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Abstract— This article introduces a time-domain-based artifi-
cial intelligence (AI) radar system for gesture recognition using
33-GS/s direct sampling technique. High-speed sampling using
a time-extension method allows AI learning to be applied to a
time-domain radar signal reflecting information on both dynamic
and static gestures, and thus can recognize not only dynamic but
also static gestures. The Vernier clock generators and high-speed
active samplers applied with the time-extension technique makes
sampling at 33 GS/s possible. A 1-D convolutional neural network
and long short-term memory are employed for both static and
dynamic gestures and recognition rates of 93.2% and 90.5% are
obtained, respectively. The radar system is implemented using a
65-nm CMOS process with a power consumption of 95 mW.

Index Terms— Artificial intelligence (AI) radar, gesture recog-
nition, high-speed sampling, impulse radar ultra-wideband
(IR-UWB), radar, sampler, time-to-digital converter (TDC), time-
extension, transceiver, wireless sensing.

I. INTRODUCTION

CONVENTIONAL radar systems have been used to
detect the range, angle, and velocity of objects [1],

[2]. However, recently, a learning-based radar system using
artificial intelligence (AI) technology has emerged and has
begun to be used for target recognition [3]. Such an advanced
radar system can process significantly more information than
a conventional radar approach and numerous studies are
being conducted to enable its use in various applications.
In particular, in [3]–[5], a new attempt at applying the AI
radar to a hand-gesture recognition system is described.

In [3], an AI radar system for gesture recognition is
implemented by applying machine learning to a conventional
frequency-modulated continuous wave (FMCW) radar. There
are three main phases during object recognition: a receiv-
ing step, a data processing step, and a recognition step.
During the receiving process, a system board receives the
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Fig. 1. Conceptual diagram of the proposed AI radar system applied in the
time-domain.

reflected continuous wave from the target. The received signal
includes the distinguishable Doppler shifts based on object
movement. In addition, the differences in Doppler shift are
visualized through the range-Doppler image (RDI) during the
data processing stage [3]. Finally, during the recognition phase,
the AI radar system learns and recognizes the features of the
RDI generated according to the gesture movements.

However, the AI radar system described in [3] using the
Doppler effect is difficult to recognize static gestures. (Because
static gestures do not generate Doppler shifts.) By contrast,
when analyzing signals by sampling at a high speed within
the time domain, information including the position and the
shape of the static gesture can be obtained. In addition,
it is possible to recognize static gestures through a learning
process. Moreover, if the system considers a series of static
gestures as a single pattern, it can recognize even dynamic
gestures. Therefore, in this article, a time-domain AI radar
system that recognizes both static and dynamic gestures is
proposed [6].

Fig. 1 shows a conceptual diagram of the proposed time-
domain AI radar system. The impulse signals reflected from
the target have different waveforms according to the position
and shape of the target. This reflects the inherent character-
istics of the gestures, as shown in the waveforms in Fig. 1.
Gestures can be recognized by training a convolutional neural
network (CNN) [7] or long short-term memory (LSTM) [8]
with waveforms that include different characteristics of
objects. The system can recognize an object even if there is
no movement because the waveform analysis is conducted in
the time domain without using the Doppler effect [9].
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Fig. 2. Characteristics of the impulse signal.

In this article, an AI radar system is proposed that
can process a high-speed signal with a low-speed
analog-to-digital convertor (ADC) through the time-extension
method to overcome the problem when using a high-speed
ADC [11]. The time extension method is a technology
utilizing the characteristics of the impulse signal used in the
system. As shown in Fig. 2, the impulse signal has a dead time
between impulse signals. The dead time refers to an interval
in which no signal is transmitted between the impulse signal
and the next impulse signal, which accounts for 99% of the
entire period [12], [13]. The key idea of the time-extension
method is to reduce the power consumption as much as
possible by utilizing this dead time to feature the additional
time. The high-speed signal is converted into a slow signal
during the dead time. Forty samplers in the system sample the
input signal at a high speed and store the charge in the holding
capacitors. Next, during the dead time, the charges in each
holding capacitor are transferred to the next stage sequentially
according to the slow clock. This allows conversion of
high-speed sampled signals into low-speed signals without
loss of information. In practice, the proposed system samples
a signal at 33 GS/s and converts it into a slow signal at
50 MHz. This enables processing the high-speed (4 GHz)
signal even with a low-speed and low-power ADC [14].
Afterward, the AI radar learns and classifies waveforms using
a 1-D-CNN and an LSTM algorithm optimized for waveform
learning.

