
1

DPU: DAG Processing Unit for Irregular Graphs
with Precision-Scalable Posit Arithmetic in 28nm

Nimish Shah, Laura Isabel Galindez Olascoaga, Shirui Zhao, Wannes Meert,
and Marian Verhelst, Senior Member, IEEE

Abstract—Computation in several real-world applications like
probabilistic machine learning, sparse linear algebra, and robotic
navigation, can be modeled as irregular directed acyclic graphs
(DAGs). The irregular data dependencies in DAGs pose chal-
lenges to parallel execution on general-purpose CPUs and GPUs,
resulting in severe under-utilization of the hardware. This paper
proposes DPU, a specialized processor designed for the effi-
cient execution of irregular DAGs. The DPU is equipped with
parallel compute units that execute different subgraphs of a
DAG independently. The compute units can synchronize within
a cycle using a hardware-supported synchronization primitive,
and communicate via an efficient interconnect to a global banked
scratchpad. Furthermore, a precision-scalable positTM arithmetic
unit is developed to enable application-dependent precision. The
DPU is taped-out in 28nm CMOS, achieving a speedup of 5.1×
and 20.6× over state-of-the-art CPU and GPU implementations
on DAGs of sparse linear algebra and probabilistic machine
learning workloads. This performance is achieved while operating
at a power budget of 0.23W, as opposed to 55W and 98W of the
CPU and GPU, resulting in a peak efficiency of 538 GOPS/W
with DPU, which is 1350× and 9000× higher than the CPU
and GPU, respectively. Thus, with specialized architecture, DPU
enables low-power execution of irregular DAG workloads.

Index Terms—Graphs, irregular compute graphs, parallel
processor, synchronization, precision, posit

I. INTRODUCTION

ADIRECTED acyclic graph (DAG) is a directed graph
with nodes and edges without cycles. DAGs are often

used to model computation in programs, in which a node
represents some compute operations, and the edges represent
the dataflow and the dependencies among these operations. For
example, the computation of a fully-connected neural network
can be represented as a DAG with nodes corresponding to
neural operations, and edges corresponding to the connectivity
among them, directed according to the dataflow.

While the aforementioned neural network would result in
a very regular DAG, several applications are characterized by

N. Shah, S. Zhao and M. Verhelst are with the Department of Electrical
Engineering - MICAS, KU Leuven, Belgium.

L. I. Galindez Olascoaga was with the Department of Electrical
Engineering - MICAS, KU Leuven, Belgium. She is now with the
Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley.

W. Meert is with the Department of Computer Science - DTAI, KU
Leuven, Belgium.

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Fig. 1. (a) Regular (eg. dense linear algebra) vs irregular (eg. sparse linear
algebra) DAGs. (b) Low GPU performance for irregular DAGs.

highly irregular DAGs, in which the edges point to seemingly-
random nodes without repetitive patterns. For example, in a
sparse neural network, around 60-70% of the edges can be
dropped [1], leading to some irregularity in the DAG structure
(fig. 1(a)). Different applications exhibit different degrees of
irregularity. In this work, we focus on highly-irregular DAGs
resulting from more than 99% sparsity in applications like
sparse linear algebra, probabilistic machine learning, robotic
localization, drone navigation, etc. [2], [3], [4], [5].

DAG irregularity poses several challenges for efficient hard-
ware execution. For example, fig. 1(b) shows CPU and GPU
irregular DAG throughput corresponding to two applications:
(1) probabilistic circuits (PC, also called sum-product net-
works) used in machine learning [6], [7], and (2) sparse ma-
trix triangular solve (SpTRSV), a widely-used linear algebra
operation [8]. The GPU severely underperforms compared to
the CPU despite having highly parallel hardware. Such a low
performance is due to the irregularity. The seemingly-random
edges are unsuitable for the commonly used single-instruction-
multiple-data (SIMD) units and systolic arrays. Irregular edges
also result in irregular memory accesses, leading to under-
utilization of caches and memory bandwidth. These irregular
accesses also prevent memory coalescing, which is crucial
for high GPU performance. Moreover, parallelizing different
parts of DAGs across multiple units (like CPU cores, GPU
streaming multiprocessors, etc.) demands high communication
and synchronization overhead.

To overcome the aforementioned challenges, this paper
proposes DPU, a specialized DAG Processing Unit designed to
efficiently execute highly-irregular computational graphs and
provide an optimized solution for these emerging workloads.
The DPU is taped out in TSMC 28nm technology, and

ar
X

iv
:2

11
2.

05
66

0v
1 

 [
cs

.A
R

] 
 1

0 
D

ec
 2

02
1



2

benchmarked on probabilistic machine learning and sparse
linear algebra DAG workloads. Some of the key features are:

• Parallel asynchronous compute units equipped with
software-managed local scratchpads for data reuse, con-
nected to a global banked scratchpad via a low-overhead
asymmetric crossbar for high memory bandwidth.

• Hardware support for fast synchronization across com-
pute units, as frequently required for irregular DAGs.

• Execution based on decoupled data handling and compute
streams to overlap memory and arithmetic instructions.

• Precision-scalable arithmetic units based on a customized
positTM representation to enable application-dependent
precision selection.

The paper is organized as follows. The basics of irregular
DAG execution and the related challenges are discussed in
§II. Section §III describes the DPU architecture and §IV
explains the internal of a compute unit of the DPU, followed
with §V that discusses the precision-scalable positTM unit.
Subsequently, §VI presents the experimental results and mea-
surements of the taped-out processor. Finally, §VII and §VIII
discusses the related work and concludes the paper.

II. BACKGROUND AND CHALLENGES

A. Background of DAG execution

In this paper, a DAG represents a graph of nodes and edges
encoding the computation to be performed for an application.
Depending on the application, the DAG nodes may represent
one or a few arithmetic operations (e.g. addition, multiplica-
tions) on the node’s inputs. The output result of a node serves
as an input to the nodes connected to the outgoing edges of
that node. Executing a computational DAG means evaluating
the operations in all the nodes in a valid order.

1) Execution order: The directed edges of a DAG represent
data dependencies, which impose an ordering of execution of
the nodes. For all the edges, the source node of an edge should
be executed before the destination node. Put differently, a node
can be executed only after all the predecessor nodes connected
to the incoming edges have finished execution.

