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Abstract— This paper presents a fully integrated shunt-based
current sensor that supports a 25-V input common-mode range
while operating from a single 1.5-V supply. It uses a high-
voltage beyond-the-rails ADC to directly digitize the voltage
across an on-chip shunt resistor. To compensate for the shunt’s
large temperature coefficient of resistance (∼0.335%/°C), the
ADC employs a proportional-to-absolute-temperature voltage
reference. This analog compensation scheme obviates the need
for the explicit temperature sensor and calibration logic required
by digital compensation schemes. The sensor achieves 1.5-μVrms
noise over a 2-ms conversion time while drawing only 10.9 μA
from a 1.5-V supply. Over a ±4-A range, and after a one-point
trim, the sensor exhibits a 0.9% (maximum) gain error from
−40 °C to 85 °C and a 0.05% gain error at room temperature.

Index Terms— Beyond-the-rails, current sensing, high-side,
high-voltage (HV) interface circuit, metal shunt resistor,
proportional-to-absolute-temperature (PTAT) voltage reference,
temperature compensation, temperature sensor, �� ADC.

I. INTRODUCTION

ACCURATE current sensing is critical in many appli-
cations including battery management, motor control,

and over-current protection. Several types of current sensors
exist: inductive sensors (e.g., Rogowski coils), magnetic field
sensors (based on the Hall effect or fluxgates) [1]–[3] and
shunt-resistor-based sensors [4], [5]. Inductive and magnetic
sensors enable non-contact current measurements and are well
suited to high-voltage (HV) applications (>100 V). However,
inductive sensors can only sense ac current, and both types of
sensors are relatively complex and expensive. By comparison,
shunt-resistor-based sensors are simple and low-cost and so
are widely used. As shown in Fig. 1, current can be sensed
by either placing a small shunt resistor between the load
and ground or between the battery and the load. The former
configuration is referred to low-side current sensing, while the
latter is referred to high-side current sensing.
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Fig. 1. Low-side current sensing (left) and high-side current sensing (right).

High-side current sensing has two major advantages over
low-side current sensing: it can detect high load current caused
by accidental shorts, and it does not increase the resistance in
the ground path. However, it does require interface circuits
that can handle input common-mode (CM) voltages up to the
battery voltage, which can be several tens of volts.

To accommodate such large voltages, high-side current
sensors will typically employ precision HV instrumentation
amplifiers (IAs) [6], [7] to shift the small voltage drop across
the shunt VS down to a low-voltage (LV) domain for fur-
ther processing. In [6], the IA employs a current-feedback
topology. To handle large CM voltages, its input stage is
powered from the HV domain, resulting in a significant power
consumption. In [7], the IA employs a chopped capacitively
coupled topology. Its input capacitors block the large CM
voltage, achieving a ±30-V input CM range (ICMR) without a
separate HV supply. However, in both cases, an extra LV ADC
is required to provide a digital output. To further reduce the
system complexity, an HV beyond-the-rails ADC is proposed
in [8], which achieves a wide (±30 V) ICMR while operating
from a single 5-V supply.

To build fully integrated current sensors, shunt resistors
can be realized by using the metal layers of a CMOS
process [4], [5], [9]. However, the resulting shunt will then
have a large temperature coefficient of resistance (TCR)
of 0.335%/°C, and so a temperature compensation
scheme (TCS) is required to achieve good accuracy.
In [4] and [5], a digital TCS is proposed that achieves state-
of-the-art gain error (0.3%) over the industrial temperature
range. However, it requires a temperature sensor whose
output is used to perform a polynomial-based correction on
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Fig. 2. Block diagram of the current sensor in [5].

Fig. 3. System-level architecture of the proposed current sensor.

the ADC’s output via calibration logic (Fig. 2), which leads
to increased complexity and power consumption.

In this paper, a fully integrated high-side current sensor [10]
is presented that supports a 25-V ICMR while operating from
a single 1.5-V supply. A beyond-the-rails ADC is used to
directly digitize the shunt voltage, thus obviating the need for
HV IAs. In addition, an analog TCS obviates the need for
extra temperature sensor and calibration logic. As a result, the
sensor is 10× more energy efficient than [5], while achieving
a 0.9% (maximum) gain error from −40 °C to 85 °C and
a 0.05% gain error at room temperature.