The remainder of this article is organized as follows.
Section II introduces the proposed time-domain AI radar sys-
tem with a block diagram and the timing diagram. Section III
describes the circuit implementation and structure of the
algorithm. Section IV details the measurement results. Finally,
Section V summarizes this article and provides some conclud-
ing remarks.

II. TIME-DOMAIN AI RADAR SYSTEM

A. System Design

Fig. 3 shows the block diagram of the proposed system.
TX transmits an impulse signal of 3–5 GHz within a period
of 1 MHz [15], [16]. In addition, the signal that returned to
the target is received by the receiver and is divided into two
paths, a sampling path and a timing path. The sampling path
is a path that samples the amplified input signal at a speed
of 33 GS/s through the sample and holders and extends it to a
50-MHz signal. The timing path is a path that generates each
clock for the high-speed sampling (= fast clock) and extension
(= slow clock).

Fig. 3. Block diagram of the proposed AI radar system in the time domain.

The sampling path includes 40 samples and holders and
extension switches. Each sample and holder store the charge in
the holding capacitors according to the fast clock. In response
to the slow clock, an extension switch converts the high-speed
sampled signal into a low-speed signal based on the charge
stored in the holding capacitors. After conversion into a slow
signal of 50 MHz through the time-extension method, a low-
speed ADC is used to digitize the signal.

The timing path includes an envelope detector and a com-
parator that reads the arrival time of the RX input, as well as a
time-to-digital converter (TDC) that measures the time interval
between the timing gap of the transmitted and received pulses
[17]. Based on this time interval, the digital-to-time converter
(DTC) determines the start times of the fast clock and the slow
clock. In addition, to solve the problems of conventional clock
generators, which have limitations with increasing the clock
speed owing to a limited technology, a Vernier clock generator
is used to secure a sampling rate of 33 GS/s. As shown
in Fig. 3, the Vernier clock generator is composed of crossed
odd and even clock generator cells. An alternating clock timing
can be generated to achieve up to twice the clock speed of a
conventional clock generator.

The signal sampled within the time domain is converted
into a digital signal through a low-speed ADC. The digital
information obtained by the ADC is then preprocessed in a
suitable form for the algorithm. Because the waveform is made
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Fig. 4. Timing diagram of the proposed time-domain-based AI radar system.

Fig. 5. Schematic of the analog front end.

up of 1-D data, the characteristics of the waveform are learned
using a 1-D-CNN for static gestures. In addition, the dynamic
gesture is learned using the LSTM. Thus, both static and
dynamic gestures can be recognized through the proposed AI
radar system.

B. Timing Diagram
Fig. 4 shows the timing diagram of the time-domain-

based AI radar system. The timing path contains an envelope
detector, a comparator, a timing calculator, and fast and slow
clock generators. The sampling path contains LNAs, 40 sample
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Fig. 6. Circuit diagram of the sample and extension blocks.

Fig. 7. Circuit diagram of the sampler.

and extension blocks, and an ADC. The timing calculator
consists of a TDC, a DTC, and a wake-up time generator.
First, TX and RX are synchronized based on the same clock
(SYSTEM_Clock). As mentioned earlier, the TDC in the
timing path measures the time interval between TX OUT
and RX IN. This allows the system to know how much time
has passed since the signal was sent. In addition, the system
only recognizes the signal from the nearest target using a
leading-edge detection method because it focuses on hand

gesture recognition. The leading-edge detection method
detects only the first arriving signal and ignores the following
signals [18]. The start times of the fast and slow clocks are
determined based on the timing calculator when considering
the timing gap measured by the TDC and the wake-up time.