2) What can be executed in parallel?: At a given moment,
all the nodes whose predecessor nodes have finished execution
can be scheduled. These are called the active nodes. The
execution begins with the source nodes of the DAG being
active, as they do not have any incoming edges. Subsequently,
different nodes become active as the execution progresses.
Note that the active nodes can be executed in parallel, as
there are no dependencies among active nodes by definition
(otherwise they would not have been active together).

As such, DAG execution happens in multiple layers. A set
of nodes becomes active in each layer. The total number of
layers is the same as the length of the longest path of nodes
(critical path). Parallelism in a DAG can be quantified as the
total number of nodes divided by the critical path length.
This metric quantifies a bound on the possible speedup over
a sequential execution. Eg., a DAG with a parallelism of 100
cannot be executed faster than 100× even with infinite parallel
units.

Fig. 2. Synchronizations. (a) Need for a synchronization in a simple DAG.
(b) Commonly-used layer-wise synchronization placement

3) Synchronizations: If the active nodes in a layer are
mapped across multiple asynchronous compute units, then
synchronization barriers might be needed to maintain the
required ordering before beginning a new layer of active nodes.
Examples of such asynchronous units are CPU cores and
GPU streaming multiprocessors (also DPU’s compute units, as
explained later in the paper). Consider a DAG with 3 nodes
as shown in fig. 2(a). Suppose nodes A and B of the first
layer are scheduled on different units. To schedule node C
from the next layer on unit 1, it must be ensured that node B
has finished execution on unit 2 and its results are visible to
unit 1. But, by definition, asynchronous units do not provide
such guarantees. Hence, an explicit synchronization barrier is
needed before scheduling node C.

4) Placement of nodes and synchronizations: For applica-
tions such as probabilistic machine learning and sparse linear
algebra, the DAG structure is fully known at compile time,
allowing strategic mapping of nodes to the compute units and
the placement of the synchronizations by a compiler. The aim
is to reduce the total number of synchronizations and the
associated overhead. Fig. 2(b) shows the standard approach
of layer-wise synchronizations (also called level scheduling),
first introduced in [9], where a synchronization is used after
every layer of active nodes. The active nodes in a layer are
mapped across available parallel compute units that then have
to be synchronized before executing the next layer.

DPU uses an advanced graph-partitioning technique to
reduce the number of synchronization barriers, as explained in
[10]. The DAGs are partitioned into superlayers (fig. 3), each
containing 64 subgraphs (possibly spanning multiple DAG
layers) for 64 compute units in DPU. A synchronization barrier
is used after every superlayer. The subgraphs are made as large
as possible to reduce the number of synchronizations, but also
optimized to have similar sizes to balance the workload. This
is achieved by translating the DAG partitioning task into a
constrained-optimization problem and using the Google OR-
Tools solver [11]. As such, given a DAG, the mapping of nodes
to the compute units and the placement of synchronizations are
fixed at compile time.

B. Challenges due to irregularity

The irregularity in DAG structure poses several challenges
for efficient execution on general-purpose processors like



3

Fig. 3. Our approach of superlayer-based synchronization placement

TABLE I
CHALLENGES AND OPPORTUNITIES IN IRREGULAR DAG EXECUTION AND

RELATED DPU INNOVATIONS

Challenges/opportunities
for irregular DAGs

DPU innovations

SIMD unfriendly
Asynchronous compute units
with independent instructions

Frequent synchronizations
Hardware-supported synchronization
with special instructions, and
superlayer-based parallel execution

Inefficient use of caches Software-managed scratchpads

Data prefetching
Decoupled-instruction streams for
efficient hardware prefetching

Diverse applications with
varying precision requirement

Precision-scalable custom positTM

arithmetic

CPUs and GPUs. These are summarized in table I along with
the related DPU’s innovations to address them.

1) SIMD unfriendly: The active nodes to be executed
in parallel may perform the same arithmetic operation on
the inputs, which would make them suitable for a SIMD
execution. However, the inputs of these nodes typically reside
in random memory locations owing to the irregularity of the
DAG structure, making them unlikely to be co-located in a
CPU or GPU cache-line. In fact, some of them may not be
cached at all and need to be fetched from external memory.
Experiments in [12] find that around 50% of the load requests
in graph workloads result in cache misses. This leads to high
variability in the load latency of these inputs, causing all the
SIMD lanes to stall for the slowest input. Thus, despite the
availability of parallel operations to execute, random memory
loads make irregular DAGs SIMD-unfriendly.

Consequently, the x86 CPU SIMD vector instructions are
not useful for irregular DAGs, and parallelizing threads across
multiple CPU cores are preferred from a performance point of
view. GPUs, on the other hand, can tolerate irregular memory
latency by switching thread warps when a thread stalls (given
there are enough thread warps available to schedule). However,
GPUs suffer from other bottlenecks as discussed subsequently.
The DPU uses asynchronous compute units that execute inde-
pendent instruction streams instead of a SIMD unit.

2) Frequent synchronizations: The total amount of com-
putation done per synchronization barrier is a key indicator
of parallel performance — the higher the better, to amortize
the synchronization cost. This amount depends on the DAG
structure and the barrier-placement techniques (refer §II-A4).

In our benchmarks, the layer-wise approach results in 210
compute operations per barrier, which increases to 633 with
the superlayer-based approach for 64 parallel units. Yet, if the
barrier takes comparable cycles as the computations, it can
severely degrade the parallel performance, possibly making it
even worse than a sequential execution.

The synchronization barriers in multi-core CPUs are imple-
mented with atomic operations on a shared memory location.
These atomic operations typically incur long latency from the
CPU core to the outer-most shared caches or external memory.
Furthermore, these operations also create a burst of cache-
coherency traffic as every core modifies the same location,
increasing the barrier cost further. Due to these reasons, the
synchronization barriers in CPUs typically take 3000 cycles
(measured with the EPCC microbenchmark [13]). Similarly, in
the GPUs, the global synchronization for all the CUDA cores
consumes around 2000 cycles [14]. To avoid this bottleneck,
DPU is equipped with a hardware-supported barrier instruction
that synchronizes all the units in a single cycle.

