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Abstract—Soil moisture retrieval from SAR images is always
affected by speckle noise and uncertainities associated to soil
parameters, which impact negatively on the accuracy of soil
moisture estimates. In this paper a Bayesian model is proposed
to address these issues. A soil moisture Bayesian estimator
from polarimetric SAR images is presented. This estimator is
based on a set of stochastic equations for the polarimetric soil
backscattering coefficients, which naturally includes models for
the soil scattering, the speckle and the soil spatial heterogeneity.
Since it is a Bayesian estimator, it may extensively use a priori
information about soil condition, enhancing the performance of
the retrieval. The Oh model is used as scattering model, although
it presents a limiting range of validity for retrieving. After fully
stating the mathematical modeling, numerical simulations are
presented. First, traditional minimization-based retrieval using
Oh model is investigated. The Bayesian retrieval scheme is then
compared with Oh’s retrieval. The results indicate that Bayesian
model enlarge the validity region of Oh’s retrieval. Moreover, as
speckle effects are reduced by multilooking, Bayesian retrieval
approachs to Oh’s retrieval. On the other hand, an improvement
in the accuracy of the retrieval is achieved by using a precise
prior when speckle effects are large. The proposed algorithm
can be applied to investigate which are the optimum parameters
regarding multi-loking process and prior information required
to perform a precise retrieval in a given soil type/condition.

Index Terms—Soil moisture, radar applications, Bayesian
methods, synthetic aperture radar, inverse problems.

I. INTRODUCTION

Surface soil moisture content plays a key role in the
interaction between the land surface and the atmosphere, and
accurate knowledge about this variable is of interest for a
variety of reasons. First, it is strongly related to vegetation
development. Second, it is a predictor of the partitioning
between rainfall into infiltration and runoff, which is strongly
related to erosion of top soil through leaching. Third, when
soil moisture is high, infiltration decreases and the risk of
floods due to rainfall increases. And finally, soil evaporation
and transpiration depends on soil moisture and therefore it
influences the heat and mass transfers between the Earth and
the atmosphere [1] .
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Following this demand of information, there is a systematic
effort to develop maps of soil moisture of the Earth’s surface.
Orbiting microwave synthetic aperture radar (SAR) systems
offer the opportunity of monitoring soil moisture content at
different scales and under any weather condition, through the
known sensibility that the backscattered signal exhibits to soil
parameters, including, among others, soil moisture and soil
roughness [2]. Polarimetric SAR systems are able to transmit
and receive radiation that is linearly polarized in the horizontal
(h) and vertical (v) planes (relative to the plane defined by the
wave vector and the normal to the surface being illuminated),
giving rise to four intensity images hh, hv, vh, and vv of the
target of interest [3].

However, the relation between backscattered signal and soil
parameters is not straightforward at all, and consequently there
are still no operational SAR-derived soil moisture products.
This has two main reasons: (1) the scattering processes that
relate backscattering to soil properties (moisture, roughness,
and others) are difficult to model [4], and (2) the necessary
input parameters are difficult to measure in the field [5], [6].
The former is mainly related to the SAR imaging system
whereas the latter to soil parameters heterogeneity.

Moreover, typically there exist many combinations of sur-
face parameters producing the same SAR observations. As
a consequence, any retrieving scheme is an ill-posed inverse
problem. Accordingly, soil parameters retrieval remains chal-
lenging, and soil moisture products derived from remotely-
sensed SAR data are still poorly accurate [7].

Restricting our study to bare soils, surface soil moisture
presents a high degree of spatial variability at differents
scales, even for relatively small areas. This is associated to
water-routing processes, radiative effects and heterogeneity in
vegetation and soil characteristics [5]. On the other hand,
heterogeneity of surface roughness arises from both man-
made and natural factors: tillage system, soil texture, soil type,
among others [6].

When using SAR images for retrieving soil properties, the
speckle phenomenon, characteristic of SAR images, further
hinders soil moisture retrieval. Speckle leads to a grain-like
appearance of SAR images decreasing their contrast and ra-
diometric quality [3]. It is characteristic of the coherent nature
of the SAR imaging system, can be modeled as a multiplicative
noise and it is usually reduced in a post-processing stage by:
(1) averaging neighboring pixels (multi-looking process) at
the expense of spatial resolution [8] or (2) using adaptive



filters [9], to reduce radiometric uncertainties without losing
spatial resolution, but at the expense of introducing artifacts.
It is important to note that the process of averaging to
reduce radiometric uncertainties implicitly assumes that soil
properties within the average window are constant, which
is usually not the case in common bare soils. Therefore, a
trade-off between averaging and soil properties heterogeneity
is usually accepted. However, heterogeneity of soil properties
and speckle are usually considered as independent problems,
whereas they are indeed a part of the same inference problem.

