Abstract:
The demand for high-performance graphics systems used for artificial intelligence, cloud game, and virtual reality continues to grow; this trend requires graphics systems...Show MoreMetadata
Abstract:
The demand for high-performance graphics systems used for artificial intelligence, cloud game, and virtual reality continues to grow; this trend requires graphics systems to achieve ever higher bandwidths. This article proposes a GDDR6 dynamic random access memory (DRAM) with a half-rate clocking architecture and optimized receiver and transmitter to improve high-speed operation. Furthermore, this article adopts a staggered PAD using the redistribution layer (RDL) to reduce the distance to four PADs; it enables the mitigation of bandwidth limitation of half-rate clocking, a lower phase mismatch, and a reduced propagation delay. The proposed half-rate clocking-based GDDR6 DRAM achieves 24 Gb/s/pin on a 1.35-V DRAM process. Also, the power-supply-induced-jitter (PSIJ) value is improved from 9.97 to 3.22 ps, compared to a GDDR6 design using a quarter-rate clocking. In addition, the phase mismatch of the proposed clock distribution network (CDN) is reduced compared to the conventional CDN, resulting in an improvement of the 3- \sigma value of the phase skew from 4.16 to 2.25 ps.
Published in: IEEE Journal of Solid-State Circuits ( Volume: 57, Issue: 1, January 2022)