3) Inefficient use of caches: DAG execution results in
randomly addressed single-word memory accesses (typically
of 4B) with lower spatial locality, which implies that the 32/64
words cacheline granularity of CPU and GPU is too high,
and most of the fetched words are unlikely to be used. Such
random accesses also prevent the memory-request coalescing,
which is critical for good GPU performance. Smaller cache-
lines are preferable for these workloads, but lead to higher
area/energy overhead of tag storage and lookup. Furthermore,
depending on the access patterns, some words are reused much
more frequently than the others. Thus, selectively choosing
which words to store locally results in an efficient use of
the scarce on-chip local storage. Due to these reasons, DPU
uses software-managed local scratchpads with single-word
accesses, instead of hardware-managed caches.

4) Data prefetching: An out-of-order CPU core tries to
find the data-prefetching opportunities at runtime, and can
issue multiple out-standing load requests [15], [16]. However,
[17] reports that an Intel CPU could only keep 2-3 load
requests in flight while executing graph workloads, even when
the architecture supported up to 10 load requests. The main
reason for this underperformance is the limited instruction
window in which the core looks for independent load requests,
and widening this window is area and power-hungry. To
prefetch data efficiently, DPU exploits the fact that the DAG
structure is known at compile time. The compiler decouples
the DPU’s instructions into memory and processing streams,
which are executed independently on different subunits. This
enables low-overhead prefetching and memory-compute over-
lap, without using costly out-of-order hardware.

III. DPU ARCHITECTURE

A. Compute units (CU)

Fig. 4 shows the DPU architecture with 64 parallel compute
units (CU) that execute 64 subgraphs in the superlayers shown
in fig. 3. Each CU is equipped with its own instruction memory
and executes these instructions asynchronously; a stalled CU
does not stall the others. The CUs communicate via a global



4

Fig. 4. The DPU architecture with 64 parallel CUs

Fig. 5. Asymmetric crossbar to reduce area and power overhead

scratchpad connected by an asymmetric crossbar (§III-B). The
single-cycle synchronization of CUs is made possible with
a global barrier instruction and a global sync unit (§III-C).
The detailed architecture of CU is explained later in §IV. A
specialized compiler [10] is designed that takes an arbitrary
DAG and generates the superlayers, schedules operations,
performs memory allocation, etc. for DPU execution.

B. Global scratchpad and asymmetric crossbar

As observed in [12], irregular graphs typically lead to
relatively high global traffic when executed on parallel units.
In our benchmarks, we also observe a similar trend. The blue
global edges in superlayers in fig. 3 accounts for 33% of the
total edges in our benchmarks. In DPU, this global inter-CU
communication happens via a high-bandwidth global scratch-
pad. The 256KB scratchpad is constructed with 64 banks of
4KB each, providing an overall bandwidth of 2Kb/cycle.

Furthermore, for low hardware overhead, the CUs connect
to the global scratchpad via an asymmetric crossbar (fig. 5),
such that a CU can load data from any bank but can store to
only one specific bank each. This asymmetry of global loads
but restricted stores (instead of the other way around) is a
deliberate design choice considering the fact that an output of
a node is stored only once but usually loaded multiple times
from different CUs.

The asymmetric design does reduce the flexibility of map-
ping intermediate node outputs to the global scratchpad banks.
In fact, the bank mapping is fully determined based on the
mapping of operations to the CUs (which happens during
the superlayer generation), because the output of an operation
on a CU can only be stored to that CU’s respective bank.
On the other hand, with a full crossbar, the compiler could
possibly map an output to any bank to reduce bank conflicts.
However, predicting and averting these bank conflicts during
compilation is anyway not possible given that the CUs are
asynchronous and can possibly stall for unpredictable cycles
(for example, waiting for the next instruction). As a result,
in practice, it is very difficult for a compiler to exploit the
additional flexibility coming from a full crossbar, and hence
the inflexibility of an asymmetric crossbar does not drastically
impact the throughput.

For each bank, the load requests are selected based on a
round-robin arbitration scheme, while the store request has
the highest priority. The store request cannot participate in
the round-robin arbitration with 64 load requests because that
would reduce the store bandwidth by 64× compared to the
loads. Overall, this asymmetric crossbar consumes 45% lower
area and energy than the symmetric counterpart that allows
store requests to reach every bank.

C. Global sync unit

To mitigate the overhead of frequent synchronizations, the
CUs are equipped with a special instruction for global barrier,
complemented with a central dedicated global sync hardware
unit. When a CU reaches a global barrier instruction, it
indicates this to the global sync unit and stalls until the other
CUs hit their global barrier instruction. The global sync unit
uses a tree of AND gates to determine if all the CUs have
reached the barrier, and communicates this to all the CUs
within that cycle, enabling a single-cycle synchronization.
Even though the paths to/from the global sync units create
a long combinational loop due to the unit’s centralized role,
they are not the critical paths in our design.

IV. COMPUTE UNIT (CU) ARCHITECTURE

A. Local scratchpad

Because the subgraphs in the superlayers are made as large
as possible, they have a significant proportion of intra-CU
edges shown in red in fig. 3 (67% of the total number of
edges in our benchmarks). To exploit this locality, the CUs
are equipped with an address-mapped local scratchpad. The
compiler maps the output data of a node to the local scratchpad
if all outgoing edges of the node are intra-CU (colored red in
fig. 3), otherwise it is mapped to the global scratchpad. A
scratchpad is used instead of a cache due to the following
reasons:

• A software-managed scratchpad can selectively store only
the data that has local reuse.

• The typical cacheline granularity of 32 or 64 words is too
large for graphs due to frequent irregular memory fetches,
and results in wasted interconnect traffic [12], [17].



5

Fig. 6. Decoupled streams to overlap memory and processing instructions

• An address-mapped scratchpad avoids tag storage and
lookup, reducing the area and energy footprint.

B. Data prefetching using decoupled instruction streams

For a given DAG, the memory load and store instructions
to/from the scratchpads can be predicted at compile time.
This is leveraged to perform aggressive data prefetching
by overlapping memory requests with arithmetic operations
without the need for expensive out-of-order hardware. As
shown in fig. 6, the instructions for CUs are decoupled into
three streams: load, processing and store streams, which are
executed independently on different components of the CU.

