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Abstract—This work demonstrates a RISC-V vector
microprocessor implemented in 28 nm FDSOI with fully
integrated simultaneous-switching switched-capacitor DC–DC
(SC DC–DC) converters and adaptive clocking that generates
four on-chip voltages between 0.45 and 1 V using only 1.0 V
core and 1.8 V IO voltage inputs. The converters achieve high
efficiency at the system level by switching simultaneously to avoid
charge-sharing losses and by using an adaptive clock to maximize
performance for the resulting voltage ripple. Details about the
implementation of the DC–DC switches, DC–DC controller, and
adaptive clock are provided, and the sources of conversion loss
are analyzed based on measured results. This system pushes the
capabilities of dynamic voltage scaling by enabling fast transitions
(20 ns), simple packaging (no off-chip passives), low area overhead
(16%), high conversion efficiency (80%–86%), and high energy
efficiency (26.2 DP GFLOPS/W) for mobile devices.

Manuscript received September 01, 2015; revised December 13, 2015;
accepted January 04, 2016. Date of publication March 01, 2016; date of cur-
rent version March 29, 2016. This paper was approved by Guest Editor Masato
Motomura. This work was supported in part by BWRC, in part by ASPIRE, in
part by DARPA PERFECT Award Number HR0011-12-2-0016, in part by Intel
ARO, in part by AMD, in part by SRC/TxACE, in part by Marie Curie FP7, in
part by NSF GRFP, in part by NVIDIA Fellowship, and fabrication donation by
STMicroelectronics.

B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, B. Keller, S. Bailey, P.-F. Chiu,
N. Sutardja, R. Avizienis, A. Waterman, B. Richards, E. Alon, K. Asanović, and
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I. INTRODUCTION

D YNAMIC voltage and frequency scaling (DVFS) is a
popular technique to improve energy efficiency in digital

systems [1]. As performance requirements change over time,
the voltage can be changed appropriately to maximize energy
efficiency while meeting performance constraints.

DVFS is commonly implemented using off-chip voltage reg-
ulators, but off-chip regulation has a number of disadvantages.
Increased parasitics and an on-chip to off-chip feedback loop
cause slow mode transitions. Also, each voltage domain must
still be supplied through the package separately—limiting the
total number of voltages available and increasing packaging
costs and complexity. Lastly, off-chip regulators and support-
ing components, such as inductors, increase total system size
and cost.

Integrating regulators on-chip, and tightly connecting power
supply control with the microprocessor, offers significant
advantages by reducing system cost and supporting much finer
grain DVFS in terms of both operating mode period and volt-
age domain area. Transition times between modes can be
reduced, providing additional energy savings through more fre-
quent DVFS to better track changing performance requirements
[2]. Supporting many smaller voltage domains provides better
isolation between high and low performance regions, and sup-
plying hundreds of independent voltage domains is desirable
to improve the energy efficiency of many-core systems [3] [4].
Instead of requiring separate power grids for each domain or
needing to support full power delivery requirements through
each of a few shared voltage rails, on-chip switched-capacitor
DC–DC (SC DC–DC) only requires the delivery of two sup-
plies through the package, which simplifies package design and
makes it less expensive. Finally, no off-chip components are
necessary, providing significant platform size and cost reduc-
tions. Despite these numerous advantages, adoption has been
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TABLE I
COMPARISON TO PRIOR WORK OF DIGITAL SYSTEMS WITH INTEGRATED VOLTAGE CONVERSION

limited because low converter efficiency has negated the many
benefits of on-chip regulation.

Previous proposals for on-chip conversion include integrated
low-drop-out (LDO) regulators, buck converters with off-chip
inductors, and SC DC–DC converters. Wide voltage opera-
tion requires a regulator with a high efficiency across the
full range of output voltages, and LDO regulators suffer from
sub-50% efficiency at low operating voltages [5]. Buck con-
verters with on-chip switches and off-chip inductors offer high
efficiency but still require inductors to be integrated into the
package or PCB [6]–[8]. Because the quality of integrated
inductors is inherently worse than integrated capacitors [9],
buck converters with on-chip inductors report lower efficiency
[10]. By replacing inductors with capacitors, SC DC–DC con-
verters can be fully integrated on-chip, but achieving high
efficiency compared to designs with off-chip passives is chal-
lenging. Traditional interleaved SC DC–DC converters stabilize
the output voltage to minimize frequency margining for sup-
ply variation [11]. Standalone converters have demonstrated
high efficiency of 80%–90% [12]–[15]. However, full system
implementations that use converters to drive real digital loads
have reported limited efficiency of 52%–84% [16]–[18]. Table I
provides a summary of prior work.