The wake-up time is the time taken to turn on the sampler.
The system includes an active sampler for a high-speed
sampling operation, and the system is turned off for most of
the time to save the power consumption of the system by
utilizing the characteristics of the impulse signal [10], [11].
The sampler works instantly according to the fast clock only
when the signal arrives. In other words, it is necessary to
turn on the active sampler in advance and then conduct the
sample according to the arrival time of the input signal. The
time taken for the sampler to recover to a stable dc point is
called the wake-up time. Thus, if the signal arrives during the
N th period, it can be understood that the actual sampling is
applied from the (N + 1)th period. In addition, the period of
the system clock is 1 μs, which is sufficiently long compared
with the retrigger time of the comparator, and thus the system
can prepare for the sampling regardless of the trigger time.
Afterward, 40 samplers operate by the fast and slow clocks
generated by the timing calculator and convert the high-speed
signal into a low-speed signal.

III. SYSTEM IMPLEMENTATION

A. Circuit Implementation

Fig. 5 shows a circuit diagram of the LNA and the buffer at
the beginning of the sampling path. A single to differential
LNA is designed to receive wideband signals and utilizes
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Fig. 8. Schematic of the envelop detector, baseband amplifier, and comparator.

TABLE I

POWER DISSIPATION SUMMARY OF THE SYSTEM

a cross-coupled capacitor. The gain is 12.6 dB with 4-mA
current and the bandwidth is 9 GHz. Because the buffer should
drive 40 samplers, it has heavy loading. Thus, a bandwidth
extension technique such as shunt peaking is utilized in the
amplifiers [19]. The total analog front-end gain is 22.4 dB
and the bandwidth is 9 GHz, consuming 42 mA.

The amplified input signal enters the 40 samplers simul-
taneously in parallel. Fig. 6 shows the circuit diagram of
the 40 sample and extension blocks. Each block consists
of three parts, namely a sample and a holder, a buffer,
and an extension switch. Depending on the fast clock, each
sample and holder store the charges in a holding capacitor
sequentially. The holding capacitor is 581 fF. The extension
switch then transfers the stored charges from each holding
capacitor to the next stage in time with the slow clock. This
allows a high-speed signal to be converted into a slow signal
of 50 MHz.

Fig. 7 shows a schematic and detailed operation of the
active sampler. Normally, the source follower (MS6 and MS15)
is on and tracks the input signal. After tracking, the source
follower is turned off according to the fast clock and acti-
vates route 2. At the same time, the charges stored in the
holding capacitor along route 1 continue to hold. Along each
route, a charge cancellation method using dummy capacitors
(MS3, MS5, MS10, and MS12) is applied to prevent a charge
injection [20]. Therefore, the dummy capacitors use half the
size of the ON/OFF switch (MS2, MS4, MS11, and MS13).

When the sampler of path 1 finishes its operation, the sampler
of path 2 operates in succession and the operation continues
up to path N , where N = 40. Each sampler runs once
per SYSTEM_Clock, but the difference in the operating time
between each sampler is 30 ps, which achieves a 33-GS/s
sampling rate.

The fast and slow clocks running the sample and holders
are generated along the timing path. Fig. 8 shows a schematic
of the envelope detector [21] and comparator [22] on this
path, which is the front of the timing calculator shown
in Fig. 4. An envelope detector generates a digital pulse based
on the timing of the input signal. The baseband amplifier
amplifies the digital pulse with a 26-dB gain. The comparator
extracts the leading edge of the input signal based on the
threshold voltage (Vth). If Vth is too high, the sensitivity of
the receiver will be reduced, and if Vth is too low, the system
will become extremely vulnerable to noise. Here, Vth was set
to the 400-mV level.