Load streaming unit: The load addresses (for both global
and local scratchpads) along with the corresponding destina-
tion registers are programmed in the load address memory.
The load streaming unit prefetches the data by issuing these
load requests to the local or global scratchpads. The loaded
data may not yet be allowed to be written to the register file
in the PE, because the PE might still be using the destination
register for some other computation. Instead, the data is pushed
on a FIFO going to the PE, from where the PE will eventually
consume it at the right moment. The load streaming unit keeps
streaming the load requests as long as there is space in the
FIFO. The prefetching cannot cross barriers, hence the length
of the stream is controlled by a special load stream length
register, which is programmed by the PE after every barrier.
The FIFO becomes empty at the barriers, hence frequent
barriers reduce prefetching efficiency.

PE: The processing streams contain the actual arithmetic
instructions to be executed on the PE (fig. 7). A custom
instruction set is designed (table II), which dictates the com-
putation of the arithmetic unit in the PE. The PE does not
contain pipeline stages, and all the instructions have a latency
of 1 cycle. The instructions have an 18b compute field, with
a 3b opcode for ALU and special-function instructions (table
II) and 3×5b operand register file addresses. A 32-entry 32b
register file is used with 3 write ports (2 for load ports and
1 for the arithmetic unit) and 2 read ports (for the arithmetic
unit). The compiler makes sure that the 3 write ports write to

Fig. 7. Internal PE design and FIFO flow-control for precise ld/st timing

TABLE II
INSTRUCTIONS OF PE

add, mul Add or multiply two numbers
max, min Max or min of two numbers
global or
local barrier

Barriers for synchronization

set_ld_stream_len Sets the load stream length until next barrier
set_precision Sets the precision of the arithmetic unit

different registers in the same cycle, to avoid conflicts. This
is done by precisely controlling the timing of the loads, using
flow control bits (see further). The output of the arithmetic
unit connects to one of the register write ports and the FIFO
to the store streaming unit.

The 3 remaining instruction bits control the PE’s IO
dataflow. The PE cannot directly communicate with scratch-
pads; it only gets/puts data from/to the FIFOs of load/store
units. The FIFO flow control bits are encoded in the processing
instructions, to let the PE precisely control the timing of
migrating data from the load FIFO to the register file, resp.
from the ALU output to the store FIFO. These flow control bits
indicate whether a FIFO load/store is needed in parallel with
the compute operation of the current instruction. The PE stalls
if a load flow control bit is set, but there is no data in the load
FIFO, or if the store bit is set but the store FIFO is full. With
such a flow control, PE avoids data hazards like the write-
after-read (WAR) hazard in which the data from load FIFOs
overwrite an active register that is not yet fully consumed.

Store streaming unit: The store streaming unit waits for
data to show up on the store FIFO from the PE, and stores
them to local/global scratchpads according to the addresses in
the store stream. It also informs the PE whether all the data
is stored to the memory and there are no outstanding store
requests left, which helps the PE to decide if the compute
unit is ready to sync with other units at the barriers.

Local barrier. The load-to-PE and the PE-to-store com-
munication happens via FIFOs, and the corresponding data-
dependencies are resolved by the FIFOs’ flow control. There

Fig. 8. The positTM representation



6

Fig. 9. Accuracy impact of different representations. Custom posit performs better due to lower error for wider range of values.

is also a dependency of load stream on the store stream. A
load following a store to the same scratchpad address (adrX
in fig. 6) should not be executed before the store finishes.
Since the streaming units operate independently, this ordering
is not guaranteed. To address this, an intra-CU local barrier
is used. The load stream length is programmed such that the
load streaming unit waits at the local barrier for the store unit
to catch-up before proceeding.

Stream generation: Given a subgraph to be executed on
a CU, the DPU compiler first generates the corresponding
instructions, by (1) scheduling the operations of subgraph
nodes in a topological order using a depth-first traversal, (2)
performing register allocation using the linear-scan method
[18], and (3) inserting the load-store instructions as needed
depending on the register file size. Next, local barriers are
inserted such that every load following a store to the same
address has at least one barrier in between. Finally, from
these instructions, the decoupled streams are generated by
assigning the instructions to their respective type of stream,
while preserving the order.

Performance impact. Due to the data prefetching enabled
by the decoupled streams, the DPU achieves 1.8× speedup
over an in-order version of DPU that uses the coupled in-
structions (over the benchmarks described in §VI).

V. PRECISION-SCALABLE POSITTM UNIT

Application dependent precision-scalability. DAGs from
different applications can have widely varying precision re-
quirements. For example, the probabilistic circuit (also called
sum-product network) [6], [7], one of our irregular workloads,
is used in machine learning for inference and reasoning under
uncertainty. It can be used for safety-critical applications
like autonomous navigation [4] demanding highly accurate
computation, but can also be deployed for simpler applications
like human activity classification (running, sitting, etc.) [19],
[20], which can tolerate some mispredictions. To meet such
diverse requirements, PEs are equipped with precision-scalable
arithmetic units that can perform 1×32b, 2×16b or 4×8b
operations in a single cycle, enabling batch execution based
on the application requirements.

PositTM representation. The DPU uses the positTM [21]
instead of the floating-point representation to enable lower-
precision operations wherever possible. The posit representa-
tion (fig. 8) allows trading accuracy for range at runtime. To
do this, it uses a new regime field, whose length dynamically
varies depending on the magnitude of the number, allowing

Fig. 10. Posit arithmetic unit with precision-scalable subunits

to simply reduce the length of the other fields instead of
under/overflowing. The posit representation is specified as a
tuple <L, es> where L is the total length and es is the
maximum length of the exponent field.

Custom posit. The standard posit representation proposed
by Gustafson [21] aims to have higher precision than floats
around the value of 1.0, while sacrificing precision for small
and large numbers (fig. 9(b)). While this design choice might
be suitable for some applications, our target applications are
characterized by a very large dynamic range and sensitivity
to approximations across this range, requiring us to take a
different approach. In DPU, higher es is used (fig. 9(a)) such
that the custom posit has a similar precision to float around
1.0, but a more gradual precision degradation for small/large
values, greatly increasing the representable range of values.
Fig. 9(b) demonstrates this gradual, tapered degradation of
precision.