This paper implements a different switched-capacitor con-
trol approach, simultaneous-switching, to achieve high effi-
ciency by switching all possible capacitance simultaneously
and using an adaptive clock to maximize clock frequency for
the resulting voltage ripple. The on-chip SC DC–DC con-
verter powers a RISC-V [19] scalar microprocessor with vec-
tor accelerator, enabling improved DVFS with fast transitions
between modes (20 ns), low area overhead (16%), simple
package requirements (two voltages with no off-chip com-
ponents), scalability to numerous voltage domains, and high
efficiency. Section II describes the reasons for the improved
efficiency of simultaneous-switching over interleaved convert-
ers. Section III provides details about the design and implemen-
tation. Section IV analyzes measurement results from the chip,
and discusses different sources of efficiency loss.

Fig. 1. Theoretical efficiency improvement of the simultaneous-switching SC
DC–DC converter. The proposed converter achieves higher efficiency than a
conventional interleaved design by avoiding charge sharing.

II. SIMULTANEOUS-SWITCHING VERSUS INTERLEAVED

SC DC–DC CONVERTERS

Maximizing conversion efficiency of DC–DC converters
is essential for on-chip regulation, because low efficiency
may cancel the energy efficiency gains of DVFS. Losses in
SC DC–DC converters can be categorized into four separate
components [15]: charge-sharing SC loss (Pcfly), conduction
loss (Pcond), switching loss (Pgate), and bottom-plate loss
(Pbottom). The contribution of each loss term to total losses
for an interleaved and simultaneous-switching SC converter is
shown in Fig. 1. After design-time optimization of switch and
capacitor size, the only parameter that changes efficiency is
the switching frequency (fsw) and the associated ripple size
(ΔV ). Pcfly is inversely proportional to switching frequency,
while Pgate and Pbottom are proportional—therefore, optimiz-
ing efficiency requires setting fsw such that the sum of losses is
minimized.
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Fig. 2. Proposed simultaneous-switching SC DC–DC converter switches every
DC–DC unit cell simultaneously to avoid charge sharing.

The efficiency differences between interleaved and
simultaneous-switching SC DC–DC converters arise from
the charge-sharing loss term. Fig. 2 compares the over-
all simultaneous-switching and interleaved approaches.
Interleaved converters switch one unit cell at a time to stabilize
the output voltage and remove losses due to unnecessarily high
voltages for a fixed clock frequency, but unit cells share charge
with each other and Pcfly remains a significant loss compo-
nent. Simultaneous-switching operation improves converter
efficiency by switching all unit cells simultaneously to avoid
charge sharing losses, while an adaptive clock translates the
rippling supply voltage into additional performance to elimi-
nate system-level efficiency losses caused by the voltage ripple
on the core supply [20]. For simultaneous-switching converters
driving an ideal resistive load, perfect frequency adaptation
would completely remove all charge-sharing loss (Pcfly = 0).
By removing the only loss component that is proportional to
ripple size, the switching frequency can be decreased to further
reduce the other loss terms. In a real implementation, however,
nonidealities cause a nonzero Pcfly, and Section IV-D analyzes
this loss further by using measured results.

III. INTEGRATED SYSTEM IMPLEMENTATION

Fig. 3 shows the chip architecture. The 64 bit scalar core
implements the free and open RISC-V instruction set [19]. A
high-performance 64 bit vector accelerator improves energy
efficiency by amortizing instruction fetch and control overhead
for data-parallel operations. The processor boots Linux and exe-
cutes compiled scalar and vector code. Two voltages, a 1.0 V
core and 1.8 V I/O supply, are delivered to the on-chip convert-
ers. The SC DC–DC converter is partitioned into twenty-four
90 µm × 90 µm unit cells surrounding the core (16% area over-
head) and generates four dynamically reconfigurable average
ideal output voltages of 1.0, 0.9, 0.67, and 0.5 V. These fixed
ratios were chosen in order to utilize common core and I/O
voltages as inputs, and for their low output impedance coeffi-
cients [21]. Continuous voltage selection for DVFS is achieved
by hopping between discrete SC DC–DC modes [20], [22], and
these specific voltages were chosen as a tradeoff between DVFS
tuning granularity and implementation complexity. A shared

Fig. 3. System block diagram showing the scalar and vector microprocessor
powered by on-chip voltage converters.