In this general framework, soil moisture retrieval over
bare soils from SAR images can be considered an inference
problem, where one essentially wants to infer soil condition
given a set of measured backscatter coefficients and ancillary
information. Polarimetric [10], [11], possibilistic [12], radar
backscatter modeling (theoretical and semi-empirical) [13],
[14], [15], [4] and Bayesian approaches [16], [17], [18] are
among the retrieval methodologies offered in the literature.

Polarimetric methods are based on modeling the backscatter
response in terms of a certain polarimetric matrix decom-
position (see [19] for a review) and taking into account
the amplitude as well as the phase difference of the mea-
sured backscattering coefficients. Although polarimetry looks
promising, a major effort should be still done to achieve
an operational soil moisture retrieval algorithm using these
techniques. Such algorithm was only developed in closed form
for the Small Pertubation Model [11], which has a highly
restrictive range of validity for the normalized RMS height
(ks < 0.3), limiting operational soil parameter retrieval to
very smooth surfaces. Therefore, this method is not suitable for
real applications, where it is usually found values of ks ~ 0.3
for L-band (i.e. s(RMS) =1 cm). In addition, speckle noise
is not taken into account, although a polarimetric SAR speckle
noise model was developed in [10].

The possibilistic methods make use of an alternative axioms
set called fuzzy logic. As an advantage, they enable and
required the use of prior information, which is used to improve
the retrieving of soil parameters. On the other hand, they do
not take into account speckle and they are computationally
intensive [12].

Regarding radar backscatter modeling approaches, a wide
range of forward models, ranging from semiempirical to theo-
retical, physically-based models have been developed in order
to assess the dependency of soil parameters to backscattered
signal. These models are important to understand the physics
related to soil backscattering, but they also play a key role in
the retrieval of soil condition from SAR measurements, since
many retrieval algorithms only need a forward model.

Physical Optics model (PO), Geometrical Optics model
(GO), the first-order Small Pertubation Model (SPM) and the
Integral Equation Model (IEM) [4] with its further improve-
ments and updates [20], [21], [22] are the analytical electro-
magnetic backscattering models available. Their strength lies
in the fact that they are derived from the well-established elec-
tromagnetic theory. However, the first three of them have been
derived considering some specific assumptions and therefore
have a limited applicability in terms of surface roughness.
Although IEM is valid for a wider range of surface roughness

conditions, the complexity of the model and the implicit
relationship between soil parameters and soil backscattering
make difficult to perform a direct retrieval.

Semi-empirical models are the most popular for soil mois-
ture retrieval applications. This is related to their simple
algebraic formalism, that allows a straightforward retrieval
scheme being the usual ones the direct inversion [14] and min-
imization (look-up table) procedures [15], [23]. The standard
approach for the development of these models is to measure
soil backscattering at different polarizations, incidence angles
and soil conditions using scatterometers, for thus deriving
a model. In all the semi-empirical models [13], [14], [15]
available, only the mean value of the backscattering coefficient
as a function of soil parameters is modeled, disregarding the
spread around the average value and its causes. This gives
rise to characteristic artifacts where several values of soil
moisture estimated from scatterometer data correspond to the
same soil moisture measured on the field [16]. Reasons for
mismatches between model estimations and measured data
include system measurement errors, the inhomogeneity of soil
parameters within a given system resolution cell (or from one
cell to the next) and the difficult to measure soil parameters
on the field [6], [24], [16]. Regarding this, the most difficult
parameter to measure and to interpret is the correlation length
[6]. Concerning the Oh model [15], a simplified alternative
version was modeled ignoring the correlation length, because
of the insensitivity of the vh — vv ratio on the roughness
parameter.

To the authors’ knowledge, it was not until Haddad et.
al [16] that a systematic way to include uncertainties in the
formalism of forward model based on Bayes’ theorem was
presented for soil parameters retrieving. Bayesian approaches
have the main feature of potentially include many sources
of uncertainty as well as many sources of information about
the variables involved in the retrieval. Whereas the radar
backscatter models give rise to several combinations of surface
parameters that map the same SAR observations, the Bayesian
algorithm appropriately assimilates a priori information on
geophysical parameters in order to constrain the inversion of
forward models. Despite these outstanding features, in his
original paper Haddad efr. al [16] only included a term as
error source related to model uncertainties and used only
uniform distributions as prior. In addition, the potential of such
Bayesian methodology is pointed out in [17] where data from
active and passive sensors were merged in order to retrieve
soil moisture. Nevertheless, up to date there is no model that
incorporates multi-looking speckle noise as an error source,
despite of the fact that Mattia ez al. [18] included a rather
simple speckle noise model that works only for one-look
imagery.