Application accuracy with custom posit. To quantify the
impact of lower-precision computation on an application’s
accuracy, the arithmetic operations (+ and ×) in posit and float



7

TABLE III
POSIT UNIT AREA AND POWER BREAKDOWN

Area Power
×103 µm2 % µW %

Decoders 1.2 17 166 19
Float add and mul 4.3 57 484 56
Normalize and round 1.4 18 142 17
Encoder 0.6 8 64 8

Precision-scalable posit unit 7.5 856

TABLE IV
PERFORMANCE COMPARISON WITH AN STATE-OF-THE-ART POSIT UNIT

This work PACoGen [24]

Operating mode 32b 16b 8b 32b
Area (×103 µm2) 7.5 5.7
Energy (pJ/op) 3.05 1.33 0.57 2.08
Throughput (ops/cycle) 1 2 4 1

representations are prototyped with software models in Python.
Fig. 9(c) and (d) shows the impact of lower precision float,
standard posit, and custom posit on different applications.
Fig. 9(c) shows classification accuracy on machine learning
tasks from UCI repository [22] with probabilistic circuit
DAGs, while fig. 9(d) shows the relative error during iterative
solutions of sparse matrix triangular systems on SuiteSparse
matrices [23]. These benchmarks are described in detail in
§VI. The results demonstrate that the custom posit outperforms
the standard posit and float counterparts of the same lengths.

Hardware design. A posit operator at its core needs a float
operator, since, for a given value of regime, posit behaves
like a float. Hence, a posit operation is strictly costlier than
a float operation (ignoring the exceptions of IEEE float). The
arithmetic unit contains posit-format decoders and encoders,
shared among float adder and multiplier (fig. 10). The decoder
finds the length of the regime field (with a priority encoder)
and aligns the rest of the fields accordingly (with a barrel
shifter) for addition and multiplication. The encoder aligns the
output (with a barrel shifter) according to the output regime.

All the blocks in the arithmetic units support precision
scalability to perform 1×32b, 2×16b or 4×8b operations. This
runtime scalability is novel, and not available in other posit
hardware generators [25], [24], [26]. Fig. 10 shows how 32b
building blocks are constructed from two 16b blocks, which
in turn are made of 8b blocks. The posit unit consumes 1.8×
the area and power of a float counterpart (Table III), but
enables 8b or 16b operations as discussed earlier. Table IV
reports comparison with PACoGen [24], a state-of-the-art posit
unit generator, which consumes 0.76× and 0.68× area and
energy at 32b, respectively, due to the overhead of precision-
scalability in our unit. On the other hand, for applications
requiring only 8b precision, the 32b PACoGen unit consumes
3.7× the energy per operation of the precision-scalable unit.

VI. EXPERIMENTS

DPU is taped-out in TSMC 28nm technology with an
active area of 2.0×1.9mm2 (fig. 11). Table V shows the post-
layout area and power breakdown of the chip (estimated after

Fig. 11. Chip micrograph and specifications

TABLE V
POST-LAYOUT AREA AND POWER BREAKDOWN

Area Power
mm2 % mW %

64 Compute Units:
PEs:

Posit units 0.48 13 54.8 24
Rest of PE 0.50 13 37.4 16

Local scratchpads 0.27 7 13.6 6
Instr. mem, ld/st addr. mem 1.18 31 50.2 22
Rest of CU 0.24 6 22.6 10

Global scratchpads 0.54 14 21.0 9
Crossbar 0.19 5 29.3 13
Rest 0.40 11

DPU 3.8 228.9

Fig. 12. Peak-performance scaling with voltage and precision

activity annotation). The memories occupy half of the area
and consume 37% of the power. The asymmetric crossbar
consumes 13% power, which would have been two times
costlier if a conventional symmetric crossbar had been used.

A. Peak performance and voltage scaling

The chip’s electrical performance is measured by scaling
the voltage from the nominal 0.9V to 0.6V. The chip can
operate at the maximum frequency of 288MHz at 0.9V and 8b
precision, with a peak throughput of 73.8 GOPS (fig. 12(a)),



8

TABLE VI
STATISTICS OF THE BENCHMARKED DAGS

Application Workload Nodes
(n)

Longest path
length (l)

Parallelism
(n/l)

Probabilistic
Circuits (PC)

mnist 10414 26 400
nltcs 13627 27 504

msnbc 47334 28 1690
bnetflix 55007 53 1037

ad 66819 93 718
bbc 77457 92 841

c20ng 80962 81 999
kdd 98211 54 1818

baudio 121263 70 1732
pumsbstar 149662 82 1825

Sparse Matrix
Triangular Solves

(SpTRSV)

tols4000 5978 52 114
bp 200 8406 139 60

west2021 10159 136 74
qh1484 11298 237 47
sieber 22768 242 94

gemat12 74199 778 95
dw2048 79240 929 85
orani678 114275 634 180
pde2961 140303 1357 103
blckhole 150876 1264 119

and at the peak energy-efficiency of 538 GOPS/W at 0.6V (fig.
12(b)). The top 50 critical paths are in the posit arithmetic unit
and the crossbar. Both the blocks can be pipelined to increase
clock frequency further, but would have a negative impact on
instruction scheduling due to higher posit unit latency, and
would induce a potential throughput tradeoff due to increased
access latency of the global scratchpad.

B. Workloads

The performance of the chip is benchmarked with compute
DAGs from two different types of workloads listed in table VI.
The DPU compiler takes as input a DAG in any of the popular
graph formats (i.e. all formats supported by the NetworkX
package [27]) and generates an execution binary that can be
directly programmed to DPU. The experiments are performed
with the DAGs that fit in the on-chip data memory (global
and local scratchpads). The programming of memories, with
an FPGA via a slow chip I/O interface, is not included in the
throughput results.

Probabilistic circuits (PC). Probabilistic circuits (also
called sum-product networks) are used in machine learning
for reasoning, robust inference under uncertainty, and safety-
critical tasks [3], [4], [19], [28]. Note that the term circuit is
not used in the sense of VLSI circuits. A PC is an irregular
DAG in which the nodes are either sum or product operations.
The experiments are performed on a standard benchmark of
density-estimation applications from [29].

Sparse matrix triangular solves (SpTRSV). Solving a
matrix triangular system is a fundamental operation in linear
algebra, used in various applications like robotics, optimiza-
tion, autonomous navigation, etc. Real-world matrices usually
turn out to be highly sparse and the resulting compute DAG
highly irregular. Benchmarking is done on matrices of varying
sizes from the SuiteSparse benchmark of real applications [23].