Fig. 4. Pipeline diagram of the Rocket scalar core.

SC DC–DC controller switches all of the unit cells simultane-
ously. An adaptive clock generator adjusts the clock period each
cycle based on the instantaneous converter output voltage, and a
high-speed receiver is used to provide a 2 GHz reference clock
for the clock generator’s DLL. Level shifters and asynchronous
FIFOs separate the core and uncore voltage domains. Large ran-
dom variations in SRAM memory cells typically limit voltage
scaling, so custom SRAMs were implemented to enable voltage
scaling down to 0.45 V. Each 4 KB SRAM uses 8 T cells and
has 512 words of 72 bits with 2:1 interleaving.

A. Scalar Core

The Rocket scalar core, shown in Fig. 4, is a 64 bit 5-stage
single-issue in-order pipeline that executes the RISC-V instruc-
tion set architecture (ISA). It is carefully designed to minimize
the impact of long clock-to-output delays of SRAM macros.
For example, the pipeline resolves branches in the memory
stage to shorten the critical path through the bypass path, but
relies on extensive branch prediction (64 entry branch tar-
get buffer, 256 entry two-level branch history table, and a
2 entry return address stack) to mitigate the increased branch
resolution penalty. The blocking 16 KB instruction cache is
private to the scalar core, while the nonblocking 32 KB data
cache is shared between the scalar core and the vector accel-
erator. The scalar core has a memory-management unit that
supports page-based virtual memory. Both caches are virtually
indexed and physically tagged, and have separate TLBs that are
accessed in parallel with cache accesses. The core has an IEEE
754-2008 compliant floating-point unit that executes single-
and double-precision floating-point operations, including fused
multiply-add (FMA) operations, with hardware support for
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Fig. 5. Block diagram of the Hwacha vector accelerator.

subnormal numbers. The resulting Rocket scalar core is com-
petitive to industrial designs in terms of performance, power
consumption, and area [23].

To reduce design complexity, the microprocessor is imple-
mented as a tethered system. Unlike a standalone system, a
tethered system depends on a host machine to boot, and lacks
any I/O devices such as a console, mass storage, frame buffer,
and network card. The host (e.g., an x86 laptop) is connected to
the target tethered system via the host–target interface (HTIF), a
simple protocol that lets the host machine read and write target
memory and control registers. All I/O-related system calls are
forward to the host machine using HTIF, where they are exe-
cuted on behalf of the target. Programs that run on the scalar
core are downloaded into the target’s memory via HTIF. The
resulting system is able to boot modern operating systems, such
as Linux, utilizing I/O devices residing on the host machine,
and can run standard complex applications such as the Python
interpreter.

B. Vector Accelerator

The Hwacha vector accelerator, shown in Fig. 5, is a
decoupled single-lane vector unit optimized for ASIC designs.
Hwacha executes vector operations temporally (split across
subsequent cycles) rather than spatially (split across parallel
datapaths), and has a vector length register that simplifies vector
code generation and keeps the binary code compatible across
different vector microarchitectures with different numbers of
execution resources [24].

The Rocket scalar core sends vector memory instructions and
vector fetch instructions to the vector accelerator. A vector fetch
instruction initiates execution of a block of vector arithmetic
instructions. The vector execution unit (VXU) fetches instruc-
tions from the private vector instruction cache (VI$), decodes
instructions, clears hazards, and then sequences vector instruc-
tion execution by sending multiple μops down the vector lane.
The vector lane consists of a banked vector register file built
out of 1R1W SRAM macros, operand registers, per-bank inte-
ger ALUs, and long-latency functional units. Multiple operands
per cycle are read from the banked register file by exploiting
the regular access pattern with operand registers used as tem-
porary space [23]. The long-latency functional units such as
the 64 bit integer multiplier, single- and double-precision FMA
units are shared between the scalar core and the vector accel-
erator. The vector memory unit (VMU) supports unit-strided,

Fig. 6. Four switching topologies of the reconfigurable SC DC–DC design.

constant-strided, and gather/scatter vector memory operations
to the shared L1 data cache. Vector memory instructions are
also sent to the vector runahead unit (VRU) by the scalar core.
The VRU prefetches data blocks from memory and places them
in the L1 data cache ahead of time to increase performance of
vector memory operations executed by the VXU [24], [25].