The timing path used in this system applies an energy
detection method to obtain the timing information of the input
signal and determine the timing of the sampling. In most
cases, the energy detection method has poor sensitivity. Thus,
the SNR performance of the sampling path is better than
that of the timing path, which uses an energy detection
method. If the system targets a short operating distance,
the energy detection method will not incur a problem in
terms of sensitivity. However, a system that shows better
sensitivity, such as a correlator-based receiver, will be useful
for increasing the operation distance [23]. Fig. 9 shows the
block and timing diagrams of the Vernier clock generator.
Two types of delay blocks (odd and even cells) intersect to
create a faster clock. This can produce a delay as small as
�t = delay1 − delay2. Moreover, �t is directly related to
the sampling speed. In addition, because each delay block is
adjustable, the sampling speed can be controlled as desired.
The Vernier clock generator in the system generates a 30-ps
delay, which enables a 33-GS/s sampling rate.

Fig. 10 shows the simulation results of the sample and
extension process. As Fig. 10 indicates, the sampling process
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Fig. 9. Block diagram of the Vernier clock generator.

Fig. 10. Simulation result of sample and extension.

Fig. 11. Structure of 1-D-CNN.

is conducted for approximately 1.2 ns starting from the first
clock time to the 40th clock time. The received signal in this
sampling section is sampled at 33 GS/s and then extended to
a low-speed signal. The power consumption of each block is
summarized in Table I.

B. Algorithm Structure

Figs. 11 and 12 show the structure of this system with
a neural network, a 1-D-CNN, and the LSTM algorithm.
As mentioned earlier, the signal within the time domain is a
1-D signal and the algorithm structure is designed to process
a 1-D signal. The CNN model uses a convolution layer and a

Fig. 12. Structure of LSTM.

Fig. 13. Die microphotography of the transceiver.

fully connected layer, not including a pooling process. A total
of 32 feature maps were used and the last hidden layer was
composed of three dimensions. Because both the timing path
and the sampling path have sufficient margins to recognize
gestures, the greatest impact on the recognition rate comes
from the algorithm. The number of feature maps and the size
of the filter were determined after several optimizations of the
collected static gesture data.

A dynamic gesture can be understood as a series of static
gestures. That is, to characterize dynamic gestures, the system
detects the changes in waveform for several seconds. It is
therefore necessary to set the proper frame rate such that the
features of the dynamic gestures will not be lost. The system
is configured to run at a speed of approximately 50 fps, which
is sufficient to catch the features of the gestures.

Dynamic gestures are recognized using the LSTM algo-
rithm, through which future static gestures can be predicted
using the previous and current static gestures. This allows
recognizing a series of static gestures as a single dynamic
gesture. A single dynamic gesture consists of 100 consecutive
static gesture waveforms. A total of 100 waveform data listed
in chronological order are converted into a single sample
with 14 time-steps. To clearly classify the features for each
operation and increase the efficiency of the computation,
the LSTM algorithm was implemented in parallel, as shown
in Fig. 12.
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TABLE II

PERFORMANCE SUMMARY TABLE

TABLE III

ACCURACY OF HAND GESTURE RECOGNITION

IV. MEASUREMENT RESULTS

The proposed time-domain AI radar system is implemented
by a 65-nm CMOS process. Fig. 13 shows a micro-photograph
of the transceiver chip, with a size of 4.5 mm2. The power
consumptions of the transmitter and the receiver are 2.3 and
90.2 mW, respectively, whose ADC consumes only 2.5 mW.

Fig. 14 shows the measurement setup applied. The measure-
ment distance was 30–50 cm. A Vivaldi antenna was used to
minimize the influence of the signal going along the direct path
between the transmitter and the receiver, the gain of which is
6 dBi. The transmitter utilizes Gaussian shaping to generate
a 3–5-GHz impulse signal [26]. In addition, a high-pass filter
(Mini-Circuits VHF-3100 +) is used to reduce the effect of
narrowband interference in a wireless environment.