The rest of this paper is organized as follows. Section II
briefly introduces the system-level architecture of the sensor.
Sections III and IV describe the detailed circuit implementa-
tion of the beyond-the-rails ADC and the reference generator,
respectively. Experimental results are presented in Section V,
and Section VI provides the conclusion.

II. SYSTEM-LEVEL ARCHITECTURE

Fig. 3 shows the system-level architecture of the
proposed current sensor. It consists of an on-chip
metal shunt resistor, a beyond-the-rails ADC, and a

Fig. 4. Cross section of metal shunt RS(top) and its chip photograph (bottom).
(a) Cross-section of RS. (b) Chip photo of RS.

proportional-to-absolute-temperature (PTAT) reference volt-
age generator (RVG). The RVG generates a PTAT voltage
VPTAT that substantially compensates for the TCR of RS,
which, serendipitously, is itself almost exactly PTAT.

A. Shunt Implementation

Fig. 4 shows the cross section of the shunt RS. It consists of
four metal layers M2–M5 connected in parallel and is similar
to the ones described in [4] and [5]. The oxide separating the
metal layers from the substrate provides galvanic isolation.
To facilitate the TCS, temperature-sensing NPN transistors are
located underneath the shunt to ensure good thermal coupling.
This is further enhanced by using thermal vias to connect the
dummy M1 layer around NPNs to the shunt.

As reported in [5], a metal shunt exhibits about 0.1% drift
during a long-term (24 days) measurement at high current
levels (±5 A) and high ambient temperature (85 °C). This is
caused by electromigration and can be mitigated by reducing
the current density [11], [12]. Hence, the metal shunt in this
design (880 μm × 450 μm) is 20% wider than the one in [4]
for the same resistance (10 m�). In addition, the total sensor
system was designed for a maximum sensing current of 4 A,
which represents a further 20% reduction in current density
compared to the 5-A sensor reported in [4]. To minimize the
parasitic resistance between the shunt and the outside world,
each side of the metal shunt is directly connected to the test
PCB via 18 short (<1 mm) bond wires. (Each bonding wire
has a parasitic resistance of roughly 300 m�.)

B. Analog Temperature Compensation Scheme

As shown in Fig. 3, instead of a bandgap voltage, a PTAT
voltage VPTAT (= kV × TA) is employed as the ADC’s
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Fig. 5. PTAT reference VPTAT and resistance of RS over temperature.

Fig. 6. Simulated Dout variation over temperature when a bandgap reference
(top) and a PTAT reference (bottom) are applied to the ADC.

reference. Since the metal shunt’s temperature dependence
is almost perfectly PTAT (RS ≈ kR × TA, TA is absolute
temperature) over the industrial temperature range (Fig. 5),
the shunt’s 1st-order temperature dependence is corrected at
the ADC’s output Dout in a ratiometric manner

Dout ≈ IS × RS

VPTAT
≈ IS × kR × TA

kV × TA
≈ IS × kR

kV
. (1)

To verify the effectiveness of the analog TCS, Dout is
simulated over the industrial temperature range with a fixed
(1 A) input current. As shown in Fig. 6, Dout varies by nearly
±20% when a bandgap voltage is used as the reference. This
drops to ±0.5% when a PTAT reference is used. The residual
error is mainly due to the non-linear components of the shunt’s
TCR.

To evaluate the effect of the thermal gradient between the
shunt and the NPNs used to generate the PTAT reference,
Dout is also simulated for the case when there is a 4 °C
difference between them. As shown in Fig. 7, the variation
of Dout over temperature still remains within ±0.5%. This
shows that unlike [4] and [5], the proposed TCS makes the
sensor relatively insensitive to on-chip thermal gradients.

Fig. 7. Simulated Dout variation over temperature with PTAT reference
including 4 °C thermal difference.

Fig. 8. Schematic of the beyond-the-rails ADC.

III. CIRCUIT IMPLEMENTATION OF THE

BEYOND-THE-RAILS ADC

In this design, an HV beyond-the-rails ADC with wide
ICMR [8] is utilized to directly digitize shunt voltage VS in
the presence of large CM voltages (Fig. 3). It eliminates the
need for an HV IA, and thus reduces the power consumption
and chip area of the HV interface circuit.