The resulting vector accelerator is more similar to traditional
Cray-style vector pipelines [26] than SIMD units such as those
that execute ARM’s NEON or Intel’s SSE/AVX instruction
sets, and delivers high performance and energy efficiency while
remaining area efficient.

C. SC DC–DC Unit Cell

This system uses a reconfigurable DC–DC converter unit
with a topology similar to [15], where separate networks of
switches allow different conversion ratios for the same shared
flying capacitor. Due to the availability of two different input
voltages in the IO pads, two sets of switches are used: one for
the configurations operating off a 1 V input and the other one
for configurations operating off a 1.8 V input. Four possible
discrete SC DC–DC configurations, shown in Fig. 6, gener-
ate voltages between 0.5 and 1 V to enable a wide operating
range. The converter has two phases: in the first phase φ1,
the flying capacitor is connected in series with the output,
while in the second phase φ2, the flying capacitor is con-
nected in parallel. The 1 V input is divided with a 2:1 and
3:2 ratio to generate the 0.5 and 0.67 V modes, while the
1.8 input is divided with a 2:1 ratio to generate the 0.9 V
mode. All 1 V input switches are implemented as LVT devices
to reduce their ON resistance, while the larger 1.8 V input
switches are implemented as RVT devices to reduce their
leakage. Additionally, the largest switches are forward-body-
biased to reduce their ON resistance when they are active (i.e.,
in 1.8 V 1/2 mode). The flying capacitor is implemented as
MOS capacitance with two layers of MOM capacitance above.
Parasitic bottom-plate capacitance is reduced by using a series
connection of the box, well, and substrate capacitances [27].
SC DC–DC converters are best suited for low-power-density
applications where the limited capacitive density of on-chip
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Fig. 7. SC DC–DC controller. The circuit simultaneously toggles the phase
of all unit cells when converter output voltage falls below specified reference
voltage.

capacitors is sufficient and the area overhead of converters
is reasonable. While this implementation uses MOS capaci-
tors to reduce cost, area overhead can be further reduced with
MIM capacitors. Twenty-four unit cells were used in the design
for a total flying capacitance of 2.1 nF. For testing and mea-
surement purposes, the bypass mode of the converter uses the
1 V mode to connect the regulator’s 1 V input rail to Vout of
the microprocessor through power gates in the SC DC–DC unit
cells, and the 1 V input rail is supplied by the desired bypass
voltage to directly control the voltage of the microprocessor.

D. SC DC–DC Controller

The purpose of the SC DC–DC controller block is to trigger
the switching of the converter unit cells in order to guarantee
that the converter can provide the required current to the proces-
sor at all times. Analytically, the converter output current Iout
needs to equal the load current IL, which is assumed constant
over one switching cycle Tsw

IL = Iout = α× Cfly ×ΔV × fsw. (1)

The topology proportionality constant (α) and the total amount
of flying capacitance in the converter Cfly are set at design
time. During runtime, the SC DC–DC controller needs to max-
imize efficiency by appropriately controlling the amplitude of
the voltage ripple (ΔV ) and the converter switching frequency
(fsw).

This design implements a lower-bound (hysteretic) con-
troller, shown in Fig. 7, that switches the cells when the output
voltage Vout drops below a reference voltage Vref—explicitly
setting ΔV and implicitly modulating fsw in response to chang-
ing load current [28]. Lower-bound control was chosen for
quick reaction to changes in the load current IL and to avoid
switching the converter unnecessarily quickly.

The controller is composed of two main components:
clocked comparators to detect when Vout falls below Vref , and a
finite-state machine (FSM) that generates the toggle signal for
the unit cells. To guarantee that the toggle signal arrives simul-
taneously at all cells, the SC DC–DC controller is centralized,
and the toggle signal is routed as a clock tree to minimize skew
among cells.