In this paper, we propose a Bayesian retrieval methodology
which incorporates in a natural way soil parameters hetero-
geneity and speckle as sources of uncertainty that degrade the
estimated soil moisture. Such a Bayesian approach (1) needs
only a forward model (no retrieval model is required), (2)
gives the optimal unbiased estimator for the soil moisture and
its error, (3) can include as many error sources as required
and (4) can include a priori information in a systematic way.



The methodology will be presented using a simplified version
of the Oh model [15] as the forward model, in which the
correlation length is disregarded.

The present paper has been divided as follows. In Section II
a brief description of the general properties of scatterometer-
based semi-empirical forward models is presented, focused on
Oh model and the multiplicative model. Section III is devoted
to present the statistical model, and Bayesian estimators are
derived. Numerical results are reported in Section IV. Finally,
Section V present the main conclusions derived from the study
presented in this paper.

II. SCATTEROMETER-BASED SEMI-EMPIRICAL FORWARD
MODELS

A. Oh Model

The most widely used semi-empirical soil scattering model
is the one developed by Oh [15], where model expressions
are physically-based, but model parameters are derived from
an extense database of polarimetric radar scatterometer mea-
surements over bare soils. In its simplified version, where
the correlation length is disregarded, the Oh model relates
backscattering coefficients and certain bare soil properties
through a set of three analitycal functions f;, that can be
symbolically expressed as [15, egs. (1),(2) and (4)],

Ty = fl(ma ks) (Z - 172a3), (D

where x; is the backscattering (measured) coefficients and
the subscript ¢ = 1,2, 3 stands respectively for the hh-, vv-
and vh-polarizations. The backscattering coefficients x; are
functionally related to the volumetric soil moisture content m
(em?3/em?®) and the normalized surface soil RMS height ks
(where k = 27 /) is the wavenumber and s the RMS height)
throughout the functions f;. This model also depends on the
system incidence angle #, which is a known parameter. The
Oh model is constrained to the range 0.04 < m < 0.291 and
0.13 < ks < 6.98, although the latter has a better agreement
between the model and the experimental results for ks < 3.5
[15]. Explicitly from [15, egs. (1),(2) and (4)],

f3 = 0.11m%" (cos0)>2[1 — exp(—0.32(ks)®)],  (2)

fo = fa(m, ks)
> 0.095(0.13 + sin(1.50) 41 — exp(—1.3(ks)09)] ’(3)
f1 = fa(m, ks)[L — (9%)0-3%“"“exp(—o.4(ks)1-4)]. @)

Concerning the f; functions, it is worth mentioning that they
are not independent of each other, since by (1) there are three
equations and only two variables. Then, providing that m and
ks are given, it always holds

fi = fi(m, ks) fo &)
f3 = f3<m>ks)f27 (6)

thus indicating that both hh and vh backscattering coefficients
are a res;aled version of vv, where the derivation of functions
f1 and fs is straightforward from (4) and (3), respectively. This

is a consequence of the deterministic nature of the Oh model.
From (2), (3) and (4), it is easy to show that the backscattering
coefficients for hh, vv and vh increase as m and ks increase.
However, they increase with different growth rates each other;
for a bare soil, vv is always greater than hh and the latter
greater than vh. Any retrieval scheme using Oh model is based
on the differential sensitivity exhibited by the backscattering
coefficients to m and ks. The dynamic range in dB of the
backscattering coefficients (eqs. (2-4)) is given in a nested way
from the simplified formulation of the Oh model, constrained
to ks < 3.5:

—42.2dB < vh < —15.6dB, (7)
vh + 10.8dB < vv < vh + 18.0dB ()

and
vv — 2.7dB < hh < vv. ©)]

The limiting values allowed by the inequations (7), (8) and
(9) bound a general validity region where Oh model is valid
inside. Only points (hh, vv, vh) within this region may be used
to retrieve (m, ks) using Oh model.

Considering the aim of this work, it is relevant to con-
sider the differences between the backscattering coefficients
measured from SAR systems and the ones measured from
scatterometers. First, the scatterometer footprint is small; the
actual size varies for different experiments and sensors, but it
is always of the order of a few squared meters. This justifies
assuming that the soil properties on which measured mi-
crowave backscattering depends (soil moisture and roughness)
are constant inside the sampled area. Therefore, it is reasonable
to assume that the backscattering coefficient of the study area
is a function of a single soil moisture value and roughness
profile. In other words, the terrain scattering properties within
the footprint can be considered constant. Second, it is easy to
average several measurements upon the same surface’s target
and thus reduce the speckle noise.

On the other hand, SAR system resolution is larger (of
the order of hundreds of m?) and even larger if we want to
average and increase the number of looks to reduce speckle.
Therefore, any retrieval scheme based on SAR data that uses
scaterometer-based models should deal with the heterogeneity
of soil properties and the speckle. This will lead to non-
constant soil scattering properties in the averaging window
and/or non-negligible speckle noise, which in any case will
degrade soil moisture retrieval.