21 22 23 24 25 26

Active CUs

21

22

23

24

25

26

Th
ro

ug
hp

ut
 (G

OP
S) Peak

Average
PC
SpTRSV

Fig. 13. Scaling of throughput with increasing active CUs at 8b precision

Fig. 14. Performance comparison. The DPU operating point is 0.9V and 32b.

C. Throughput scaling with different active CUs

The throughput of DPU is measured by keeping a dif-
ferent number of CUs active to evaluate the parallelization
effectiveness for increasing parallel CUs (fig. 13). The PC
throughput scales better than the SpTRSV because of higher
DAG parallelism (table VI). Apart from DAG parallelism,
other factors that lower average throughput compared to the
peak are: (1) the impact of barriers on data-prefetching, and
(2) global scratchpad access conflicts. Overall, the average
throughput is 2.8× lower than the peak for 64 CUs.

D. Comparison with CPU and GPU

Since there is no previous silicon-proven chip targeting
highly irregular DAGs, this experiment is designed to com-
pare DPU’s performance with state-of-the-art CPU and GPU
implementations. The details of the platforms are as follows.
DPU: The results are for 64 active CUs operating at 278MHz
and 32b precision. CPU: An Intel(R) Xeon Gold 6154 CPU
operating at 3GHz is used for comparison. For PC, a standard
Julia-based library called Juice [30] (CPU-JUICE) and an
highly-optimized OpenMP-based implementation [10] (CPU-
OMP) are used for comparison. The SpTRSV performance
is evaluated with the standard Intel Math Kernel Library
(MKL v2021.1). The programs are compiled with GCC v4.8.5
compiler, -Ofast flag, and OpenMP v3.1.

GPU: The GPU baseline is evaluated with an RTX 2080Ti
GPU operating at 1.3GHz, and the code compiled with the
CUDA v10.2.89 compiler. For PC, an efficient CUDA code
described in [31] is used for benchmarking. For SpTRSV, the



9

TABLE VII
PERFORMANCE COMPARISON WITH OTHER PLATFORMS.

DPU∗ CPU GPU

Technology 28nm 22nm 12nm
Frequency (GHz) 0.28 3 1.35
Arithmetic representation custom posit float float
Peak throughput (GOPS) 17.8 3.4×103 13.5×103
Avg. throughput (GOPS) 6.2 1.2 0.3
Power (W) 0.23 55 98
Avg. energy efficiency (GOPS/W) 27 0.02 0.003
Workloads PC and SpTRSV DAGs
∗DPU operating point is 0.9V and 32b precision

cusparseScsrsv_solve() function from the standard
cuSPARSE library [32], [33] is used. For a fair comparison,
the memory copy time from the host to GPU is not considered.

Fig. 14 and table VII summarizes the comparison results.
All the platforms show higher performance for PC than Sp-
TRSV due to the higher parallelism (table VI). Juice performs
considerably slower than the OpenMP counterpart, despite
using the same number of CPU cores. Overall, the DPU
outperforms the CPU, which in turn beats the GPU. The DPU
achieves an average throughput of 6.2 GOPS, a speedup of
5.1× and 20.6× compared to the CPU and GPU, at an average
efficiency of 27 GOPS/W at 32b precision, showing the
effectiveness of the specialized DPU architecture for irregular
DAGs.

E. DPU’s performance for a regular DAG

DPU’s performance for regular DAGs would be an interest-
ing result, quantifying the effectiveness of asynchronous CUs
for a regular workload. Hence, as an additional experiment,
performance is benchmarked for a regular DAG of dense
matrix-vector multiplication (GEMV). For a 128x128 matrix,
DPU achieves a throughput of 17.5 GOPS at a utilization
of 97.5%, while consuming 414mW at 0.9V, 0.28GHz and
32b precision, resulting in an efficiency of 42 GOPS/W. This
shows that DPU can achieve near-peak throughput for a regular
DAG, although with an inefficiency that separate instructions
and load/store addresses are used for every CU due to the
absence of SIMD support. For reference, the CPU achieves
7.4 GOPS and 0.14 GOPS/W with the Intel MKL GEMV
function cblas_sgemv().

VII. RELATED WORK

Neural-network processors exploiting sparsity like [1], [34],
[35], [36], [37] have special hardware support to handle
irregularity resulting from the sparsity. However, sparsity in
our DAG workloads is typically more than 99%, significantly
higher than NN sparsity (less than 70-80%). As a result,
sparse NNs exhibit higher compute-to-memory fetch ratios
and some repetitive structures that can be exploited, e.g., by
using a systolic array of PEs, while the DPU needs different
architectural techniques due to the ultra-high sparsity.

In recent years, architectures like [38], [39], [40], [41], [42]
have been proposed for general graph-analytic workloads like
PageRank, breadth-first search, single-source shortest paths,

etc. The key difference is that these architectures work well
when a significant portion of the graph nodes are active, while
in compute DAGs only the nodes in a DAG layer are active
at a time due to the dependency-induced node ordering. In
general graph analytics, the active nodes cannot be predicted
at compile time, while they can be predicted for our target
DAGs, which is heavily utilized in this work for reducing the
number of barriers, aggressive data prefetching, etc.

The sparse processing unit (SPU) [43] uses hardware sup-
port for stream-joins which is similar to our decoupled streams
(§IV-B). However, DPU uses a register-bank based PE for lo-
cal data reuse, while SPU uses a coarse-grained reconfigurable
dataflow array (CGRA). Such a dataflow array can be fully
utilized when there are frequently recurring patterns in the
DAG for which the array can be reconfigured, but irregular
DAGs typically lack a single repetitive pattern. Further, the
SPU consumes 16W (simulated) as opposed to DPU’s 0.23W.

Overall, DPU is novel in targeting DAG applications with
high sparsity-induced irregularity, with specialized features
like hardware-supported synchronization, decoupled streams-
based execution, and application-dependent posit arithmetic.

VIII. CONCLUSION

This paper proposed DPU, a processor designed for energy-
efficient parallel execution of irregular DAGs. The DPU is
equipped with 64 parallel compute units (CU), each executing
a DAG subgraph independently. The CUs communicate via
a high-bandwidth global scratchpad connected using a low-
overhead asymmetric crossbar. Synchronization of CUs, fre-
quently needed for DAGs, happens in a single cycle using
a specialized hardware unit. The instructions of CUs are
decoupled into multiple streams for overlapping execution,
resulting in 1.8× speedup. For the arithmetic operations, the
CUs are equipped with precision-scalable custom posit units
that can perform low-precision batch inference depending
on the application requirement. The DPU is fabricated in
28nm technology, and benchmarked on irregular DAGs from
probabilistic machine learning and sparse linear algebra. Mea-
surement results show a mean speedup of 5.1× and 20.6×
over state-of-the-art CPU and GPU implementations, with a
peak performance of 73.8 GOPS and 538 GOPS/W. Thus,
DPU takes a step towards supporting emerging irregular DAG
workloads in energy-constrained platforms.