Three separate StrongARM [29] comparators are used: the
1 V 2:1 mode uses the PMOS-based-comparator (for the lowest

Fig. 8. State transition of the FSM at the output of the comparator which
ensures correct operation in the case where Vout remains below Vref .

common mode input voltages), while the other modes use two
NMOS-input-based comparators, with one operating on the ris-
ing edge of the clock and the other on the falling edge of the
clock (for higher common mode input voltages). A multiplexer
changes Vref for different conversion ratios. In a lower-bound
controller, the shortest achievable time between two switching
events (tsw,min) is set by the propagation time of the toggling
signal from the comparator output to the final power switches.
The comparator clock frequency is set to 2 GHz to maximize
power density by allowing all unit cells to toggle every tsw,min

during high current loads, and to minimize the time that Vout

remains below Vref before detection triggers a toggle event.
A FSM, shown in Fig. 8, sends the toggle signal to the unit

cells based on the comparator output. The rising edge of the
comparator output signal comparator_out toggles transitions
between the two converter phases. If comparator_out remains
high for multiple cycles (because a large current spike keeps
Vout below Vref even after a switching event), a counter incre-
ments and forces a toggle when it reaches an overflow value.
The overflow count is set to be slightly longer than the propaga-
tion time from the comparator through the toggle signal clock
tree and to the switches, to avoid spurious switching events.
The reset state is used during reset and during converter mode
transitions.

E. Adaptive Clock

The adaptive clocking scheme, shown in Fig. 9, changes
the clock frequency on a cycle-by-cycle basis to ensure that
the system operates at the maximum instantaneous frequency
obtainable for the instantaneous voltage [30]. The rippling sup-
ply voltage from the SC DC–DC converters powers a tunable
replica circuit (TRC), adjustable from 4 to 124 FO1 inverter
delays with a delay setting register, to mimic the critical path
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Fig. 9. Adaptive clock system with a tunable replica path. The system instan-
taneously changes the clock frequency to track the critical path for constantly
changing output voltage.

Fig. 10. Measurement results of the replica timing path. The use of different
tuning codes for each DC–DC mode allow the replica path to closely track the
critical path.

delay at each instantaneous voltage level. When the TRC gen-
erates a pulse, the controller selects one of the 16 DLL phases
to send to the core. Separate TRC paths control the high and
low clock periods to set the duty cycle. This is a free-running
clock, in which nothing determines the average frequency other
than the average delay through the TRC.

During operation, the first TRC output pulse asynchronously
resets the clock toggler flip-flop to generate the falling edge of
the clock output. The second TRC output pulse synchronizes
the rising edge of the adaptive clock with the DLL refer-
ences. Level shifters are located between the TRC and the
controller. Since the DLL references and the TRC output pulse
are fully asynchronous, a watchdog block monitors the sys-
tem for metastability. Fig. 10 shows the ability of the adaptive
clock to track changes in voltage by using the bypass mode
to measure average frequency for different delay settings for
the TRC. Annotations above the plot indicate the approximate
voltage ranges seen in each SC DC–DC mode. Because the
inverter-based replica path delay characteristics do not match
the critical paths of the processor, a single delay setting poorly
tracks the processor critical path over the entire voltage range.
However, manual calibration of specific delay settings for each

Fig. 11. Annotated floorplan of the design shows the placement of the SC
DC–DC switches, controller, and adaptive clock around the RISC-V core.

TABLE II
CHIP SUMMARY

SC DC–DC mode allows accurate tracking within the small
voltage ripple in each mode.

F. Physical Design

A multivoltage and multiclock design flow was used to con-
struct the processor. Fig. 11 shows the processor floorplan, with
the dotted red line separating the large core voltage domain at
the top from the small uncore voltage domain at the bottom and
sides of the chip. The custom SRAMs were manually placed
within the core voltage domain. The DC–DC unit cells surround
the core to minimize voltage drop. Two layers of thick upper-
layer metal were dedicated to a power grid, where Vout and
GND each utilize 25% of the chip area in each layer, and power
rail analysis estimates a 2 mV voltage drop at 1 V and 100 mA
(nominal operating condition). Ideally, converter power would
come from bumps directly above the converter, but because
only wire-bond packaging was available, all of the power is sup-
plied through the pad frame in this implementation. Outside the
core, Vout rails are not necessary, so the input voltages to the
converters (VDD,1.0 and VDD,1.8) use the majority of the power
routing resources to connect power coming from the pad frame
to the converters.

