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Abstract— Increased capabilities such as recognition and self-
adaptability are now required from IoT applications. While IoT 
node power consumption is a major concern for these applications, 
cloud-based processing is becoming unsustainable due to 
continuous sensor or image data transmission over the wireless 
network. Thus optimized ML capabilities and data transfers 
should be integrated in the IoT node. Moreover, IoT applications 
are torn between sporadic data-logging and energy-hungry data 
processing (e.g. image classification). Thus, the versatility of the 
node is key in addressing this wide diversity of energy and 
processing needs. This paper presents SamurAI, a versatile IoT 
node bridging this gap in processing and in energy by leveraging 
two on-chip sub-systems: a low power, clock-less, event-driven 
Always-Responsive (AR) part and an energy-efficient On-Demand 
(OD) part. AR contains a 1.7MOPS event-driven, asynchronous 
Wake-up Controller (WuC) with a 207ns wake-up time optimized 
for sporadic computing, while OD combines a deep-sleep RISC-V 
CPU and 1.3TOPS/W Machine Learning (ML) for more complex 
tasks up to 36GOPS. This architecture partitioning achieves best 
in class versatility metrics such as peak performance to idle power 
ratio. On an applicative classification scenario, it demonstrates 
system power gains, up to 3.5x compared to cloud-based 
processing, and thus extended battery lifetime. 

Index Terms—Internet of Things, low power, event-driven, 
asynchronous, versatile architecture, machine learning, DNN. 

I.  INTRODUCTION 

OWADAYS, the IoT domain uses traditional cloud 
computing paradigms to process the collected data [1]. 

The data is collected by IoT nodes, where it can be filtered, 
compressed and encrypted. Then, the data is streamed through 
gateways to the cloud where it is processed [2]. However, as the 
number of IoT devices grows exponentially, a centralized 
cloud-based computing will become unsustainable. Moreover, 
the data processing latency and the unreliability of the network 
will also limit the scalability of the current approach [3]. The 
edge-computing paradigm tries to balance the processing of the 
data by moving it closer to where it is collected [1]. Smart IoT 
nodes where the data collection and processing are performed 
locally can address the scalability, latency and unreliability 
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issues of traditional approaches. Thus, machine learning is seen 
as an enabler for these new class of nodes [4]. However, moving 
the computation into the node increases the energy spent by the 
node to process this data while reducing the energy spent 
streaming the collected data. As these nodes are powered by 
small batteries, the amount of available energy at the node is 
limited. Thus, new challenges appear for these nodes. Firstly, 
energy efficiency is key for these devices, as local data 
processing has a high energy cost. Secondly, they require more 
embedded memory than the current IoT nodes in order to 
process the data locally. Moreover, the node should be versatile 
enough to efficiently address the high energy difference 
between idle, data-logging, and local data processing modes. 

To address these new challenges, many research efforts are 
performed to optimize the nodes across multiple domains such 
as the power consumption of the node itself, the radio 
communications and the machine learning accelerators. 

II. CONTEXT AND MOTIVATION 

A. Power consumption 

Optimizing the power consumption of the node is primordial 
as the battery lifetime of the node depends on its average power 
consumption. Moreover, most of the time the processing 
elements of the sensor are in sleep mode, during which the 
power consumption is conditioned by the remaining powered-
on parts of the circuit. Thus, many research efforts [1][5][6][7] 
focus on reducing these energy consumptions by reducing the 
power supply voltage of the node and by optimizing the deep-
sleep mode of the architecture. To support low voltage 
operations, the memory bitcells are also optimized as in 
[8][9][10]. 

However, the deep-sleep mode suffers from long (tens of µs) 
wake-up time due to extremely low voltage and a reduced clock 
frequency [6][11]. For some applications, a long wake-up time 
is not compatible with the wake-up event duration, the bursty 
nature of the incoming data or the power break-even time [12]. 
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For these cases, the node cannot be pushed into deep-sleep 
mode and therefore the benefits of power reduction are lost. 

Due to their event-driven behavior, asynchronous circuits are 
a promising approach to implement fast and reactive wake-up 
schemes but also environment aware duty-cycling of IoT 
applications [13]. In highly changing environments and low 
activity contexts, a clock-less processor implemented in 
asynchronous logic is a relevant solution which offers reduced 
power consumption, high robustness to operating conditions 
and short reactivity [14][15]. As no clock is required to operate, 
the idle energy is limited to leakage and its performances are 
automatically adapted to the operating conditions.  

B. Efficient ML at the IoT edge 

IoT devices at the edge are resource and energy constrained. 
This advocates for efficient hardware ML accelerators, 
increased but limited memory resources with reduced power 
consumption, and optimized ML algorithms well suited for 
these constrained nodes.  

In [16] an overview of the architectures for efficient deep 
learning on IoT devices is presented. Flexible approaches such 
as GPUs are too power-hungry to be considered for integrating 
ML in real IoT devices, while FPGAs are not power-efficient 
enough. Research focuses on specialized accelerators, 
especially using dataflow paradigms. Eyeriss [17] is an example 
of such an accelerator where small processing elements using 
private buffers are interconnected to implement row-stationary 
dataflow for efficient convolution operations. Other 
architectures also use a MAC-array structure, such as the 
Google Edge TPU [18] architecture. These accelerators focus 
on convolutions, however complete networks may need more 
flexibility. This is the domain of heterogeneous accelerators 
such as the Orlando platform from STMicroelectronics [19], in 
which a dataflow hardware engine is coupled with SIMD DSP 
clusters. 

To be more efficient, algorithm-architecture matching needs 
to be improved. In [4] algorithmic and processor techniques are 
studied to address deep learning in the edge. Quantization and 
network pruning are popular solutions to reduce the memory 
footprint of a DNN network [20] with reduced classification 
accuracy degradation. Network pruning is an efficient way to 
also reduce the computational cost of the network. However, 
classical network pruning is not a hardware-friendly approach 
due to the random location of pruned values. Structured sparsity 
[21] selectively chooses the pruned locations in order to 
improve the hardware efficacy of the accelerator. 