B. Multiplicative Model

The multiplicative model is generally used to model the
SAR response of a target as a function of the combined effect
of terrain backscattering and speckle noise. Specifically, the
model states that the observed intensity value in every pixel
of a SAR image is the outcome of a random variable Z, called
return, defined as the product between the random variables X
and Y, where X represents the random variable modeling the
variations of terrain backscattering properties and Y represents
the random variable modeling the speckle noise; i.e. Z = XY

[3].



Different probability density distributions (PDF) for X and
for Y yield different models for the observed data Z. For
homogeneous regions, the terrain scattering properties are
assumed constant. Therefore, the distribution of Z is a rescaled
version of the distribution of Y, which is usually assumed as
Gamma-distributed with parameters (n, n) and mean value
E[Y]=1[3],

n—le—ny

(10)

where n is the equivalent number of looks and T'(n) is

the Gamma function. Since Var[Y] = —, as n approaches
n

to infinity, the radiometric uncertainities related to speckle
becomes negligible.

The basic hypothesis that governs the modeling of inho-
mogeneous regions (X # constant) is that their scattering
properties are not constant, though they can be modeled by a
convenient distribution. In our case, we will propose a PDF
for X that arises as the result of inter-pixel soil parameters
heterogeneity. Indeed, if soil parameters changes from pixel
to pixel, soil backscattering (which is a function of soil
parameters) will also change accordingly. In order to map soil
parameters heterogeneity into backscattering heterogeneity,
we will use Oh model. In this way, soil moisture and soil
roughness PDFs can be mapped into soil backscattering PDF
for all the polarizations.

By means of the multiplicative model, we can include two
independent sources of SAR image inhomogeneity: soil spatial
variability and speckle. This idea can be formalized as follows.
First, we will assume that X and Y are independent. Second,
the average properties of the return Z will be determined
through the average properties of both X and Y, since by
virtue of the multiplicative model,

E[Z] = E[X]E[Y]. (11)

Suitable distributions for X and Y will be introduced in
sections III-C and III-D.

III. STATISTICAL MODEL
A. Bayesian Approach

The deterministic forward model developed by Oh can be
extended to a stochastic model following [16]. In doing so, we
can include in the forward model both the terrain heterogeneity
and speckle through the multiplicative model,

Z; = X;Y; (1=1,2,3), 12)

where Z; is the random variable which represents the return
z; and the subscript 7 stands for the different polarizations, as
stated before. X; and Y; are independent random variables that
model the heterogeneity of the target backscattering and the
speckle noise, respectively.

From the point of view of the radar backscattering signal, we
assumed that the target response to the backscatter is modeled
through the Oh model by X; = f;(M,KS) (i = 1,2,3),
where the f; are the same as in (1) and represent here the
deterministic “typical” or average way in which the random
variable X depends on the random variables M and K.S

(which represent the m’s and ks’s of the target). In other
words, an heterogeneous soil will produce a wide range of
possible outcomes z of X, provided a wide range of soil
moisture and roughness values were presented in the soil. On
the other hand, an extremely homogeneous soil (i.e. a certain
mean value (7, ks) with a very low standard deviation) will
produce a very narrow probability density function for X.
So it is reasonably to state that E[X;] = f;(m, ks), for all
i =1,2,3, where m and ks are the expected or mean values
of M and K S within the resolution cell. In addition, we
assume that the speckle adds only a multiplicative noise so
that E[Y;] = 1 (i = 1,2, 3). This approach leads into a proper
average behaviour for the returns Z; in terms of the forward
Oh model since E[Z;] = f;(1m,ks) under the assumption of
independence of X and Y.

From the set of equations (12) and using Bayes’ theorem,
an expression for the conditional (“posterior ) probability of
measuring m and ks given measurements of returns z7, zo and
zZ3 18,

Py, 7,2.(21, 22, z3|m, ks) Pyrcs(m, ks)

P k =
(m, k|1, 22, 20) Pz, 7,74(21, 22, 23)
(13)

where Py, z,7,(21, z2, 23lm, ks) is the probability of measur-
ing a certain set (z1,22,23) of returns given measurements of
m and ks (the “likelihood ), Pasxi s is the prior joint density
function of m and ks (where it is included all the a priori
information about m and ks) and P(z1, z2,23) works as a
normalizing factor and it is the probability of a certain set
(21,%29,23) to be measured. Then, providing the conditional
density function (13) is exact, the optimal unbiased estimator
of m that has the minimum variance is the mean of (13) [25],

mbBaves — // mP(m, ks|z1, 20, 23)dksdm ~ (14)
D

and similarly the standard deviation of this estimator will be:

iy = [ [ (m = m P (m, sl 20, ) dhsdm (15
D

where an explicit expression for (13) must be found in order
to calculate mi‘iyes and mgq. The integration domain D in
(14) and (15) spans the same range of (m,ks) where the
forward Oh model was originally constrained, except for ks
which is taken to be < 3.5 as discussed in Section II-A. The
standard deviation m;4 can be used as a measure of the error