IV. EXPERIMENTAL RESULTS

A prototype system was designed and implemented [31]
in 28 nm ultra-thin body and BOX fully depleted silicon-on-
insulator (UTTB FDSOI) technology [32]. Fig. 23 and Table II
show the die micrograph and chip summary, respectively.
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Fig. 12. Block diagram of the test setup for the system.

Fig. 13. Oscilloscope measurements of the core voltage Vout through a sense
pad for all four on-chip regulation modes.

A. Measurement Setup

The measurement setup is shown in Fig. 12. The die is pack-
aged using chip-on-board wire bonding to a small daughter-
board. There is decoupling capacitance for the 1 and 1.8 V
inputs to the converter both on the chip and on the daughter-
board. A multimeter or oscilloscope connects to sense points on
the daughterboard to measure the output voltage rail supplied
by the SC DC–DC converter. The daughterboard is connected
over FMC to a motherboard which generates the necessary
clock, supplies, and reference voltages. Additional testpoints on
the motherboard connect to a sourcemeter to measure the input
power provided to the SC DC–DC converter. The chip is con-
trolled from a Zedboard, which includes a network-accessible
ARM core with FPGA to connect to main memory and emulate
system call operations.

B. DVFS for Improved Energy Efficiency

The measured traces of the rippling core voltage domain
for all four possible configurations are shown in Fig. 13.
The actual average output voltage is lower than the ideal
divided output voltages due to charge sharing with the inherent
decoupling capacitance of the core. (The relationship between
ripple size and average output voltage is further discussed
in Section IV-E.) For all possible converter topologies with
adaptive clocking, the processor successfully boots Linux and

Fig. 14. Oscilloscope measurements of the core voltage Vout transitioning
between different DVFS modes, illustrating 20 ns transitions.

runs user applications, demonstrating that complex digital logic
operates reliably with an intentionally rippling supply voltage.
A small margin on the minimum operating voltage (Vmin) is
required to support operation at Vref instead of Vavg.

Tight integration of the on-chip SC DC–DC converter with
the processor enables extremely fine-grained DVFS. Fig. 14
shows that the processor can switch between operating modes
in approximately 20 ns. These fast mode transitions enable new
DVFS algorithms that can operate at much shorter time scales.

The main goal of on-chip conversion is to improve energy
efficiency through DVFS. Fig. 15(a) shows the energy effi-
ciency of the system, for both the baseline system with ideal off-
chip regulation (bypass mode) and the four topologies. Energy
efficiency is measured using a double-precision floating-point
matrix multiplication kernel in terms of billions of floating-
point operations per watt (GFLOPS/W), which is the inverse
of energy per operation. Fig. 15(b) shows how different topolo-
gies change the absolute power and delay of the processor. FBB
of the microprocessor in FDSOI enables threshold voltage con-
trol during runtime to trade off performance and power [33], as
shown for this design in Fig. 15(c) and (d). By using the on-
chip converter to generate the lowest output voltage, the system
achieves a peak efficiency of 26.2 GFLOPS/W.

C. System Efficiency

The efficiency of voltage converters is generally computed
by measuring the current and voltage on both the input and
output of the converter to measure the ratio of power deliv-
ered to power supplied. However, for the proposed system,
efficiency defined in this way is not easily measurable. First, it
is difficult to measure on-chip voltage and current, because the
voltage is rippling very quickly. Second, even if power output of
the converter could be measured, this metric would ignore the
impact of the adaptive clock, which is an important loss compo-
nent. Therefore, a different method is required to measure the
efficiency of the implemented system.

This paper defines system efficiency with a metric that fairly
accounts for the adaptive clock and does not require measur-
ing on-chip voltage and current. To characterize the processor
load, the bypass mode is used to directly supply the core with an
ideal off-chip voltage source. A self-checking benchmark is run
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Fig. 15. Energy efficiency and performance versus voltage characteristics for the vector accelerator. (a) Energy efficiency of double-precision, floating-point,
matrix multiplication kernel running on the vector accelerator. (b) Power versus delay tradeoff for bypass mode and different DC–DC topologies. (c) Impact of
forward body bias (FBB) on system energy. (d) Impact of FBB on operating frequency.