C. Radio communication 

In this context, an always-responsive receiver technology 
continuously monitoring a radio channel while providing a very 
low power consumption in the order of microwatts and a radio 
wakeup time in the range of milliseconds is desirable [22]. 
Consequently, this wake-up radio (WuR) increases operating 
life significantly compared to a classic radio receiver. The WuR 
should detect ISM radio signals, typically the 433 MHz, 
868/915 MHz or 2.4 GHz frequency bands.  

D. L-IoT Approach and SamurAI proposal 

IoT nodes must be versatile to address a wide diversity of 
applications. However, conventional systems do not have 
enough versatility to address these applications. The concept of 
L-IoT was introduced in [23] and [24] where a dual sub-
subsystem is used: an Always Responsive (AR) part and an On-
Demand (OD) part. The AR part is based on low-power wake-
up modules able to handle system events while the OD part is 
based on high performance and energy-efficient modules, 
which are most of the time powered off. Moreover, by using 
asynchronous logic technology on the AR part, the system is 
able to quickly wake-up (e.g. much faster than one period of the 
conventional 32 kHz crystal clock.) without using a running 
clock while its power consumption remains low. The 
combination of these techniques aims to build a versatile node 
with fast wake-up time and high energy-efficiency. 

Thanks to this dual system, the lesser computationally 
demanding applications can be managed with only the AR part 
while higher computationally demanding applications can be 
managed with the combination of both sub-systems (Fig. 1). For 
example, in a smart camera application, the AR part can be used 
to trigger the capture and classification of an image by the OD 
part only when multiple sensors (e.g. sound, pyroelectric) detect 
simultaneously. As capturing and classifying an image is an 
energy-demanding task, the AR part is used here to filter the 
number of times the task is executed based on sensors 
correlation and on previous classification results. Finally, as the 
AR part is based on a programmable core architecture, it can 
adaptively configure OD triggering conditions to limit the false 
detections. 

 

 
Fig. 1.  L-IoT approach. 
 

In [25], an asynchronous circuit design methodology is 
described for ultra-low power systems. The authors evaluate the 
gains of an asynchronous wake-up controller on the always-
responsive sub-system. Thanks to the fast wake-up time and the 
low-power consumption during idle states, the authors claim a 
power gain of up to 70%. Authors in [26] have modeled a 
wireless sensor network system based on this approach using 
28nm FDSOI technology. By using an asynchronous always-
responsive sub-system, they claim power gains ranging from 
14.5% to 76% for different simulated application targets. 

In this context, we propose SamurAI a smart IoT node 
pushing further the concept of AR and OD part with the 
integration of WuC, WuR, RISC-V core and PNeuro, an 
energy-efficient ML accelerator. Specifically, we propose the 
TP-SRAM, a dedicated two-port SRAM architecture, which 
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allows both asynchronous access at low voltage and high 
intensity access from RISC-V core or accelerators, while 
supporting an efficient power gating of OD part. We 
demonstrate concurrent read/write accesses of AR and OD parts 
with 15.5ns asynchronous wake-up/sleep modes. Besides, we 
design a specific instantiation of PNeuro accelerator dedicated 
to IoT ML operation, such as keyword spotting and image 
recognition. We demonstrate up to 1.3TOPS/W and 36GOPS 
computing capability on PNeuro. Conversely, the efficient 
AR/OD decoupling allows very low power continuous sensing 
operation at 6.4µW, with 207ns wake-up time for more 
complex data processing, making SamurAI an energy-efficient 
versatile IoT node suitable to diverse sensing, recognition and 
communication applications. 

We recently presented an overview and main results of the 
SamurAI architecture [27]. In this paper, we develop this 
presentation with additional micro-architecture details and 
measurements. The outline of the paper is as follows: section 
III introduces the SamurAI architecture and its power domains. 
Section IV presents the Always-Responsive sub-system of the 
architecture while section V describes the On-Demand sub-
system part. Finally, section VI and VII present the final circuit 
results, and application scenario and conclusion. 

III. SAMURAI ARCHITECTURE 

An event-driven IoT node is a way to reduce the power 
consumption of sporadic computing node. SamurAI leverages 
the L-IoT approach to build a smart node to address the 
challenge of application versatility. Following the L-IoT 
approach, it combines a dual-system with a machine learning 
(ML) accelerator.  

A. Functional partitioning between event-driven AR and 
compute-intensive OD subsystems 

Figure 2 presents the SamurAI system architecture. The AR 
part is composed of an event-driven asynchronous Wake-up 
Controller (WuC), a Wake-up Radio (WuR) and a Digital 
Baseband (DBB) demodulator module. The OD part is 
articulated around a RISC-V core and a ML accelerator 
(PNeuro). The WuC is the master of the system when the OD 
part is OFF. Thus, limiting the power consumption to only the 
AR part when no task is running. If needed, it can wake-up the 
OD part and define the tasks to be executed by the RISC-V core 
and PNeuro. Between the AR and OD parts, a low-power two-
port SRAM (TP-SRAM) memory is used. It is the WuC’s main 
memory and it is also used for data exchange between the AR 
and OD parts. This memory must be low leakage with a low 
operation voltage, when only AR is powered, and high data 
throughput when both parts are powered to reduce data 
exchange latency. In terms of radio communication, the WuR 
and DBB are used to receive small radio messages on IoT bands 
to control the node with a reduced power budget. 

The memory subsystem on RISC-V side is composed of 
Tightly Coupled Data and Program Memories (TCDM and 
TCPM) and an external non-volatile memory (FeRAM). Thus, 
the core sees 192KB of SRAM and 512KB of NVM with in-
place execution. The core communicates through an AHB bus 

with PNeuro, TP-SRAM and an APB bridge to peripherals. The 
latter are: 1) Crypto IP to encrypt and decrypt messages, 2) 
Timers, 3) Adaptive Voltage Scaling (AVS) controller to track 
the Vmin of the circuit, 4) interrupt (IT) controller for RISC-V 
and WuC events, 5) synchronization (Locks) controller, 6) SPI 
master, 7) GPIO controller, 8) I2C controller, 9) UART 
controller. WuC can also communicate with these peripherals 
through an APB bridge between the AR and OD parts. 
Moreover, WuC has a dedicated GPIO interface for sensor 
connectivity and to wake-up on sensor events. 