: B
of the estimate m,,,’®

B. Derivation of the Likelihood

The posterior distribution P(m, ks|z1, z2, z3) in (13) can be
computed as follows. First, using recursively the definition of
conditional probability yields

Pz, 7,2,(21, 22, 23\m, ks) = Pz, (21) Pz, 7,=2, (22) X

X PZS\21221722222(Z3) (16)

where in the right term the given m and ks were suppressed
for simplicity. In (16), Pz, (1) is calculated using the change



of variables theorem upon (12) (¢ = 1) and the assumption of
independence between X and Y,

e z1 1
PZ1 (21) = /0 PX1 (w)Pyl(E)Edw (17)
In order to calculate the remaining two terms in (16), it might
be noted that replacing m by M and ks for K.S in (5) and
(6) the following relationships concerning X; hold

X, = fi(M,KS)X> (18)

X3 = f3(M,KS)X, (19)

Replacing this set of equation in (12) and then equating for
Zo and Z3 one obtains

Zy = ;ﬁzl (20)
fi(M,KS) Y1

. Y-
Zs = [3(M. KS8)3 7, @D

2
Finally, given m and ks and using again the change of
variables theorem upon (20) and (21) separately, the remaining
conditional probabilities are

fl (m, ks) Pﬁ(fl(n% ks)zo
21 Y1 21

), (22)

PZQ‘21:21(22|m, ks) =

1 zZ3

_ Py, (=
fa(m,ks)ze Y2 f3(m, ks)zo
(23

PZS‘Z1=21722=22 (Z3|mﬂ kS) =

where Py, (i # j) is the joint distribution of the ratio of two
v

multilooked random variables which are affected by speckle.
The likelihood in (16) is constructed then by multiplying (17),
(22) and (23).

C. Modeling the Terrain Backscatter X

Natural variability of soil moisture are always present at
different scales, in particular, at SAR systems scale [26]. In
general, this implies that soil moisture inside a field cannot
be considered constant; i.e. the field is heterogeneous in terms
of soil moisture. Soil roughness can also be framed within
this description. In agricultural fields, roughness is generated
artificially by tilling and naturally by wind and water erosion.
Moreover, soil surface roughness is very dependent on tillage
operations and soil type [27].

In order to map the randomness in soil parameters to a
randomness in soil backscattering and thus giving rise of the
inter-pixel heterogeneity of both soil moisture and roughness,
a forward model must be included. This mapping will be com-
pletely defined by the functions f; from (1) that associates soil
backscattering with soil parameters (i.e. the forward model).
To compute this mapping, we will use a three-step procedure
given in [28, §2.12]. Such a procedure allows to find the
distribution Pg of a general function r(u, v) which depends on
two random variables U and V' of known distribution. In our
case, we are interested on the computation of the distribution
of 21 = f1(m, ks) used in (17) as Px, when the soil moisture
m and roughness ks are considered random variables M and

);

K S, respectively. Ignoring the subscript 1, such computation
states that

Fx(z) = // Pyrrgs(m, ks)dmdks, 24)
A,

where F'x(x) is the cumulative distribution function of the
random variable X and the integration domain is A, =
{(m,ks) : f(m,ks) < x}. Then Px(z) is readily obtained by
deriving (24) with respect to . In what follows, it would be as-
sumed that M/ and K S are uncorrelated and gaussian random
variables, so that Py xs = Py Pxs where Py ~ N(m,0.,)
and Pygg ~ N(ks,os). Therefore, the heterogeneity of the
soil parameters within a (one-look) SAR pixel is controlled
throughout the variance o, and os. The Gaussian assumption
is not restricting or fundamental in any way, and the procedure
can be also applied to different distributions for m and ks,
even empirical ones. On the other hand, under this assumption
the computation of (24) can be only performed numerically.