Fig. 16. Measured system efficiency (including overhead of nonideal adaptive
clocking).

for a fixed number of cycles at different voltages, and a binary
search is performed at each voltage point to find the maximum
frequency. At the maximum frequency, the total elapsed time
and total energy to run the fixed-length benchmark is measured,
where the energy is computed by measuring the current drawn
from the off-chip supply and the delivered voltage is measured
from sense points on Vout, to remove the voltage drop across
the on-chip bypass-mode power gates from the efficiency cal-
culation. This provides the blue curve in the figure of energy
versus time, and represents a 100%-efficient off-chip regulator.

Then, for each DC–DC mode, the same benchmark is run
for the same number of cycles, and the total elapsed time and
energy is measured. Due to nonidealities of the converter, it
takes more energy to perform the same task in the same amount
of time. Therefore, system efficiency is defined as the ratio
of energy required to finish the same workload in the same
time. This metric includes all sources of overhead, including
nonidealities in the adaptive clock. Fig. 16 shows the mea-
sured voltage conversion efficiency ranges from 80%–86% for
different output voltage modes.

D. Loss Analysis

The 14%–20% system efficiency losses are attributed to
both converter losses and nonideal adaptive clocking based on
measured results.

Fig. 17. Approximate converter efficiency measured by numerically integrating
voltage waveforms with precharacterized load current.

1) Standalone Converter Losses: The efficiency of the con-
verter alone is estimated by characterizing the power at each
voltage using a repetitive microbenchmark and numerically
integrating the waveform at Vout to determine the ratio of input
to output power. These results are an approximate measure of
efficiency, because the ripple measured from off-chip will not
perfectly match the true on-chip voltage waveform. Fig. 17
shows that the converter alone achieves a maximum efficiency
above 90%, and compares this efficiency to the measured sys-
tem efficiency (and the corresponding power density of the
benchmark) and the hypothetical efficiency for a system run-
ning with a fixed frequency clock at the minimum observed
voltage. A wide range of power densities was measured by
changing the proportion of 24 SC DC–DC unit cells that are
enabled, which contributes to the discontinuities in the data.

2) Adaptive Clocking Losses: Analytical modeling of the
adaptive clock, based on measured results, predicts a 5%–10%
efficiency loss due to nonideal adaptive clocking. A simple
experiment, illustrated in Fig. 18, shows how clock frequency
margins, required to compensate for imperfect adaptive clock
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Fig. 18. Simulated impact of an increase in timing margin on system efficiency.

Fig. 19. Numerical simulation based on measured results that estimates the
efficiency loss due to nonideal adaptive clocking.

generation, translate to system efficiency losses. First, the char-
acteristic total energy versus total runtime of the core is plotted
based on measured results. A hypothetical converter with 90%
efficiency would require more total energy to complete the same
workload in the same amount of time. If the hypothetical con-
verter also increases the critical path delay by 5% due to any
nonidealities, the curve shifts to the right due to the increase
in runtime, and shifts slightly up due to increased leakage
integration time. These shifts correspond to a decrease in effi-
ciency, because an increase in runtime can also be interpreted as
requiring a higher operating voltage to achieve the same over-
all runtime. In this case, a 5% increase in average delay would
equate to an approximately 5% decrease in system efficiency.
The exact translation from delay increase to efficiency depends
on the slope of the energy–delay curve for a particular design
and technology.

The quantitative effect of nonideal adaptive clocking can
be estimated with numerical simulation based on measured
results. The simulation, shown in Fig. 19, divides a voltage
ripple into small time steps and tracks the progression of a
signal through the replica, clock, and critical path based on
the delay at each instantaneous voltage. The voltage ripple and

Fig. 20. Simulated energy efficiency improvement for interleaved and
simultaneous-switching converters with differing loads. The frequency at max-
imum efficiency is annotated for each conversion method.