The node is equipped with an SPI slave and JTAG interface 
to program and debug the system. Moreover, timers and 
performance monitors are used for system ticks and to measure 
the circuit performance. 

 
Fig. 2.  SamurAI system architecture, with Always-Responsive and On-
Demand sub-systems and associated power domains. 

 

B. Clocking and power domains 

In the AR part, the WuC is implemented with Quasi Delay 
Insensitive (QDI) [28] fully-asynchronous logic, the WuR uses 
a switchable free-running VCO, while the OD part can be 
clocked either by an external clock (clk_ref) or by an internal 
FLL clock generator (based on [29]). Moreover, this FLL has a 
programmable free-running capability to generate a clock when 
the external clock is disabled. The TP-SRAM offers a dual 
clocking mode, with fully-asynchronous operation when used 
only by the AR part and a synchronous mode when used with 
the OD part. 

The node has five power modes (Table I) where the voltage 
of the AR, TP-SRAM and OD parts are generated externally 
and controlled by the WuC through external power switches.  

 
TABLE I:  SAMURAI POWER MODES 

 

Always-Responsive (AR) TP-SRAM On-Demand (OD)

Power mode Voltage
(V)

WuC
state

WuR
State

Voltage
(V) State

Voltage
(V)

RISC-V
Freq (MHz)

Periph
Freq (MHz)

IDLE 0.45 Sleep OFF 0.48 Sleep OFF - -

WuC only 0.45 Run OFF 0.48 Run OFF - -

WuC+WuR 0.45 Run ON 0.48 Run OFF - -

WuC+Periph.
(cpu sleep)

0.45 Run ON/OFF 0.48 Run 0.48 Gated 10

CPU running 0.45 Run/Sleep ON/OFF 0.48 – 0.9 Run 0.48 – 0.9 1 – 350 1 – 350
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In IDLE state, TP-SRAM is in sleep mode (retentive mode 
with power gating on the periphery) and WuC is waiting for an 
event to wake-up. These events can come from sensors 
(GPIOs), DBB, timer or the OD part. When an event happens, 
WuC wakes up TP-SRAM and executes the code from TP-
SRAM to manage the event (WuC only power mode). At the 
end of the execution, the WuC can change the power mode to 
1) use the WuR with WuC+WuR mode, 2) use the OD 
peripherals with WuC+Peripherals mode, 3) execute tasks on 
RISC-V core with CPU running mode, or 4) go back to sleep 
with IDLE mode.  

TP-SRAM is kept at low voltage when only the AR part is 
ON to reduce the leakage. However, its voltage is increased and 
linked with the OD part, when the latter is powered on (CPU 
running mode) to maximize the data exchange throughput 
between AR an OD parts. 

 
Fig. 3.  Wake-up Controller and Radio architecture details. 

IV. ALWAYS-RESPONSIVE (AR) SUB-SYSTEM 

A. Wake-up Controller 

The WuC (Fig. 3) is a clock-less 32b MCU with a 16b RISC 
ISA, based on [15] and [30]. The WuC is the master of the AR 
sub-system. It manages the sensor data, the wake-up events and 
controls the power modes of the circuit. Thanks to asynchronous 
Quasi Delay Insensitive (QDI) design techniques [28], core 
performance is automatically adapted to the PVT variations 
without requiring any timing assumption. Tiempo [31] 
Asynchronous Circuit Compiler (ACC) has been used for the 
logical synthesis. 

Fig. 3 shows the WuC architecture, where Wake-up Core is 
the computing core, a single issue, single pipeline core. The 
Asynchronous System Bus is the local interconnect which 
interfaces the processor core, the GPIO controller, the 
configuration (CFG) registers, the TP-SRAM, and the OD APB 
interface. The TP-SRAM contains the program and data for the 
core and is accessed using an asynchronous handshaking 
protocol (see Section IV.C) to avoid using a clock frequency 
when only WuC uses the memory. The APB interface to the 

peripherals uses a synchronous 4-phase handshake interface to 
exchange the data from the asynchronous domain to the 
synchronous OD domain. The attached GPIO controller manages 
8 input/output circuit pads on which sensors can be connected. 
These signals can be used as wake-up sources. An interrupt 
controller (IT) selects the signals (8 GPIOs and 8 internal 
sources) and triggering conditions to wake-up the WuC. Among 
the internal interrupt sources, four are hardware (HW) interrupts 
(one from DBB and three from the OD sub-system), and four are 
software (SW) interrupts for inter-task synchronization, and 
debug & test functionality. Finally, the CFG registers are used to 
configure the circuit including the OD sub-system, WuR and 
DBB parameters. 

The core uses a run-to-completion scheduling model to 
simplify its architecture. By default, the core waits for an 
incoming interrupt (8 from GPIO and 8 from internal sources). 
Once an interrupt arrives, a dedicated routine is executed until 
completion. If new interrupts have arrived in between, their 
dedicated routines are then executed. Otherwise, the core enters 
into the wait for event mode (IDLE). In an asynchronous logic 
scheme, this mode implies zero signal toggling, hence zero 
dynamic power consumption.  

B. Wake-up Radio and DBB 

The goal of the Wake-Up Receiver is to sense the channel 
instead of main radio receiver for a lower power consumption. 
To be effective, the power consumption of this wake-up device 
must be in the range of a decade below the main receiver. In a 
multiple sensors IoT scenario, multiple frequency operation is 
essential. The proposed circuit is derivative from [32] and is 
based on a 2-path passive mixers first topology (as in [33]) that 
allows a wide band 50 Ohms input matching from 400MHz to 
2.5GHz (Fig. 3). This large bandwidth has been chosen to be 
compatible with ISM radio band around 433MHz, 868MHz, 
902MHz and 2.4GHz frequencies. The frequency band 
selection is performed thanks to three independent current-
starved ring oscillators. The inaccuracy of the local oscillator 
generates an uncertain IF signal when mixing with the RF input 
desired signal. At the IF-band, a specific capacitor is used at the 
output of the passive mixer. This effect creates a band-pass like 
input impedance response, whose bandwidth gets reduced as 
the IF capacitor is increased. IF signal is then amplified through 
a 3-stage IF chain with programmable gain and bandwidth. 
Finally, the signal is demodulated by self-mixing through an 
envelope detector combined with a limiting amplifier allowing 
the full SOOK demodulation. 