As shown in Fig. 15, the time-domain based AI radar system
receives the signal returned from the target and generates an
8-bit digital signal as output. The final 8 bits of digital output
are sent to the PC through a logic analyzer. Then, they go
through an averaging and low pass filtering process before
being applied to the 1-D-CNN and LSTM. As shown in the
graph, signals have different characteristics depending on the
shape of the gesture.

As shown in Fig. 16, five static and six dynamic gestures
were selected for verification, namely making “A,” “B,” “V,”
“D,” and “L” letters in the American sign language [27]
for signaling “opening,” “clenching,” “forward,” “backward,”

“swing,” and “pointing,” respectively. A total of 10 000 static
gesture data were divided into ten subsets, with 1000 gestures
each. The subsets were then separated into training and
validation sets prior to use. In the case of a dynamic gesture,
30 000 data were collected and divided into ten subsets using
the same method. A tenfold cross-validation was adopted dur-
ing the training phase [28], and for verifying the recognition
rate, the gestures of ten different people were used during the
test phase. The 1-D-CNN and LSTM algorithms were applied
in this system.

Fig. 17 shows the measured waveforms of static gestures.
The “A,” “B,” and “V” motions, which have significant dif-
ferences in shape, reflect the unique characteristics of each
gesture. In addition, the arrival time and amplitude of the
waveform generally contain information regarding the position
and distance of the gesture. The minimum performance of the
ADC, which can distinguish the five static gestures mentioned
above, was 6 bits, and the ADC and the sampler were designed
with a margin of 8 bits. Owing to the use of sufficient margins,
the system was shown to be robust to jitters and variations
in the PVT. In addition, if the system learns the waveform
itself including a distortion during the learning stage, even
if a distortion occurs, the average recognition rate will not
decrease.

Fig. 18 shows a waveform of a dynamic gesture in the time
domain. A dynamic gesture can be understood as a series of
static gestures. In the case of a clenching gesture, the process
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Fig. 14. Measurement Environment.

Fig. 15. Entire process of time-domain-based AI radar system.

Fig. 16. Static and dynamic gestures recognized during gesture evaluation.

can be seen as starting with the waveform graph shown in
B and changing to the graph in A. Even for the “pointing”
motion in which the information about the reflecting surface
is complicated; the motion of the angle is slightly changed.

Fig. 17. Measurement results of static gesture.

Fig. 18. Measurement results of dynamic gesture.

TABLE IV

CONFUSION MATRIX OF STATIC GESTURE RECOGNITION

Table II shows the performance of the time-domain based AI
radar system. The proposed radar system is based on a pulse
radar system and achieves a sampling speed of 33 GS/s. The
power consumption is 95 mW at a 1-V supply voltage. The
average recognition rates of the static and dynamic gestures
were 93.2% and 90.5%, respectively, thereby overcoming the
limitations of a previous AI radar system, which only focused
on dynamic gestures. The recognition rates for each gesture
are listed in Table III. Tables IV and V show the confusion
matrixes of static and dynamic gestures, respectively.
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TABLE V

CONFUSION MATRIX OF DYNAMIC GESTURE RECOGNITION

V. CONCLUSION

In this article, a time-domain based AI radar system using
direct sampling at 33 GS/s is proposed. This system can
recognize both static and dynamic gestures by learning the
characteristics of the waveform returning from the target.
High-speed sampling was processed using a Vernier clock
generator and an active sampler structure. In addition, the high-
speed sampled signal was converted into a low-speed signal
through a time-extension method such that digital data can be
generated using a low-speed, low-power ADC. By applying
1-D-CNN and LSTM, recognition rates of 93.2% and 90.5%
were recorded for five types of static gestures and six types
of dynamic gestures, respectively.
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