ACKNOWLEDGMENT

This work has been supported by the EU ERC project Re-
SENSE under grant agreement ERC-2016-STG-715037, and
we acknowledge EUROPRACTICE MPW and design tool
support, and support from Intel.



10

REFERENCES

[1] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 27–40, 2017.

[2] F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Foun-
dations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.

[3] K. Stelzner, R. Peharz, and K. Kersting, “Faster attend-infer-repeat with
tractable probabilistic models,” in Proceedings of the 36th International
Conference on Machine Learning, ICML, vol. 97, 2019, pp. 5966–5975.

[4] K. Zheng and A. Pronobis, “From pixels to buildings: End-to-end
probabilistic deep networks for large-scale semantic mapping,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 3511–3518.

[5] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion: a
fully integrated energy-efficient visual-inertial odometry accelerator for
autonomous navigation of nano drones,” in 2018 IEEE Symposium on
VLSI Circuits. IEEE, 2018, pp. 133–134.

[6] Y. Choi, A. Vergari, and G. Van den Broeck, “Probabilistic circuits: A
unifying framework for tractable probabilistic models,” Technical report,
Tech. Rep., 2020.

[7] H. Poon and P. Domingos, “Sum-product networks: A new deep archi-
tecture,” in 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops). IEEE, 2011, pp. 689–690.

[8] T. A. Davis, Direct methods for sparse linear systems. SIAM, 2006.
[9] E. Anderson and Y. Saad, “Solving sparse triangular linear systems

on parallel computers,” Int. J. High Speed Comput., vol. 1, no. 1,
p. 73–95, apr 1989. [Online]. Available: https://doi.org/10.1142/
S0129053389000056

[10] N. Shah, W. Meert, and M. Verhelst, “Graphopt: constrained
optimization-based parallelization of irregular graphs,” arXiv preprint
arXiv:2105.01976, 2021.

[11] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

[12] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco, “Heterogeneous
memory subsystem for natural graph analytics,” in 2018 IEEE Inter-
national Symposium on Workload Characterization (IISWC), 2018, pp.
134–145.

[13] J. M. Bull, F. Reid, and N. McDonnell, “A microbenchmark suite for
openmp tasks,” in International Workshop on OpenMP. Springer, 2012,
pp. 271–274.

[14] L. Zhang, M. Wahib, H. Zhang, and S. Matsuoka, “A study of single
and multi-device synchronization methods in nvidia gpus,” in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2020, pp. 483–493.

[15] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar et al., “Haswell:
The fourth-generation intel core processor,” IEEE Micro, vol. 34, no. 2,
pp. 6–20, 2014.

[16] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: New microarchitecture code-named skylake,” IEEE Micro,
vol. 37, no. 2, pp. 52–62, 2017.

[17] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph
processing: Workload characterization on an ivy bridge server,” in 2015
IEEE International Symposium on Workload Characterization. IEEE,
2015, pp. 56–65.

[18] M. Poletto and V. Sarkar, “Linear scan register allocation,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 21,
no. 5, pp. 895–913, 1999.

[19] L. I. Galindez Olascoaga, W. Meert, N. Shah, M. Verhelst, and
G. Van den Broeck, “Towards hardware-aware tractable learning of prob-
abilistic models,” Advances in Neural Information Processing Systems
32 (NeurIPS), vol. 32, 2019.

[20] N. Shah, L. I. G. Olascoaga, W. Meert, and M. Verhelst, “Problp:
A framework for iow-precision probabilistic inference,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[21] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its
own game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[22] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[23] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1:1–1:25, 2011.

[24] M. K. Jaiswal and H. K.-H. So, “Pacogen: A hardware posit arithmetic
core generator,” Ieee access, vol. 7, pp. 74 586–74 601, 2019.

[25] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar,
K. Niyogi, F. Merchant, and R. Leupers, “Parameterized posit arithmetic
hardware generator,” in 2018 IEEE 36th International Conference on
Computer Design (ICCD). IEEE, 2018, pp. 334–341.

[26] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti, “Peri: A configurable
posit enabled risc-v core,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 18, no. 3, pp. 1–26, 2021.

[27] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[28] N. Thoma, Z. Yu, F. Ventola, and K. Kersting, “Recowns: Proba-
bilistic circuits for trustworthy time series forecasting,” arXiv preprint
arXiv:2106.04148, 2021.

[29] Y. Liang, J. Bekker, and G. V. den Broeck, “Learning the structure of
probabilistic sentential decision diagrams,” in Proceedings of the Thirty-
Third Conference on Uncertainty in Artificial Intelligence UAI, 2017.

[30] M. Dang, P. Khosravi, Y. Liang, A. Vergari, and G. Van den Broeck,
“Juice: A julia package for logic and probabilistic circuits,” in Pro-
ceedings of the 35th AAAI Conference on Artificial Intelligence (Demo
Track), 2021.

[31] N. Shah, L. I. G. Olascoaga, W. Meert, and M. Verhelst, “Acceleration of
probabilistic reasoning through custom processor architecture,” in 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2020, pp. 322–325.

[32] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

[33] M. Naumov, “Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the gpu,” NVIDIA Corp., Westford,
MA, USA, Tech. Rep. NVR-2011, vol. 1, 2011.

[34] J.-F. Zhang, C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler, and Z. Zhang,
“Snap: An efficient sparse neural acceleration processor for unstructured
sparse deep neural network inference,” IEEE Journal of Solid-State
Circuits, vol. 56, no. 2, pp. 636–647, 2021.

[35] Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao, X. Li,
and H. Yang, “Sticker: An energy-efficient multi-sparsity compatible
accelerator for convolutional neural networks in 65-nm cmos,” IEEE
Journal of Solid-State Circuits, vol. 55, no. 2, pp. 465–477, 2020.