The digital baseband (DBB) module decodes small radio 
messages composed of 8b identifier to selectively wake-up the 
WuC and a 32b message payload for application specific 
purposes. It has been designed in a generic manner, leveraging 
symbol width and useful data delay within the symbol as 
dynamic parameters, and may thus be configured to handle any 
kind of OOK modulation. Once the identifier has been detected 
and the payload has been received, an interrupt is sent to the 
WuC, triggering the execution of a routine dedicated to RF wake-
up events. 
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C. TP-SRAM 

The TP-SRAM is at the intersection of the AR and OD sub-
systems. Its role is to serve as main memory for the WuC and to 
exchange data between the two sub-systems. As it contains the 
WuC’s program and data, it is always powered, thus its power 
consumption must be optimized both in idle and in active mode. 
To leverage the benefits of the asynchronous architecture and its 
fast reaction time, TP-SRAM has been designed as a clock-less 
memory with automatic power-up/down capabilities [34]. A low-
voltage scheme is used, allowing for a fast reaction time with 
read/write capabilities.  

 
Fig. 4.  TP-SRAM bit cell architecture. 

 
To support low voltage read/write operations, a foundry two-

port bit cell (six-transistor write/read port and two-transistor 
read port) has been used, as shown in Fig. 4. 

The write/read port and the read port are controlled by two 
different word lines (WRP_WL and RP_WL). Thus, it supports 
two-port operations, a write-read port (WRP) using the six-
transistor cell, and a read port (RP) using the two-transistor read 
port. This feature allows an increased throughput when the WuC 
and RISC-V share data. However, this concurrent operation is not 
possible at low voltage as WRP can perform write but not read 
operations due the minimum offset required by the sense 
amplifier. Nevertheless, thanks to full swing reading mode, the 
read port (RP) can be used at low voltages to read the memory 
content.   

 

 
Fig. 5.  TP-SRAM read port principle. 

 

To minimize the read port leakage on the read bit line, the 
virtual ground of every pair of read port word-lines is 
horizontally controlled between GND and VDD at the row 
decoder level (Fig. 5). When the word-lines are not selected, 
SVGND is tied to VDD, the same potential as the idle precharge 
voltage of the RBL, leading to the memory leakage reduction. 
When a word-line is selected by enabling RWL, the read margin 
(difference between logic '0' and '1') is maximized by connecting 
SVGND to GND to perform a proper read.  

  The TP-SRAM uses handshake asynchronous protocol 
interfaces (Fig. 6) to interface with the clock-less WuC for 
performing read/write operations and to manage its internal 
power state (sleep mode where the periphery is powered off). 
There are three handshake interfaces 1) SLEEP_REQ and 
SLEEP_ACK to manage the sleep mode, 2) WRP_CK and 
WRP_RDY to manage the start/end of an operation on WRP, 
and 3) RP_CK and RP_RDY to manage the start/end of an 
operation on RP. These signals are described hereafter. 

 

 
Fig. 6.  TP-SRAM interfaces. 

 
Fig. 7 shows a chronogram of the memory starting from sleep 

mode, waking up, reading two data on RP and entering sleep 
mode again. When the WuC lowers the SLEEP_REQ signal, the 
memory exits sleep mode. The TP-SRAM periphery is powered 
on, and as soon as the memory is ready to perform a read/write 
operation, it raises the SLEEP_ACK signal. Then the WuC can 
start an operation to the memory. When the WuC wants to 
perform a read operation on the RP, it presents the read address 
and then raises the RP_CK signal. The RP_CK (and WRP_CK) 
behaves as a clock signal for the memory. The memory, 1) lowers 
the RP_Q_V meaning that the output data (RP_Q) is no more 
valid, 2) registers the read address, 3) starts the internal read 
operation, and 4) lowers the RP_RDY, acknowledging the 
requested operation to the WuC. When the WuC sees RP_RDY 
at low, it lowers the RP_CK signal and waits for the requested 
data. Once the memory has performed the read operation, the data 
is available at the RP_Q interface and then RP_Q_V is risen to 
signal the validity of the data. After that, the WuC captures the 
data. Finally, the memory raises RP_RDY when it can accept a 
new operation allowing the WuC to start a new request. The same 
protocol is used on the WRP where read and write operations are 
possible. In the case of write operations, WRP_Q and WRP_Q_V 
are not used. 

To enter sleep mode, the WuC raises the SLEEP_REQ signal 
and the memory in turn lowers SLEEP_ACK and powers off its 
periphery to lower the leakage. 
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The integration of TP-SRAM into the SamurAI architecture is 
depicted in Fig. 8 where three power domains are also shown 
(pd_wuc, pd_tpsram and pd_on_demand).  

 

 
Fig. 7.  TP-SRAM chronogram. 
 

The WuC’s read and write operations are redirected into two 
distinct interfaces. Read operations are directly connected to the 
RP of the TP-SRAM while the write operations are combined 
with the AHB request into the WRP of the TP-SRAM. Thus, the 
WuC has a dedicated read interface for fetching instructions and 
reading data while it interleaves the write operations with the OD 
sub-system. Therefore, WuC can simultaneously fetch a new 
instruction while writing data into the memory. When the OD 
sub-system is powered OFF, the WRP is directly connected to 
WuC, allowing fast asynchronous operations. However, when 
the OD sub-system is used, a synchronous round robin arbiter 
performs the allocation of the WRP to either WuC or AHB 
interfaces. In this case, the WRP is clocked by the OD clock 
(clk_od) in order to maximize the throughput for AHB requests 
while the asynchronous WuC’s write operations are converted 
into synchronous requests with a 4-phase protocol converter.  

 

 
Fig. 8.  TP-SRAM interfaces and OD control registers. 

 
To simplify the power and clocking strategy, the pd_tpsram 

and pd_on_demand power domains are linked the when OD is 
power on. Thus, only isolation cells (ISO) are used between this 
two power domains (Fig. 8). However, level shifters (LS) are 
inserted between pd_wuc and pd_tpsram power domains to allow 
for independent voltage modifications.  