D. Modeling the Speckle Noise Y

Statistical properties of multi-look polarimetric data are
quite different from those of single-look data [8]. Therefore, in
order to model the expected speckle phenomena, we need to
know the probability density function of polarimetric data as
a function of the number of looks n. In the case of multi-look
intensity values, the corresponding distribution Py is that of
(10) and is used in (17). On the other hand, the probability
density function of the ratio of two multi-look polarimetric
data Py,;y, which are not independent are required in (22)
and (23). Such a distribution was derived by Lee et al. [8]:

r2n) 71— |pu)®)"(r + u)un—t
T(n)C(n) [(7 +u)2 — 47| py |2u]nt1/2

Py(u) = (25)
where U = % (i # j), n is the number of looks, p. is the
correlation between the numerator and the denominator and
T = g{ﬂ is the ratio of the expected value of Y; and Y}. In
order to the expected value of the returns to be determined
only by the expected value of the forward model, we stated
that E[Y;] =1 (¢ = 1,2, 3) and then 7 = 1. Thus the expected
value of Z is determined only by X as follows from (11). The
ratio distribution also depends on the correlation between the
numerator and the denominator p,,. This is very important,
since when numerator/denominator correlation increases, the
variance of the distribution decreases [8]. As expected, when
n increases the distribution becomes narrower and thus the
variance of the estimates decreases, leading to a more precise
retrieving. Up to this point, we presented all the mathemathics
necessary for a Bayesian retrieval scheme. In the next sections
we present the results of numerical simulations.

IV. NUMERICAL RESULTS
A. Minimization Estimate

Since Oh model is not directly invertible, he [15] established
an algorithm for retrieving soil moisture and roughness from
a set of measured backscattering coefficients hh, vv and vh
through a minimization procedure. Such a procedure is based
on the simultaneous solution of model equations (2), (3) and



(4), leading to the following non-linear expression [15, eq.

(0],

1—( o

90°

)0‘35"’70'65exp(—0.4(ks(9, m,vh))'*) — hh/vv = 0

(26)
where ks(6, m,vh) is directly obtained after solving (2). For
a given (hh, vv, vh), the estimated value of m is the one
that minimizes this expression, namely m&”?. It is important
to note that (26) can be solved only for the values of (hh, vv,
vh) that are allowed by the forward model, specifically those
values that lie within the region bounded by inequations (7),
(8) and (9). This means that this approach is not robust to
high statistical fluctuations in the backscattering coefficients,
that are commonly found in real applications.

Assuming a certain value for vh (vh = —25dB) and 6 =
35°, when applying to the entire (hh, vv)-space a root-finding
procedure applied on (26) gives rise to the contour lines
depicted on Fig. 1. Although the levels of the contour lines
spans the entire range of Oh model (0.04 — 0.291 cm?/cm?),
only the levels corresponding to 0.05, 0.10, 0.15, 0.20 and
0.25 (in units of em?3/cm?) are drawn. The linear trend of
the contour lines is consistent with the fact that at fixed vh,
the dynamical range of the minimization estimates from (26) is
governed by the ratio hh/vv, which takes constant values over
lines in the entire (hh, vv)-space. To corroborate the inversion,
the exact values of m were computed using the deterministic
forward Oh model (1), constrained to the assumption that
vh = —25dB (+" marks in Fig. 1). The levels of the exact
values agree with those of the minimization estimates.

7 m estimate (Oh) J

| Oh model validity regiol

-8 vh=25dB, 6 =235

o
=
5 -1 b
Azr |
RED 1
141 b
17 16 15 14 -13 12 11 10 9 8 7
hh (dB)
Fig. 1. Soil moisture mgs’; estimated on the (hh,vv)-plane (at fixed vh =

—25dB) from Oh model, in units of c¢m?3/cm3. The light gray area encloses
the pairs (hh,vv) where the model is valid.

Every value of (hh, vv, vh) yield in a value of mg{
inside Oh model validity region, as expected, whereas for
the values of (hh, vv, vh) lying outside that region the
inversion technique cannot produce a retrieval. The latter
situation could be related to landcover uncertainties (i.e. the
target is not completely bare soil), speckle noise and/or system
fluctuations. In an operational implementation, the spurious

estimations related to the landcover can be reduced using
ancillary information about landcover status. Nevertheless, it
is important to remark that even bare soil can produce values
of (hh, vv, vh) outside the Oh model validity region, due to
speckle and system fluctuations.

The estimation procedure from (26) produce a single value
of m9" given a set of measured values (hh, vv, vh). No
ancillary information about soil status (previous or estimated
by other means) is allowed. Moreover, it is implicitly assumed
that image radiometric uncertainties are very low, since small
fluctuation of measured values can produce strong variations
in soil moisture estimation. Therefore, in order to successfully
use this kind of retrieval, a speckle reduction technique is
mandatory.

B. Bayesian Estimate

An alternative method for the estimation of m, which is
suitable for taking into account the speckle, arises when using
the expressions (14) and (15). In order to test the goodness
of the Bayesian approach, an uniform prior is used as Py xs
in (13). This kind of prior represent no knowledge about soil
condition. Specifically, it is taken Pp; ~ U(0.04,0.35) and
Prs ~ U(0.13,3.5) as reasonable priors.