A. �� ADC

Fig. 8 shows the schematic of the beyond-the-rails ADC.
It consists of a 2nd-order single-bit switched-capacitor (SC)
�� modulator that employs a feed-forward topology. Its bit-
stream μI is decimated by a sinc2 filter to generate the
digital output Dout. For flexibility, the decimation filter is
implemented off-chip. Since the ADC’s full-scale input range
is only ±40 mV (±4 A×10 m�), the swing in the loop filter is
quite small and so its integrators can be realized with energy-
efficient current-reuse amplifiers [13], as shown in Fig. 9.

Shunt voltage VS (Vip−Vin) is sampled onto input capacitors
CS1 (2.5 pF) by an HV input chopper CHHV. In this way,
the ADC’s active blocks are isolated from input CM voltages,
and so can be powered from an LV supply. In a similar
manner, a reference voltage VPTAT is sampled onto feedback
capacitors CS2 (2.5 pF) with the help of an LV chopper whose
polarity is determined by the modulator’s bitstream. To obtain
wide ICMR and good matching, HV fringe capacitors with
a breakdown voltage of 70 V are employed to implement
both CS1 and CS2.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 30,2022 at 09:58:05 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 9. Schematic of the current reuse amplifier.

Fig. 10. Low-frequency chopping implementation and its timing diagram.

To achieve low offset and 1/ f noise, a correlated double
sampling (CDS) scheme is implemented in the 1st stage with
the help of switches S1 and S2. While most of the 1st integra-
tor’s offset is cancelled by CDS, the charge injection mismatch
of S1 and S2 will cause some residual offset. To reduce
this, the entire ADC is chopped at low frequency (CHL) as
shown in Fig. 10. The required polarity inversion is usually

Fig. 11. Simplified schematic of the HV input chopper CHHV.

achieved by placing an extra pair of choppers around the
ADC [4], [5], [8]: one (CHSYS.IN) is at its analog input and
the other (CHSYS.OUT) at its bitstream output. Since the
ADC already has an input chopper (CHHV), the function
of two choppers CHSYS.IN and CHHV can be emulated by
swapping the clock signals �1 and �2 applied to CHHV,
as shown in Fig. 6. This chopping scheme does not cancel the
residual offset due to the charge injection mismatch of CHHV.
However, with proper timing, this mismatched charge will flow
into the low-impedance shunt, and so causes negligible offset.

B. HV Input Chopper

The HV input chopper CHHV [7], [8] is a key building
block of the beyond-the-rails ADC since it must accurately
sample VS even in the presence of large CM voltages. A sim-
plified schematic of CHHV is shown in Fig. 11. It is driven
by two non-overlapping clocks �1L and �2L, which are
generated by 1.5-V logic. They are capacitively coupled to
the gates of four sampling switches M1−4 via a level shifter
composed of two HV capacitors C1−2 and a latch M5−6. Due
to the cross-coupled sampling scheme, M1−4 can share one set
of coupling capacitors. Compared to the HV switch proposed
in [14], this design is 3× smaller, occupying only 0.01 mm2.

In [7], the reference node of the level shifter (the source
terminals of M5−6) is tied to one of the input terminals
(e.g., Vip) such that the coupled clock is always superimposed
on Vip. If Vip is higher than Vin, the gate–source voltages (VGS)
of M2 and M4 will still be slightly positive (≈ Vip−Vin) when
they are supposed to be OFF. This results in a certain leakage
current, especially at high temperature. Moreover, the bodies
of M1−4 are tied to their sources, which in turn create parasitic
diodes between CHHV’s input and output terminals and also
add extra leakage current.

As discussed in [4], the leakage current of the switches
in CHHV can degrade the accuracy of bidirectional
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Fig. 12. Cross section of the isolated NMOS transistor in CHHV.

current sensing. To prevent this, a minimum selector MS1−2 is
inserted between input terminals Vip, Vin to select the lowest
input voltage. Its output (node A) is tied to the reference of
the clock- level shifter such that the coupled clocks are always
superimposed on Vmin (the lower of Vip and Vin). It ensures
that VGS of M1−4 will always be equal or less than 0 when
they are OFF. In addition, the body of each switch is also
connected to node A which prevents forward biasing of their
parasitic diodes.