The clock frequency (FLL) generation, the clock-gating and 
reset of the OD domain are managed through WuC’s 
configuration registers. A handshake protocol on the reset signal 
(OD_reset and OD_reset_ack) guarantees that the OD domain 
has ended the reset phase before interacting with it, making the 
system robust to any clock frequency and PVT variation. This 
mechanism is also used to switch the arbitration policy of WRP 
port. 

V. ON-DEMAND (OD) SUB-SYSTEM 

A. RISC-V and Memory Sub-System 

The main core on the OD (Fig. 2) sub-system is the RISC-V 
(RV32IMCXpulp) core from Pulp project [35]. It is a single-
issue, in-order core with 4-stage pipeline. The core has post-
incrementing load and store operations, multiply-accumulate 
operations and hardware loops to speed up the execution of the 
code. As the RISC-V core is most of the time off, the WuC 
behaves as the master of the node. The fetch enable and the boot 
address of RISC-V core is controlled by the WuC. Thus, the 
WuC can power on the OD sub-system and configure the task 
to start on RISC-V core by changing its boot address to a 
different NVM location.  

The memory sub-system is composed of 128kB TCDM, 
64kB TCPM and of 512kB external non-volatile memory 
(NVM). The tight-coupled memories are directly visible by the 
core and mapped on the global memory space. 32kB of TCDM 
memory uses a retention SRAM to keep the RISC-V task 
context when the OD sub-system is powered OFF. 

The external NVM is managed by the NVM controller, which 
is composed of an instruction cache controller, a FeRAM 
controller, and an SPI master interface. The RISC-V instruction 
fetches are routed to an instruction cache controller while the 
data request are directly routed to the FeRAM controller. This 
controller arbitrates between instruction and data requests and 
manages the SPI link with the external FeRAM.  

The instruction cache controller uses a direct map 
architecture with 4 sets and 8 words of 32b allowing in-place 
execution. Thanks to this cache, the SPI efficiency reaches 
91%, with 24b for control and 256b for payload.  

B. PNeuro Accelerator 

PNeuro [36] is a flexible and low-power accelerator 
dedicated to speed up the inference part of Deep Neural 
Network (DNN) algorithms. Its architecture is presented in Fig. 
9. PNeuro is based on a set of computing clusters 
interconnected with AHB and APB busses. These computing 
clusters are composed of a cluster controller which fetches and 
decodes instructions from the 4kB program memory. The 
decoded instructions are then sent to a set of Neural Compute 
Blocks (NCB), which are responsible for the different 
computations. 

Each NCB is built around a 32kB multi-banked SRAM, 
enabling parallel access to different data commonly found in 
DNN, such as the weights and data but also intermediate data 
required by the computation process. These SRAM are driven 
by different address generators that automatically implement 

SLEEP_REQ

SLEEP_ACK

RP_CK

RP_Q

RP_RDY

RP_Q_V

Sleep ON Sleep

1st Read operation 2nd Read operation

State

Operation
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address generations for common DNN operations (such as 
convolution or fully-connected layers). Computations are 
performed at the NCB level by processing elements (PE). There 
are 8 PEs per NCB in the presented configuration. All PEs of a 
cluster form an SIMD (Single Instruction Multiple Data) 
processor. Local control implements traditional flags and 
guards management. Each NCB also features a routing unit, 
which is responsible for transmitting the data flows between the 
SRAM banks and the PEs. Besides data flow transformation, 
such as broadcasting, this unit can also perform data injection 
for automatic padding management. 

 

 
Fig. 9.  Two-cluster PNeuro accelerator with 64 PEs. 

 
Each PE provides the necessary operators to perform DNN-

related computations. PNeuro computes 8-bit data natively; 
hence, it provides an 8-bit ALU. In order to perform full 
precision computation of image data and signed-weights, 9-bit 
multipliers are used as a first stage for the multiply-accumulate 
(MAC) operator. An intermediate multi-precision register file 
enables to implement complex dataflows or signal processing 
operations in which only multiplications are needed (without 
accumulation). A 32-bit accumulator implements the second 
stage of the global MAC operator in the PE. Finally, an 
activation unit implements non-linear operations such as the 
linear rectification. Inter-PE communication is ensured by two 
interconnects (8-bit and 32-bit respectively), which perform 
direct neighbor connections through the entire cluster. 

SamurAI features a PNeuro accelerator with two clusters of 
4 NCB, each comprising 8 PE. This configuration can thus 
output 64 MAC operations per clock cycle. PNeuro is a 
programmable architecture with two types of instructions: 
control instructions directly perform operations on the cluster 
controller and the address generators, while compute 
instructions relate to operations in the processing elements. 
Synchronization with the RISC-V core is performed using 
memory-mapped registers enabling the host processor to trigger 
execution of the clusters individually. PNeuro cluster 
controllers can send interrupts to the RISC-V core for signaling 

events related to computations (end of computation, start of 
data transfer, etc.). The PNeuro memory space is entirely 
memory-mapped in the system, enabling the RISC-V to transfer 
data and DNN parameters while retrieving results and 
intermediate data. 
 

 
Fig. 10.  N2D2 framework. 

 
Besides the hardware architecture, a software platform based 

on the export module of N2D2 [37] was developed. N2D2 (for 
Neural Network Design and Deployment) is a deep learning 
framework tailored for quantization aware training and 
optimized code generation for various embedded hardware 
targets (Fig. 10). The framework generates code to multiple 
targets including CPU, GPU and ASIC (PNeuro). For the latter, 
it generated the code for the PNeuro and its host, the RISC-V 
core. N2D2 provides a complete design environment for a wide 
range of quantization modes to achieve the best performances. 
N2D2 implements the latest quantization methods including 
SAT [38] and LSQ [39] methods achieving an accuracy of 
72.60% on MobileNet-v1 with 8-bit quantization for weights 
and activations. Thanks to N2D2 a wide range of neural 
networks can be easily deployed on PNeuro. 

C. System Peripherals 

The IoT ecosystems are evolving with new applications, new 
standards and new security threats. Therefore, versatile 
solutions for IoT security are required to adapt to these factors. 
SamurAI embeds a Crypto IP module (based on [40] and [41]) 
with three standardized algorithms (Table II) which can be used 
for ultra-low-power IoT devices. The block cipher AES focuses 
on the security feature which has high levels of security; while 
the lightweight block cipher Present and stream cipher Trivium 
focus on the effectiveness of the algorithms not only in security 
feature but also in terms of performance, power budget, and 
throughput. 
 