Fig. 2 shows a contour plot of the estimate m>2Y“* for
soil moisture, as a function of the measured values of hh
and vv with n = 3, for vh = —25dB and 60 = 35°.
The light shaded area represents Oh model validity region,
where the contour lines of soil moisture derived from the
Oh model are also shown. The remaining model parameters
are 0, = 0.005 cm?/cm?, ops = 0.01, Pov/nh = 0.7 and
Pohjve = 0.1. When using the Bayesian methodology, the
retrieved soil moisture values cover the entire (hh,vv,vh)-
space, although the extreme values (the ones that are far away
from Oh model validity region (shaded area)) will present a
very low probability of occurence associated. The high spread
showed by the contour lines is consistent with a high speckle
noise for this small number of looks (n = 3).

In Fig. 2, the results of both estimations (minimization
and Bayesian) are compared. It is readily seen that m&”
and mZ4Y“* do not coincide. Since the prior is uniform, this
discrepancy is related to the chosen values of model param-
eters 0,,, ors and n. The election o,, = 0.005 cm?3/cm?3,
ors = 0.01 corresponds to a very homogeneous soil, which
corresponds to low variance is the soil backscattering X.
However, n = 3 corresponds to a high variance in the speckle
Y, which ultimate leads to a poor soil moisture estimation.
This statement is reflected in the contour lines of one-sigma
standard deviation of m>%Y** depicted on Fig. 3 and calculated
by means of (15). The standard deviation reaches a relative
high value (about 2/5 of the dynamic range for soil moisture)
of ~ 0.07 em?/cm? in everywhere.

Fig. 4 shows the contour lines retrieved after increasing the
number of looks to n = 256. When significant multilooking
is present, the Bayesian retrieval looks more compact around
the contour lines of Oh model indicating, to some extent, a
correct asymptotical behaviour. It could be seen that the "+’
marks and the Bayes’ contour lines agrees, especially for the
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Fig. 2. Comparison between the soil moisture estimated using Oh model

and the Bayesian retrieval approach, in units of ¢m?3/cm?®. The parameters
adopted by the simulation are: n = 3, oy, = 0.005 cm3/cm3, oks = 0.01,
Pvv/hh = 0.7 and Pvh/vv = 0.1.
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n = 3, in units of cm? /cm3. The parameters adopted by the simulation are:
Om = 0.005 cm3/cm?, o5 = 0.01, Pov/hh = 0.7 and pyp, /4 = 0.1.

levels of 0.10, 0.15 and 0.20 in units of cm?/cm?. Of course,
since the minimization and Bayesian estimators are different,
an overlap of the contourn lines are not expected. In the same
way, Fig. 5 depicts the contour lines of one-sigma standard
deviation of m>%¥“* calculated by means of (15) for n = 256.
In this case, the standard deviation ranges between a minimum
of ~ 0.005 em?/cm? and reaches a maximum value of ~
0.03 cm3/em?®. The relative improvement regarding the case
showed in Fig. 3 is due to the increasing of the number of
looks, which is a way to reduce the uncertainties due speckle
in soil moisture estimation.
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Fig. 4. Comparison between the soil moisture estimated using Oh model

and the Bayesian retrieval approach, in units of c¢m3/cm?3. The parameters
adopted by the simulation are: n = 256, o, = 0.005 cm3/cm?, oy =
0.01, pvv/h,h = 0.7 and pvh/vv =0.1.
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Fig. 5. One-sigma standard deviation of m,, for a number of looks

n = 256, in units of cm?3/cm?. The parameters adopted by the simulation
are: o = 0.005 cm3/em?®, ops = 0.01, pyy/pp = 0.7 and pypyy =
0.1.

C. Including A Priori Information

If a priori information is on hand, the Bayesian retrieval
scheme can include it straightforwardly. A priori information
can be available from historical records, estimations from other
sensors, in situ data and/or contextual information about soil
texture/use. Using this information, suitable distributions for
the prior distributions of soil moisture and roughness can be
estimated.

As an example, we now assumed that the prior distribution
for soil roughness in the study area is Gaussian distributed
N(pks, 0p,,) and we will assess the performance of the re-
trieval as a funcion of the number of looks. We start using
a (hh,vv,vh) simulated from m = 0.20 e¢m?/cm?® and



ks = 0.66 through the functions f; (egs. (2-4)). In the
following paragraph, the behaviour of the retrieval when the
precision (spread) o, of the prior varies will be analyzed.