To reduce their leakage current, both the sampling
switches M1−4 and the latch M5−6 are high-Vth NMOS
devices, while the minimum selector MS1−2 is made from
low-Vth devices to extend its operational range. All of them are
isolated by a semi-floating HV n-well (HVNW), which forms
two back-to-back connected parasitic diodes DP1 and DP2
with the local p-well (LPW) and the P-substrate (PSUB),
respectively (Fig. 12). The LPW is connected to one of the
input terminals via the minimum selector. If the input CM
voltage rises, DP1 will ensure that the potential of the HVNW
will follow. In this case, DP2 will be reverse-biased and so its
breakdown voltage determines the upper limit of the ADC’s
ICMR. When the input CM voltage drops below ground,
the HV PNP connected to the HVNW will turn on, and the
potential of the HVNW will be clamped at Vdd (1.5–2 V).
This ensures that DP2 is always reversed-biased to prevent
potential latch-up. Meantime, DP1 is reverse-biased and so
its breakdown voltage sets the lower limit of ICMR. In the
chosen technology, the breakdown voltages of DP1 and DP2
are 30 and 70 V, respectively. As such, the ADC has an ICMR
from −30 to 70 V. In the actual implementation, however,
the ADC’s ICMR is limited to 0–25 V by the ESD diodes at
its input terminals.

Fig. 13 shows the schematic of CHHV with extra protection
circuits. Four diodes D1−4 are added in parallel with M1−4 to
limit their drain–source voltages when a large input CM tran-
sient presents. In addition, a current mirror composed of M7−9
and another coupling capacitor C3 are added to protect M1−4’s
gates. When input CM voltage (source voltage of M1−4) drops
rapidly, the voltage at node A (Vmin) will follow via the
minimum selector, which turns on the transistor M8. Then,
the transistors M7 and M9 will mirror the operation of M8
and lower the voltages at nodes B and C (gate voltage) to
limit VGS of M1−4. When the input CM voltage rises, Vmin

Fig. 13. Schematic of CHHV with extra protection circuits.

Fig. 14. Schematic of the PTAT RVG.

also rises via the minimum selector, and the parasitic diodes
DBD1 and DBD2 between M5−6’s bodies and drains will limit
the source–gate voltages (VSG) less than the threshold voltage
of these diodes.

IV. CIRCUIT IMPLEMENTATION OF THE PTAT
REFERENCE VOLTAGE GENERATOR

Fig. 14 shows the schematic of the RVG. It consists of a
bias circuit and a bipolar core. The bias circuit generates a
PTAT current, which is then mirrored (1:4) to the bipolar core.
Benefiting from the availability of vertical NPNs in the chosen
process, the bias circuit is implemented without the extra low-
offset amplifier required by PNP-based bias circuits [4], [5].
Two NPN transistors in the bipolar core are biased at a current
density ratio of 7, and so their base–emitter voltage difference
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Fig. 15. Chip photograph of the current sensor.

�VBE = (k/q) × ln(p) × TA is PTAT, and this is used as the
ADC’s reference VPTAT.

Thanks to the analog TCS, a one-point trim will correct
both spread in the shunt’s resistance as well as the spread in
the absolute value of �VBE (due to the mismatch of NPNs).
Hence, the NPNs do not require dynamic element matching,
which represents a simplification over [4], [5]. Furthermore,
the output of the PTAT reference (∼50 mV at room tempera-
ture) is smaller than the bandgap reference (∼100 mV) used
in [4] and[5], resulting in less swing in the loop filter, and thus
relaxing its settling requirement. Last but certainly not least,
designing a PTAT reference is a lot simpler than designing a
bandgap reference.

The two current sources in the bipolar core are chopped to
suppress their 1/ f noise. To avoid potential intermodulation
between the chopping ripple and the ADC’s quantization noise,
the chopping frequency is the same as the ADC’s sampling
frequency. Compared to the analog compensation scheme
described in [15], which uses a bandgap voltage followed
by a reference buffer with a temperature-dependent gain, the
proposed solution is much simpler and more power efficient.

V. EXPERIMENTAL RESULTS

The current sensor is implemented in a 0.18-μm HV
BCD CMOS technology and occupies 1.4 mm2 (Fig. 15).
It draws 10.9 μA from a 1.5-V supply at room temper-
ature. The RVG, ADC, and digital clock generator con-
sume 4, 5.2, and 1.7 μA, respectively. Fig. 16 shows the
220-point fast Fourier transform (FFT) output spectrum of the
free-running �� modulator under different input currents. It is
thermal-noise limited in a 1-kHz BW and does not exhibit idle
tones. At a sampling frequency of 250 kHz, the ADC achieves
a resolution of 1.5 μVrms in a conversion time of 2 ms,
which translates into a current-sensing resolution of 150 μArms
(Fig. 17).