TABLE II: IMPLEMENTED CRYPTOGRAPHIC ALGORITHMS 

 

 
SamurAI is equipped with an adaptive voltage scaling (AVS) 

(as in [42] [43]) controller to estimate and track the minimal 
operating voltage (Vmin) of the circuit for a particular target 
frequency. AVS manages 128 timing sensors (TFS) to estimate 
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Cluster Controller
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Instruction bus
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8b

32b

8 bits

32 bits

8 bits

32 bits

8-bit 
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Activation unit

9-bit 
MUL

From/to routing module

PE

8b32b

4kB Program
memory

Address
generators

Algorithm Type Key size (bits) Block size (bits)

AES Block cipher 128, 192 and 256 128

Present Block cipher 80 64

Trivium Stream cipher 80 NA
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Vmin and a programmable replica path (TFR) to track it during 
runtime. The Vmin estimation process is performed in the field, 
where the circuit is configured to execute a functional test 
pattern in a loop manner as the power supply is reduced. The 
TFS sensors trigger when the slack time of a path is lower than 
a threshold. Compared to canary flip-flops, TFS triggers much 
earlier. Thus, the circuit is never pushed into failure. To 
estimate the Vmin of the circuit, the annotated TFS triggering 
voltages during the functional test are combined with a 
precomputed equation, leading to as small as a 2% voltage error 
in the estimation voltage [42] [43]. The parameters of this 
equation are obtained by measuring Vmin on corner samples of 
a subset of circuits and correlating TFS triggering information 
with it. In SamurAI, the algorithm and the equation are 
computed by the RISC-V core to estimate the Vmin. The 
estimated Vmin is then programmed into the TFR in order to 
track the Vmin during circuit runtime. Running at the estimated 
Vmin instead of SignOff voltage reduces the power 
consumption between 19% and 39%, depending on the 
application scenario. 

 

 
Fig. 11.  SamurAI die micrograph and its test board.  

VI. SAMURAI SILICON RESULTS 

SamurAI has been manufactured using ST 28nm FDSOI 
technology with 8 metal layers and LVT transistors. Fig. 11 
shows the die micrograph and its test board. The main blocks in 
SamurAI are highlighted and the circuit characteristics are 
summarized in Table III. SamurAI also embeds testing and 
performance monitoring not highlighted here. The die area 
occupies 4.52mm². TCDM with retention and TP-SRAM 
memories have been designed using standard cell layout rules. 
Therefore, their area footprints are not optimized.  

The PNeuro accelerator occupies a major portion of the 

circuit. Its clusters are physically placed one above the other to 
reduce the inter-cluster latency and congestion. A PNeuro 
cluster has 48 memories of 4kB for data and a 4kB memory for 
program. Thus, PNeuro embeds 264kB in total. 

A test board (Fig. 11) was used to measure the circuit where 
the generated voltage sources have both voltage and current 
measurements. To increase the measurement precision, they 
can be generated by external power sources. A Zynq FPGA 
embedding Linux is used to execute the test scenarios on the 
circuit and to communicate with a PC through Ethernet. 
 

A. Always-Responsive sub-system results 

The WuC controller was measured at 0.45V. Its idle power 
is 1.6µW while it reaches 14.45µW and 1.7MOPS when fully 
active. When an event arrives, the WuC’s wake-up time from 
IDLE state to the first instruction fetch, takes 207ns. This is only 
a third of an instruction cycle time. Fig. 12 shows an annotated 
chronogram with the time to first fetch. These measures have 
been performed using a built-in performance counter, when 
SamurAI is in IDLE power mode and TP-SRAM is in sleep 
mode. Once an event is received, the WuC requests the wake-
up of TP-SRAM in 95ns. The memory is woken-up in 15.5ns. 
Then the WuC performs the read operation into the TP-SRAM 
read port and starts the execution of the first instruction. Thanks 
to this fast wake-up time, the WuC and TP-SRAM have the 
reactivity of an instant-on system with the power consumption 
of the IDLE power mode. 

 

   
Fig. 12.  Measures of wake-up time from an event to first WuC instruction fetch. 

 
Fig. 13 shows a TP-SRAM simulation of wake-up and sleep 

times in function of the power supply and two 
process/temperature corners. The wake-up and sleep times are 
correlated for the simulated PVT. The measured time is in 
accordance with the simulated time for VTP-SRAM = 0.48V. 

 

 
Fig. 13.  TP-SRAM simulation of wake-up and sleep times in function of PVT. 
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TP-SRAM was measured functional down to 0.35V as 
shown in the shmoo plot (Fig. 14). Reading at RP and writing 
at WRP is possible down to 0.35V. However, reading at WRP 
is only possible down to 0.4V due to limited read margin. At 
0.48V, its power consumption is 4.6µW in IDLE power mode 
and 14.3µW when the WuC is running at 1.7MOPS. The 
SVGND voltage can be tuned to achieve low operating 
voltages. For the ranges of 0.45V to 0.9V of main supply, this 
voltage can be fixed to 0.35V to simplify the voltage 
management. 

 

  
Fig. 14.  TP-SRAM shmoo plot in function of its supply voltages. 

 
To characterize the steady-state power consumption profile 

of the WuC with TP-SRAM, an arbitrary 2000 instructions task 
was executed starting and ending in IDLE power mode (Fig. 
15). When the WuC is running, the profile is flat thanks to 
asynchronous logic (no clock spikes) and also to a run-to-
completion task. Fluctuations observed in IDLE states (before 
and after execution) are caused by the performance monitors. 

 

 
Fig. 15.  Measure of WuC and TP-SRAM power consumption profile for a 2000 
instruction WuC wake-up task. 

 
The performances of the WuR have been tested on 433MHz 

and 868MHz bands. A function signal generator produces a 
pattern containing preamble and data at 50Kbps, which 
modulates a RF signal generator. The power is measured 
through the dedicated WuR 0.9V power supply. The power 
consumption does not exceed 76µW while decoding, and goes 
down to less than 4µW with a 5% duty cycle. In idle mode, it 
draws 40nW. The circuit was able to decode wake-up OOK 
patterns up to -73dBm for 433MHz and -65dBm for 868MHz. 