voltage versus frequency characteristics of the replica and crit-
ical path are supplied by measured results, while the insertion
delay is supplied by back-annotated timing analysis. Two main
effects cause nonideal adaptive clock tracking. First, each path
has different characteristic delay versus voltage tradeoffs due
to different gate types or different relative contribution of gate
or wire delay. Second, the insertion delay of the clock tree
means that the replica and critical path see different voltages,
but the clock tree itself will compensate to diminish this effect
[34]. Therefore, after many simulated cycles there is a distri-
bution of extra FO4 stages that could be computed by the core
before the margined adaptive clock edge arrives. The average
of the distribution corresponds to the overhead of the adaptive
clock, and the numerical simulation predicts an average cycle
time increase of 7%. The losses due to nonideal clocking are
already included in the system efficiency measurement, so this
prediction serves as an estimate of the relative contribution of
nonideal clocking to total losses.

E. Effect of Vref on Efficiency

As discussed in Section III-D, the choice of Vref sets the
size of the output voltage ripple, and the load current auto-
matically modulates the switching frequency fsw. For the ideal
case shown in Fig. 1, simultaneous-switching converters have
essentially zero losses from PCfly

, but in reality, a simultaneous-
switching converter will still charge-share with the intrinsic
capacitance of the load. Fig. 20 analytically compares the effi-
ciency as a function of switching frequency for three 1 V
2:1 mode converters: a conventional interleaved converter, the
proposed simultaneous-switching converter, and a hypotheti-
cal simultaneous-switching converter with no load capacitance.
Because the interleaved converter has more charge-sharing
losses, it incurs high losses for large ripple sizes at low switch-
ing frequencies, and therefore has a higher optimal switching
frequency. A simultaneous-switching converter that closely
matches the implemented system, with an output load capac-
itance equal to the converter capacitance, has charge-sharing
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Fig. 21. Effect of the lower bound reference voltage on the average output
voltage, average power, and maximum processor frequency for the 1 V 2/3
mode.

Fig. 22. Effect of lower bound reference voltage on efficiency for the 1 V 2/3
mode.

Fig. 23. Die micrograph.

losses with the output load that cause an approximate 5% effi-
ciency loss versus an ideal simultaneous-switching converter.
No explicit decoupling capacitance was added to the core in
order to minimize charge-sharing losses.

Charge sharing also causes the average output voltage to fall
below the ideal divided output voltage for each converter type.
Measurements confirm that charge sharing with the proces-
sor’s intrinsic capacitance causes the average output voltage to
change for different Vref choices, as shown in Fig. 21. While an
optimal Vref maximizes efficiency, suboptimal Vref points could
be chosen to achieve finer-grain control of the average out-
put voltage (and therefore average performance) than switching
between the fixed conversion topologies. As the load current
changes, the optimal Vref will also change.

Fig. 22 shows measured system efficiency for different Vref

(and therefore different ripple size and switching frequency).
The peak efficiency occurs at a point where the sum of charge
sharing losses (proportional to ripple size) and switching losses
(proportional to switching frequency and therefore inversely

proportional to ripple size) is minimized. Additionally, larger
ripples increase the range in voltages seen by the adaptive clock,
reducing tracking between the replica path and the core’s crit-
ical path, and further decreasing efficiency for lower Vref and
larger ripple. In this implementation, Vref is chosen for maxi-
mal long-term average efficiency, but in future work, Vref can
be automatically changed to match expected load conditions.

V. CONCLUSION

The combination of the RISC-V architecture, low-voltage
SRAM, and wide operating range DVFS enabled by on-
chip voltage conversion and adaptive clocking achieves 26.2
GFLOPS/W with the 1 V 1/2 DC–DC configuration when
computing double-precision matrix-multiplication using the
vector accelerator. A simultaneous-switching SC DC–DC built
with MOS capacitors and a centralized lower-bound controller
reconfigures to provide four output voltages between 0.45
and 1 V, and achieves high converter efficiency by avoiding
charge sharing. An adaptive clock translates high converter
efficiency to high system efficiency by maximizing clock fre-
quency for the voltage waveform to the core. Measurement
results show that the system achieves 80%–86% system effi-
ciency, with losses attributed to traditional converter switching
losses, charge-sharing with the intrinsic capacitance of the
core, and imperfect clock tracking. The simultaneous-switching
approach described in this paper provides a low cost and high
efficiency DVFS solution for low-power mobile devices.
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