Fig. 6 depicted the estimated m for the Bayesian retrieval
using uniform and Gaussian distributions as priors for soil
roughness, where the latter distributions are centered at the
true value ks = 0.66 and the precision takes values of 0.05,
0.1 and 0.25. Uniform prior U(0.04,0.35) is used for soil
moisture. For number of looks n > 300, all the estimates tend
to the true m = 0.20 cm3/em?® within the 0.005 cm?/em3
value, which is the intrinsic heterogeneity of the soil given by
o.m. This true value is also the estimated m derivated from Oh
model (mS%), which it does not depend on n since Oh model
does not take into account speckle. As expected, the retrieval
schemes weights the likelihood using the prior, and different
rates of convergency are reached. However, two regions are
readily determined. On one hand, a region for large n, where
it is observed that the retrieval with uniform prior converges
faster than the case when gaussian prior is used. On the other
hand, a precise prior is preferable for low n (n < 50), where
it is observed that N(0.66,0.05) approachs to the true m =
0.20 em?3/em? value faster (i.e. with a higher slope) than an
imprecise one (N(0.66,0.25)) and even faster than the case
when uniform prior U (0.13, 3.5) is used. In other words, when
variance from speckle is significant (low values of n), a precise
prior improves the retrieval by strongly restricting the possible
values of m, whereas for large n any prior performs equally
well, specially the uniform one. For n > 300, the error mgq
is less than 0.03 c¢m?/cm3, where for n < 50 the error is
about 0.06 — 0.07 cm3 /em3.
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Fig. 6. Bayesian retrievals of soil moisture using Gaussian and uniform dis-
tributions as prior information for soil roughness, as a function of the number
of looks n, in units of cm?/ecm3. Uniform prior U(0.04,0.35) is used
for soil moisture. The true value from Oh retrieval is shown along with the
om-line, thus indicating the minimum uncertainty that every retrieval might
have. The parameters adopted by the simulation are: o, = 0.005 cm3/cm?,
Oks = 0.01, pvu/hh = 0.7 and puh/vv =0.1.

V. CONCLUSION

Surface soil moisture estimation from SAR data is a com-
plex task. This is related to many issues, but the spatiotemporal
dynamics of soil moisture and the low dynamic ranges of soil
backscatter involved are among the most important ones. Solu-
tions to this complex problem should include better and more
tested forward and inverse models. However, it is important to
understand that inverse models should address in some way the
two phenomena that most degrade the retrieval: speckle and
soil spatial heterogeneities. In order to address these issues, a
Bayesian methodology has been proposed.

In this methodology, a model for the soil backscattering and
a model for the speckle are combined using the framework
of the multiplicative model and Bayes’ theorem. Therefore,
this methodology is able to take into account terrain features
as well as speckle noise to achieve a robust retrieval of soil
parameters from SAR data. This Bayesian methodology: (1)
needs only a forward model (no retrieval model is required),
(2) gives an estimation of soil parameters as well as their
associated error, (3) can include as many error sources as
necessary, and (4) can include a priori information in a
systematic way.

To illustrate the retrieval scheme, a simplified formulation
of Oh’s model was used throughout this work. Furthermore,
the speckle was modeled using appropriate distributions. Using
reasonable hypothesis about functions and model parameters,
the retrieval scheme was tested in different scenarios using
numerical simulations.

For any soil condition, when the number of looks n is
low and uniform priors for soil parameters are used, the
retrieval errors are large. However, when significant multi-
looking (n = 256) is present, the retrieval error decreases. The
relative improvement due to the increasing of n is displayed
by the one-sigma contour lines, where error decreases from
~ 0.07 em3/em? to ~ 0.03 ecm?/cm?3.

The effect on the retrieval of different prior distributions
was also studied. Comparing Gaussian and uniform priors
gives rise to two well-defined behaviour for the m estimates
in terms of the number of looks n. For large n (n > 300), a
uniform prior works well as a Gaussian one (i.e. convergency
is assured within the intrinsic variance of the soil roughness).
For low values of n (n < 50), a precise prior (i.e. o, = 0.05)
determines a rate of convergence higher than an imprecise one
(i.e. o3, = 0.25).

In summary, the proposed soil moisture retrieval scheme
takes as inputs the measured soil backscattering coefficients,
soil ancillary parameters and the number of looks, among
others. Soil ancillary parameters are related to the expected
distribution of soil parameters within SAR pixel. So defined,
soil moisture estimation converges to the expected behaviour
when o, — 0, ops — 0 and n — o0, so confirming that the
standard Oh’s model regime is reached.

Due to its construction, the model presented here is able to
study different retrieval schemes for different kinds of soils
and/or different soil moisture spatial distributions. Further-
more, since soil variance increases with scale, multilooking
will reduce speckle variance but increase observed soil pa-
rameters variance (o,,, 0js), thus ultimately degrading the



retrieval. Therefore, the proposed scheme is a useful tool to
investigate, given an error requirement, which is the optimum
number of looks for a retrieval in a given soil type/condition.
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