B. On-Demand sub-system results 

The performances of the OD sub-system were measured in 
function of the RISC-V activity. The OD sub-system is 
functional from 0.48 to 0.9V. The measures of power 
consumption contain all OD sub-system elements including 
PNeuro, memories and peripherals as they share the same 
power domain. When the RISC-V is running Dhrystone and 
PNeuro is idle, the OD sub-system reaches 25MHz and 
19pJ/cycle at 0.48V. It also reaches 350MHz and 66pJ/cycle at 
0.9V, attaining a 14x higher frequency for only 3.47x higher 
energy per cycle. 

The 32kB of TCDM with retention uses a dedicated voltage 
for the array. When the OD sub-system is off, it has a leakage 
of 1.03pA/bit at 0.5V. 

 

   
Fig. 16.  Measure of Fmax and energy per cycle of OD sub-system when RISC-
V is running Dhrystone and PNeuro is idle. 

 
The PNeuro power consumption was measured when the 

RISC-V core is in idle state. When performing an 8-bit 
precision inference on a fully-connected layer, PNeuro reached 
1.3TOPS/W and 2.8GOPS at 0.48V (Fig. 18). It also reaches 
360GOPS/W and 36GOPS at 0.9V. Thus, it is possible to 
increase the network throughput by 12.8x with an energy 
penalty of 3.4x. For 5x5 and 3x3 convolution kernels, the 
efficiency reaches 1.28TOPS/W and 1.09TOPS/W 
respectively. When all the network weights are stored in 
PNeuro memories, it reaches a MAC efficiency of 89% for the 
fully-connected layer and 78% and 55% for 5x5 and 3x3 
convolution kernels respectively. 

Fig. 17 shows latency and energy results for a keyword 
spotting (KWS) application [44] using the depth-wise separable 
convolution neural network model (DS-CNN). The KWS 
reached 94.6% accuracy and was executed on three different 
configurations: two PNeuro clusters, one PNeuro cluster and 
only on RISC-V core. By using two PNeuro clusters instead of 
just one, the latency and the energy are reduced by 21% and 
10% respectively. Running the application on RISC-V core 
would require 380x (295x) higher latency and 188x (170x) 
higher energy compared to two (one) PNeuro clusters. 
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Fig. 17.  Measures of KWS application [44] using 1, 2 PNeuro clusters or the 
RISC-V core at 100MHz. 
 

Fig. 19a depicts the power consumption of the different 
power modes of the architecture, while Fig. 19b shows the 
power breakdown of these power modes. The Retention SRAM 
corresponds to power consumption of the 32kB of TDCM with 
retention. SamurAI reaches 96mW at full activity (CPU + 
PNeuro) and 6.4µW at IDLE mode. This 15,000x ratio between 
peak and idle power, highlights the adaptive and versatile 
performance of this dual-system architecture. Thanks to 
always-responsive asynchronous-logic WuC, our circuit 
achieves low idle power without ever entering conventional 
deep-sleep state: the 207ns wake-up time, which is a third of the 
instruction cycle, allows instant 1.7MOPS performance with 
reduced idle power consumption. In IDLE mode, the WuC and 
TP-SRAM power consumption are 25.1% and 72.2% 
respectively. In WuC only mode, the power consumption ratio 
between the WuC and TP-SRAM is similar. When the WuR and 
DBB are both active (WuC+WuR mode), the power 
consumption is increased by 4.1µW.  

 

 
Fig. 18.  Measure of PNeuro energy-efficiency and performance on different 
network layers types. 

 
The WuC can wake-up the OD sub-system to interact with 

the OD peripherals but keeping RISC-V and PNeuro in idle 
mode (WUC+Periph mode). In this mode, the power 

consumption increases to 224µW where 86.6% of it is used by 
OD sub-system. Finally, when the circuit is running at full 
performance, it reaches 96mW at 0.9V and 350MHz. 

 

  
Fig. 19.  Measures of power consumption, breakdown, and reduction w.r.t. the 
power modes. 

 
TABLE III:  SAMURAI MAIN FEATURES 

 
 
Table III summarizes the main features of the circuit while 

Table IV compares the circuit to prior art and shows significant 
improvements in terms of versatility, performance, wake-up 
time and power reduction. None of the listed circuits has 
equivalent features compared to this circuit. The amount of 
embedded memory spans from 8kB to 580kB. A more recent 
design [49], achieves similar energy and performances while 
using programmable RI5CY cores instead of a dedicated 
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accelerator. When compared to designs with similar retention 
SRAM, our design achieves the highest peak-to-idle power 
reduction. A proposed aggregated versatility FOM (peak 
performance * retention capability / idle power) shows 2x better 
performance for our circuit. 

C. Application scenario 

To illustrate the versatility of the architecture, SamurAI has 
been used to evaluate the power consumption of a smart 
building scenario where the presence and activity of people are 
analyzed. Fig. 20 shows the system view where off-the-shelf 
components are connected to SamurAI. Table V lists the 
specification for this scenario.  

 
 

 
Fig. 20.  System view of presence classification scenario using SamurAI with 
off-the-shelf components. 

 
A pyroelectric detector (PIR) is used to detect the presence 

of people in a room. This kind of detector has a low power 
consumption and triggers each time a hot object is moving. 

Thus, capturing an image and analyzing it each time the PIR 
triggers would drain the battery of the system too quickly. To 
minimize power consumption, the PIR is connected to a GPIO 
of the WuC, waking it up at each detection. The role of the WuC 
is to filter PIR activity based on previous scenes classification 
and detection interval. Thus, it powers up the OD part only 
when required. When the OD part is woken up, the RISC-V 
acquires an image from the SPI camera and, in parallel, loads 
the program and the PNeuro weights from the FeRAM. Once 
the image is available, PNeuro is used to classify the image on 
a DNN with a complexity of ~100MOPS. The classification 
results are shared with the WuC through the TP-SRAM. WuC 
uses these results to manage filtering parameters of the PIR 
detections in function of the classification results and the time 
interval of PIR detections. Moreover, the RISC-V can send 
radio messages through an external low-power radio system. 
The message is first AES encrypted with the Crypto IP before 
being sent. Finally, the WuR is also used to receive user 
commands to configure the system. 