Similar to the previous simulation shown in Fig. 6,
the sensor is also measured with a fixed 1-A input, the ADC’s
output Dout varies 0.3% over the industrial temperature range
(Fig. 18), which agrees well with the simulation results.
To explore the effects of Joule’s heating in the shunt, �VBE
was measured at different input currents (Fig. 19). It increases
by 2.5 mV when input current changes from 0 to 4 A, which
translates into a 15 °C temperature rise. Fig. 20 shows the
transient measurement with a 4-A current step input. It can be

Fig. 16. Measured output spectrum of the �� ADC (before decimation)
with 0- and 1-A current input (220-point FFT).

Fig. 17. Measured output noise versus conversion time.

Fig. 18. Measured Dout variation versus temperature.

seen that the gain error of Dout settles to 0.1% within 40 ms.
(This latency is mainly caused by the limited slew rate of the
Keithley 2400 SourceMeter used for the measurement.) The
slower increase in die temperature (�VBE) is also shown.

The 10 sensors are characterized over a ±4-A range
from −40 °C to 85 °C (Fig. 21). After a one-point trim
(at +3 A and ∼25 °C), the sensor’s gain error is only
0.05% at room temperature, increasing to 0.9% over the full
temperature range. As discussed earlier, this large gain error
over temperature is mainly caused by non-linear components
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Fig. 19. Measured �VBE versus input current.

Fig. 20. Transient measurement under a 4-A current step input.

Fig. 21. Measured current-sensing gain error at different ambient tempera-
tures.

of the shunt’s TCR, which are not cancelled out by the rela-
tively linear PTAT reference. Over a 25-V ICMR, the ADC’s

Fig. 22. Measured offset over ICMR without CHL (top) and with CHL
(bottom).

Fig. 23. Measured histograms of offset and CMRR without CHL (top) and
with CHL (bottom).

Fig. 24. Measured PSRR at dc.

maximum offset is 6.4 μV (640 μA), dropping below 400 nV
(40 μA) when CHL (a 250-Hz square wave) is enabled
(Fig. 22). The offset varies by less than 700 nV over the full
ICMR, corresponding to a CMRR of 151 dB, which improves
to 158 dB after CHL (Fig. 23). Over a supply range from 1.5
to 2 V, the ADC’s offset varies less than 1 μV, corresponding
to a dc PSRR of 113 dB. This improves to 125 dB when
CHL is enabled (Fig. 24). The PSRR at high frequencies is
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Fig. 25. Measured PSRR over frequency.

TABLE I

PERFORMANCE SUMMARY AND COMPARISON

measured when the �� ADC is in free-running mode (CHL
is disabled) and a 100-mVp−p sinusoid is added to the 1.5-V
supply. It remains above 95 dB up to 1 kHz (Fig. 25).

The performance of the sensor is summarized in Table I.
Its energy efficiency, like that of a temperature sen-
sor, can be expressed in terms of a resolution figure of
merit (FOM) [16]. Compared with the other fully integrated
current sensors [5], [17], [18], this design achieves 10× better
energy efficiency, the lowest gain error at room temperature,
and comparable gain error over the industrial temperature
range.

VI. CONCLUSION

A fully integrated high-side current sensor has been imple-
mented in a 0.18-μm HV BCD process. The shunt resistor
is implemented with the on-chip metal layers of the CMOS
process, which minimizes the required off-chip components.
The beyond-the-rails ADC enables the direct digitization of
the shunt voltage in the presence of large CM voltage and
obviates the use of HV IAs, thus reducing the power and chip
area of the HV interface circuit. To correct the error caused by
the shunt resistance’s large temperature dependence, an analog

TCS is realized by employing a PTAT voltage as the ADC’s
reference. It eliminates the need for a temperature sensor and
calibration logic and further simplifies the sensor architecture
at the system level. As a result, the sensor achieves state-of-
the-art power efficiency, as well as low gain error over the
industrial temperature range.
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