to ex-
perimentally explore dependencies on resolution and compres-
sion factors.

VII. MEASUREMENT RESULTS

In order to validate the predicted hardware costs and demon-
strate the system, the encoder circuits shown in Figs. 6 and 9
were fabricated in a 90 nm CMOS process. The test chip con-
sists of a low-area 8-bit SAR ADC [31] and the CS encoder
block described in the previous section [10]. Fig. 11 shows the
die photo of the chip with the layout superimposed along with
the test infrastructure and the measured power for the CS en-
coder. The digital CS encoder, including control circuitry, ma-
trix generation and clock power, consumes only 1.9 W at 0.6 V
for sampling frequencies below 20 kS/s. As expected, the mea-
sured power is largely dominated by leakage for the sampling
frequencies of interest. Considering that the operating point is
in the leakage limited regime, the results correlate well with
the model developed in Section V which predicts 0.6 W of
power consumption for the digital backend and matrix gener-
ation (no clocks, buffers or control) under the same operating
conditions.
For testing, pre-recorded sensor signals were either driven

into the ADC from an external DAC or passed directly as dig-
itized data into the CS block through an on-chip deserializer.
The output of the ADC could be observed synchronously with
the output of the CS encoder block to enable a comparison be-
tween the quantized and reconstructed signals. Fig. 12 shows
an example of a continuous data acquisition for a CF of 20.
In this example, a pre-recorded EEG signal [32] driven by the
off-chip DAC is sampled, compressed and then reconstructed
off-line. The input is quantized by the ADC and continuously
compressed from 1000 8-bit ADC samples into 50 16-bit ac-
cumulator measurements netting an effective CF of 10.16 As
Fig. 12 shows, the reconstructed signal faithfully represents the

15In the case where the system is not in the leakage limited regime, dynamic
power consumed in the accumulators can be roughly halved by interpreting the
matrix as 1’s and 0’s rather than ’s and ’s as described in [10]. This allows
the accumulator clocks to be gated when multiplied with 0. To enable this, each
accumulator needs an additional bit or two to accommodate the any DC offset
in the signals.
16It should be noted that not all 16 bits in the accumulator are required to

recover the 8-bit signal so the actual compression performance is better than
10X.
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Fig. 10. Block diagram of the proposed sensor system and test chip showing the equivalent mathematical function of the CS encoder and reconstruction on an
example waveform.

Fig. 11. Die photo, testing infrastructure and measured power for the CS encoder.

Fig. 12. Measured result showing continuous data acquisition of an EEG signal
(driven by an off-chip DAC) showing the ADC output, compressed measure-
ments, and reconstructed waveform when 1000 input samples are com-
pressed to 50 measurements .

distinguishing features of the original ADC output despite being
somewhat lossy.
As with any lossy compression scheme, there is a question

of how much loss is acceptable. From Sections II, III and VI,
we know the quality of the recovered signal depends on the
signal sparseness and compression factor but it also de-
pends on the resolutions of the ADC and CS encoder. Since

both of these factors also translate into hardware cost, there
is an opportunity to further reduce the power if the recovered
signal quality is relatively insensitive to either parameter. To
explore this space, a synthetic EEG signal with over a dozen
non-zero elements is created and driven by the off-chip DAC
into the test chip. The measured signal-to-noise and distortion
ratio (SNDR)17 for the reconstructed signal under varying com-
pression factors and resolutions is plotted in Fig. 13. Since the
number of non-zero elements exceeds what can be reconstructed
from only 50 measurements, it is expected that the reconstruc-
tion will not be perfect. However, in each case, the large ampli-
tude spike signal is well recovered which is indicative of the CS
reconstruction process which is more robust when recovering
higher energy components of the signal. The effect of having a
lower resolution ADC, is emulated by masking out the ADC’s
LSBs in hardware while the effect of transmitting fewer bits
from the CS encoder is mimicked by dropping bits during re-
construction. As the plots show, there is little perceptual differ-
ence between the reconstructed signal from an 8-bit and 5-bit
ADC output. The same is true when the measurement resolu-
tion is reduced to 8-bits by dropping LSBs in the accumulator.
Relaxing both resolution requirements would further lower the
costs of the ADC and OTA as well as improve the compres-
sion factor (by transmitting fewer bits). Furthermore, it is in-
teresting to note that the reconstruction error from the on-chip
ADC output is lower than from an ideal ADC at lower resolu-
tions. This is due to lower quantization error introduced by the

17SNDR is defined as the reference signal energy divided by the error
energy between the reconstructed signal and the reference.
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Fig. 13. SNDR of the ideally and actual quantized signals and associated reconstructed signals for each versus measurement resolution and ADC resolution
. Select accompanying waveforms provide relative points of reference for the quality of the reconstructed signals.

non-linearity (non-uniform quantization) of the on-chip ADC.
This is not a wholly unexpected result as uniform quantizers are
not necessarily optimal for CS signal recovery [33].

VIII. DISCUSSION

Thus far, the work presented has focused on the design costs
of a CS system for a wireless medical sensor. In this section, we
discuss some general implications of the circuit analysis results
and possible extensions of our modeling framework and the CS
architecture.

A. Modeling Results

In the case of the digital system, the LE model is relatively
mature and there are fewmodeling assumptions so the predicted
results correlate well with the measured results. For the analog
system, however, there are some built-in assumptions to the
model that will generally produce optimistic power numbers.
For example, it is assumed that the circuit components perform
ideally such that the integrator and mixer perform perfect ac-
cumulation and multiplication like their digital counterparts. In
reality this will not be true, so when comparing the digital and
analog systems at the same specifications, the resulting system
performance will not be identical. For the power comparison in
this work, the results favored the digital implementation despite
the optimistic analog power estimate, but care should be taken
to analyze these assumptions when the system specifications re-
sult in similar power performance.