[36] X. He, S. Pal, A. Amarnath, S. Feng, D.-H. Park, A. Rovinski, H. Ye,
Y. Chen, R. Dreslinski, and T. Mudge, “Sparse-tpu: Adapting systolic ar-
rays for sparse matrices,” in Proceedings of the 34th ACM International
Conference on Supercomputing, 2020, pp. 1–12.

[37] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 461–475.

[38] C.-Y. Gui, L. Zheng, B. He, C. Liu, X.-Y. Chen, X.-F. Liao, and
H. Jin, “A survey on graph processing accelerators: Challenges and
opportunities,” Journal of Computer Science and Technology, vol. 34,
no. 2, pp. 339–371, 2019.

[39] P. Yao, L. Zheng, X. Liao, H. Jin, and B. He, “An efficient graph
accelerator with parallel data conflict management,” in Proceedings
of the 27th International Conference on Parallel Architectures and
Compilation Techniques, 2018, pp. 1–12.

[40] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco, “Heterogeneous
memory subsystem for natural graph analytics,” in 2018 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). IEEE, 2018,
pp. 134–145.

[41] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[42] G. Li, G. Dai, S. Li, Y. Wang, and Y. Xie, “Graphia: an in-situ accelerator
for large-scale graph processing,” in Proceedings of the International
Symposium on Memory Systems, 2018, pp. 79–84.

[43] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general purpose
acceleration by exploiting common data-dependence forms,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 924–939.

https://doi.org/10.1142/S0129053389000056
https://doi.org/10.1142/S0129053389000056
https://developers.google.com/optimization/
http://archive.ics.uci.edu/ml


11

Nimish Shah Nimish Shah is pursuing his Ph.D.
degree at the MICAS laboratories of the EE depart-
ment of KU Leuven, Belgium. His research focuses
on hardware-software co-design, embedded machine
learning, irregular graph processing, approximate
computing, and low-power digital VLSI. He re-
ceived an M.Tech. degree in Electronic Systems
Engineering from the Indian Institute of Science,
Bangalore, in 2016. In 2016-17, he worked with
Nvidia, Bangalore, where he was involved in energy-
efficient memory (de)compression hardware design

for GPU. He has served as a reviewer for TVLSI and JETCAS. Nimish is a
recipient of the departmental Gold Medal for excellence in master’s studies
at IISc.

Laura Isabel Galindez Olascoaga Laura Isabel
Galindez Olascoaga received the M.Sc. degree in
Systems and Control from TU Eindhoven, The
Netherlands, in 2015, and the Ph.D. degree in Elec-
trical Engineering from KU Leuven, Belgium, in
2020. Since February 2021, she has been a post-
doctoral research scholar at the Berkeley Wireless
Research Center in the Electrical Engineering and
Computer Sciences Department of the University
of California, Berkeley, USA. In 2014, she was a
research intern at ASML, Veldhoven, The Nether-

lands; and in 2018, she was a visiting researcher at the Statistical and
Relational Artificial Intelligence Lab of the University of California, Los
Angeles. Her research interests include hardware-aware machine learning,
tractable probabilistic models and Probabilistic Circuits, brain-inspired high-
dimensional computing, neurosymbolic Artificial Intelligence and human-in-
the-loop robot control and learning.

Shirui Zhao Shirui Zhao received his B.S. de-
gree from Northwestern Polytechnical University
(NWPU) in 2012 and M.S. degree from the Uni-
versity of Chinese Academy of Sciences (UCAS)
in 2015, respectively. He is currently pursuing a
Ph.D. degree at ESAT-MICAS, KU Leuven, with a
focus on the area of low-power probabilistic rea-
soning hardware design. His research interests span
machine learning, chip architecture, and low-power
circuit design.

Wannes Meert Wannes Meert received his degrees
of Master of Electrotechnical Engineering, Micro-
electronics (2005), Master of Artificial Intelligence
(2006) and Ph.D. in Computer Science (2011) from
KU Leuven. He is an IOF research manager in the
DTAI section at KU Leuven. His work is focused on
applying machine learning, artificial intelligence and
anomaly detection technology to industrial applica-
tion domains with various industrial and academic
partners.

Marian Verhelst Marian Verhelst is a full professor
at the MICAS laboratories of the EE Department
of KU Leuven. Her research focuses on embed-
ded machine learning, hardware accelerators, HW-
algorithm co-design and low-power edge processing.
Before that, she received a PhD from KU Leuven in
2008, was a visiting scholar at the BWRC of UC
Berkeley in the summer of 2005, and worked as a
research scientist at Intel Labs, Hillsboro OR from
2008 till 2011. Marian is a topic chair of the DATE
and ISSCC executive committees, TPC member of

VLSI and ESSCIRC and was the chair of tinyML2021 and TPC co-chair of
AICAS2020. Marian is an IEEE SSCS Distinguished Lecturer, was a member
of the Young Academy of Belgium, an associate editor for TVLSI, TCAS-II
and JSSC and a member of the STEM advisory committee to the Flemish
Government. Marian currently holds a prestigious ERC Starting Grant from
the European Union, was the laureate of the Royal Academy of Belgium in
2016, and received the André Mischke YAE Prize for Science and Policy in
2021.


	I Introduction
	II Background and Challenges
	II-A Background of DAG execution
	II-A1 Execution order
	II-A2 What can be executed in parallel?
	II-A3 Synchronizations
	II-A4 Placement of nodes and synchronizations

	II-B Challenges due to irregularity
	II-B1 SIMD unfriendly
	II-B2 Frequent synchronizations
	II-B3 Inefficient use of caches
	II-B4 Data prefetching


	III DPU architecture
	III-A Compute units (CU)
	III-B Global scratchpad and asymmetric crossbar
	III-C Global sync unit

	IV Compute unit (CU) architecture
	IV-A Local scratchpad
	IV-B Data prefetching using decoupled instruction streams

	V Precision-scalable positTM unit
	VI Experiments
	VI-A Peak performance and voltage scaling
	VI-B Workloads
	VI-C Throughput scaling with different active CUs
	VI-D Comparison with CPU and GPU
	VI-E DPU's performance for a regular DAG

	VII Related work
	VIII Conclusion
	References
	Biographies
	Nimish Shah
	Laura Isabel Galindez Olascoaga
	Shirui Zhao
	Wannes Meert
	Marian Verhelst