 
TABLE V:  SPECIFICATIONS OF PRESENCE CLASSIFICATION SCENARIO 

 
 

Room occupation 8H/day

PIR detection interval 5s

PIR power consumption 6µW

Camera power consumption 2.5mW @1FPS

Image size for classification 224x224 B&W pixels

DNN complexity ~100MOPS

External radio power consumption 180mJ/message

Mean radio messages per day 5

TABLE IV:  SILICON BENCHMARK RESULTS W.R.T. STATE-OF-THE-ART 

VLSI 2020
This work [27]

JSSC 2018
Lallement [45]

JSSC 2018
Yu Pu [46]

JSSC 2017
S. Paul [11]

JSSCC 2016
J. Myers [5]

ISSCC 2017
S. Bang [47]

JSSC 2019
A. Pullini [48]

ISSCC 2021
D. Rossi [49]

Technology 28nm FDSOI 28nm FDSOI 28nm LP 14nm FinFET 65nm LP 40nm 40nm LP 22nm FDSOI

CPU
32b Async RISC

32b RISC-V
(RV32IMCXpulp)

M0+ M0 x86 IA M0+ M0
5 x RI5CY

RVC32IMFX
10 x RI5CY

RVC32IMFX

Memory 464kB SRAM 8kB SRAM -
72kB SRAM

8kB I$
16kB ROM

24kB SRAM 270kB SRAM
512kB SRAM

4kB I$ 
64kB D$

1.7MB SRAM
4MB MRAM 

Wake-up unit Yes No No No No No No Yes
Wake-up Radio Yes No No No No No No No
ML accelerator Yes No Yes No No Yes Yes Yes
AVS Yes No Yes Yes Yes No Yes No
Crypto IPs Yes No No No Yes No No No
CPU state retention 
in deep sleep

Yes No - Yes (S1) Yes No Yes Yes

Voltage range 0.45V – 0.9V 0.47V – 0.65V 0.55 0.308V – 1V 0.25V – 1.2V 0.63V – 0.9V 0.8V – 1.1V 0.5V – 0.8V
Maximum frequency 350MHz 150MHz 50MHz 297MHz 66MHz 19.3MHz 450MHz 450MHz

Deep sleep power
(retention memory)

6.4µW
(40kB SRAM)

0.704µW
(8kB SRAM)

1.71µW
(NA) -

80nW
(8kB SRAM) -

108µW
(448kB SRAM)

1.7µW (no ret)
4.5µW 

(16kB SRAM)

Wake-up time from deep-sleep
207ns

(35% of inst. cycle) ~µs - > 1ms (S1)
> 1s (S0) ~µs - - -

GOPS 1.7MOPS – 36GOPS 150MOPS - - 66MOPS - 7GOPS 32.2GOPS

Best performance
1.3TOPS/W
@ 2.8GOPS

370GOPS/W
@ 16MOPS - 58GOPS/W

@ 3.5MOPS
85GOPS/W
@ 750kOPS

374GOPS/W
@ 107MOPS

120GOPS/W
@ 2.2GOPS

1.3TOPS/W
@ 15.6GOPS

FOM1: Peak-to-idle power reduction
15,000x

(w/ 40kB SRAM)
51.5x

(w/ 8kB SRAM) - 4.7x 6,940x
(w/ 8kB SRAM) - 1,416x

29,058x (no ret)
10,977x 

(w/ 18kB SRAM)
FOM2: Peak-performance to Idle power ratio
(GOPS/µW_idle)

5.63
GOPS/µW

0.21
GOPS/µW

0.83
GOPS/µW

0.064
GOPS/µW

7.16
GOPS/µW

FOM3: FOM2 with retention capacity
(GOPS*kB ret/µW_idle)

225
GOPS*kB/µW

1.70
GOPS*kB/µW

6.60
GOPS*kB/µW

29.04
GOPS*kB/µW

114.49
GOPS*kB/µW
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The daily average power for this application is 105µW where 
26% is consumed on SamurAI (Fig. 21). The camera is the 
major contributor (47%) of the power consumption. Thus, 
reducing the number of captured and classified images is 
fundamental for this kind of scenarios. Under this 
configuration, the WuC has filtered 70% of PIR detections, 
reducing the total power consumption by a 2.8x factor. 
Furthermore, filtering 2x less PIR detections increases the 
power by 1.90x showing that 89% of the daily power is 
proportional to the filtering rate. 

Moreover, the image classification on PNeuro accounts for 
only 1% of the total power consumption. Using RISC-V instead 
of PNeuro to compute the DNN would increase the total daily 
average power consumption by a 2.3x factor (244µW). 

 
Fig. 21.  Daily average power breakdown of presence classification scenario 
(70% PIR filtering), 105µW total power. 

 
On a cloud-based processing where every image is 

transferred to the cloud to be classified and assuming 3.5nJ/b 
BLE link [50], the mean power of the scenario (without 
considering the cloud power consumption, only the node) 
would be higher by a 3.5x factor (366µW). 25.8% of the power 
is spend on the radio link and 45.6% on the camera. These gains 
demonstrate the relevance of adaptive event-based filtering in 
AR part and local ML processing in OD part of SamurAI.  

VII. CONCLUSION 

The presented SamurAI circuit fills the gap between sporadic 
computing and energy-hungry applications on IoT domain by 
leveraging two on-chip sub-systems. An asynchronous WuC 
optimized for short sporadic computing with a 207ns wake-up 
time and a generic RISC-V core coupled with an energy-
efficient ML accelerator are the computing pillars to achieve 
this versatile architecture. The node can perform up to 36GOPS 
and achieves 1.3TOPS/W peak energy efficiency. Thanks to the 
proposed AR/OD approach, 15,000x reduction from peak-to-
idle power consumption can be achieved. This approach 
performs efficient information filtering from sensor to radio 
communication, starting from handling of OD wake-up events 
within the asynchronous wake-up controller, then thanks to 
embedded image classification in the ML accelerator, allowing 
for up to 3.5x extension of battery lifetime on an application 
scenario. 
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