B. Model Applicability

The inputs to the power modeling framework presented con-
sist only of technology parameters, circuit performance speci-
fications and system specifications. So to the extent that these
inputs are well defined, the model is applicable to any CS ap-
plication. One clear extension of the model is to analyze the
power tradeoffs for AIC applications. AICs, which are identical
to the analog system presented, have been proposed as a way
to reduce the sampling frequencies of ADCs but it has never
been clear if it is generally a more power efficient approach than
an ADC alone. The cost of the digital system presented is sim-
ilar to a single ADC at higher frequencies so the AIC compar-
ison would likely yield similar conclusions as those presented
in Fig. 7. Similar to high-speed ADCs, whose performance is
often limited by sampling jitter, AICs will see a similar limita-
tion in the mixer block at higher frequencies as has been noted
in [19].

C. Compression Performance and Cost

The measured results have shown compression performance
that is on the same order of magnitude as previous feature ex-
traction systems [3]–[6] without requiring any decision making
at the sensor node, while the energy-efficiency and power cost
of the system is on par with or better than a custom feature ex-
traction ASIC [7]. However, since CS is performing data com-
pression rather than any decision making, it is more appropriate
to compare it to other compression/source coding schemes. For
comparison, we limit this discussion to lossless compression al-
ternatives since the quality of the recovered signal is known and
independent of the signal type.
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From Fig. 13, we can see that when the input signal (“Orig-
inal Signal”) is quantized to 8 bits , the quality (SNDR) of
the reconstructed signal is the same for accumulator resolutions

greater than 10 bits. Thus, the CS system still preserves the
peak reconstruction performance by transmitting only 10 bits
per measurement resulting in a coding efficiency of 0.5 bits per
sample. In other words, it takes the CS system 500 bits (50 mea-
surements 10 bits/measurement) to represent the 1000 sample,
8-bit input sequence.
Comparatively, the theoretical entropy of the same 8-bit input

signal is significantly higher at 3.2 bits per sample. This repre-
sents the coding efficiency that one might achieve with an infi-
nite length Huffman code [34] which is calculated as

(23)

where is the probability mass function of , and repre-
sents the distribution of samples in the signal. This result is
to be expected as the sample entropy does not take advantage
of correlations between samples in the signal. Typically, the
Lempel–Ziv–Welch (LZW) compression algorithm is more
suitable for this purpose as it is more efficient at encoding
repetitive data [35]. Again, for comparison, we pass the 8-bit
test signal used in Fig. 13 into an LZW encoder. The size of the
minimum encoded output from the LZW algorithm is 2950 bits
(295 10-bit code words) resulting in a coding efficiency of 2.95
bits per sample. So in this example, when compared to CS, a
6X penalty in transmission energy is paid to achieve lossless

compression.
For LZW to improve its coding efficiency, the block length

(and input length) of the encoder must increase such that longer
repetitions in the signal can be more efficiently encoded.18 For
LZW, this requires a larger code dictionary and longer code se-
quence to be stored before transmission, which requires greater
hardware cost. As seen in our power analysis, digital circuits
for low bandwidth applications, such as wireless sensors, will
often be leakage limited, so more storage implies more power.
Thus, for any alternative compression scheme to be competitive
with CS in terms of power, the storage requirements must be on
the order of 1000 flip-flops19 or less. In the case of LZW, the
example just described consumes only 3 k storage elements
for the coded output, but the corresponding dictionary needed
to generate that output code requires an 11 k memory20 where
the storage requirements for both the output code and dictio-
nary increase as higher compression is desired. Even without
accounting for differences in computational complexity (which
favors CS), the CS compression system, though lossy, offers 6X
higher compression at over 10X lower implementation (storage/
power) cost.

IX. CONCLUSION

This work has presented an application of CS theory that ad-
dresses the energy and telemetry bandwidth constraints of wire-

18For example, the code efficiency for encoding the test input sequence re-
peated twice is 2.34 bits/sample instead of 2.95 bits/sample.
19The CS system presented uses a total of 865 flip-flops in the accumulators

and PRBS generators.
20This calculation assumes that the codebook is initialized with all 256 (for

an 8-bit input) possible single sample sequences. The resulting code book size
for the test input signal has 550 20-bit codes (each code is a 10-bit sequence
prefix followed by the new 10-bit character).

less sensor nodes by enabling data compression without loss of
generality. The circuit models have been developed to enable
the power/performance analysis of analog and digital imple-
mentations of the proposed CS encoder over a range of system
specifications. The analysis reveals that a digital implementa-
tion, rather than the more commonly proposed analog encoder,
is a significantly more energy-efficient and suitable architecture
for wireless sensor applications. Furthermore, a compact and
efficient method of generating the encoding matrix on-the-fly is
presented that enables a low-power and low-area solution to one
of the design limitations of CS encoders. The fabricated test chip
demonstrates the first fully integrated circuit realization of a CS
encoder, validates the circuit model and choice of implemen-
tation, and demonstrates the ability to continually and blindly
compress bioelectrical signals at compression factors of 10X
or more without the need for any general purpose memory or
processing at the sensor node. The proposed system provides
a generic platform that can be adopted to compress data for
any application that captures sparse signals, and measurements
show that a proper choice of metrics could enable further hard-
ware reduction.
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