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Alphabet-Based Multisensory Data Fusion and
Classification Using Factor Graphs
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Abstract—The way of multisensory data integration is a crucial
step of any data fusion method. Different physical types of sensors
(optic, thermal, acoustic, or radar) with different resolutions, and
different types of GIS digital data (elevation, vector map) require
a proper method for data integration. Incommensurability of the
data may not allow to use conventional statistical methods for
fusion and processing of the data. A correct and established way
of multisensory data integration is required to deal with such
incommensurable data as the employment of an inappropriate
methodology may lead to errors in the fusion process. To perform a
proper multisensory data fusion several strategies were developed
(Bayesian, linear (log linear) opinion pool, neural networks, fuzzy
logic approaches). Employment of these approaches is motivated
by weighted consensus theory, which lead to fusion processes that
are correctly performed for the variety of data properties.

As an alternative to several methods, factor graphs are proposed
as a new approach for multisensory data fusion. Feature extraction
(data fission) is performed separately on different sources of data
to make an exhausting description of the fused multisensory data.
Extracted features are represented on a finite predefined domain
(alphabet). Factor graph is employed for the represented multisen-
sory data fusion. Factorization properties of factor graphs allow
to obtain an improvement in accuracy of multisensory data fusion
and classification (identification of specific classes) for multispec-
tral high resolution WorldView-2, TerraSAR-X SpotLight, and el-
evation model data. Application and numerical assessment of the
proposed method demonstrates an improved accuracy comparing
it to well known data and image fusion methods.

Index Terms—Classification, factor graphs, fusion, graphical
models, multisensor data, TerraSAR-X, WorldView-2.

I. INTRODUCTION

HE practical use of spaceborne very high resolution multi-

spectral data (e.g., IKONOS, WorldView-2, or GeoEye-1)
is still growing but the information gathered from the multi-
spectral data is less in comparison to full spectral imaging. An
improvement can be achieved by employment of fusion ap-
proaches with data from other sensors or sources since this may
increase the quality of scene classification. Fusion of Synthetic
Aperture Radar (SAR) and optical data is employed for several
topics in remote sensing data interpretation, e.g., for landcover
classification [1]-[3], change detection [4], object detection [5].
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Incommensurability of different sources of data (e.g., optical,
SAR, and DEM) requires a proper design of the fusion process.
J. Benediktsson et al. [6], [7] first investigated statistical versus
neural network approaches for multisensory data fusion and
classification. Linear opinion pool and logarithmic opinion
pool optimized by a multilayer neural network are proposed for
the combination of multisensory data (multispectral, elevation,
slope, aspect, and SAR). Several approaches for multisensory
data fusion following consensus theory and employing different
techniques such as Bayesian or neural networks were devel-
oped. F. Pacifici et al. [3] developed the best fusion algorithm
for the 2007 GRSS Data Fusion Contest. The algorithm is based
on a neural network classification enhanced by preprocessing
and postprocessing. Principal component analysis is applied
on SAR data. Altogether, 14 inputs to the neural network
were given: 2 SAR images, 6 Landsat-5 spectral images, and
6 Landsat-7 spectral images. The classification into 5 classes
(City center, Residental area, Sparce buildings, Water, Vege-
tation) provided a high Kappa coefficient equal to 0.9393. M.
Fauvel et al. [8] applied decision fusion for classification of
urban areas. The fusion approach consists of two steps. In the
first step, data are processed by each classifier separately and
the algorithms provide for each pixel membership degrees for
the considered classes. In the second step, a fuzzy decision
rule is used to combine the results provided by algorithms ac-
cording to the classifiers’ capabilities. The method is tested and
validated with two classifiers on IKONOS images from urban
areas. The proposed method improves classification results
when compared with separate use of different classifiers. The
overall accuracy of classification for 6 classes (Large buildings,
Houses, Large roads, Streets, Open areas, and Shadows) is
75.7 %.

F. Rottensteiner et al. [9] presented a method for building de-
tection from a combination LIDAR data and multispectral im-
ages. They showed its applicability in a test site of heteroge-
neous building shapes. The method is based on the application
of Dempster-Shafer theory for data fusion. The authors note
that achieved results are satisfactory but in some cases build-
ings and trees could not be accurately separated, either because
of shadows or because the resolution of the LIDAR data is not
sufficient.

Graphical models (a type of factor graphs) were primarily
employed for natural image classification and annotation.
Fei-Fei Li et al. [10] proposed a new probabilistic directed
graphical model for jointly modeling the image, its class label
and its annotations. The model treats the class label as a global
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description of the image, and treats annotation terms as local
descriptions of parts of the image. Approximate inference
and estimation algorithms based on variational methods were
employed.

M. Lienou et al. [11] employed latent Dirichlet allocation
model for the annotation of satellite images. The annotation task
combines a supervised classification of the image patches and
the integration of the spatial information between the patches.
The model represents each patch of a collection as a random
mixture of latent topics, where each topic is characterized by
a distribution over words. The capability of the model is used
to assign probabilities to unseen images to classify the patches
of the large image into the semantic concepts. The authors in
paper [12] developed a solution for bridging the gap between
the results of classification algorithms and high semantic ter-
minology of cartographic data. The Latent Dirichlet Allocation
model is employed to map heterogeneous pixels with similar
intermediate-level semantic meaning into land cover classes of
various mapping products. A big problem in generating carto-
graphic information from a fully automatic classification map is
solved and demonstrated for Landsat images.

M. Datcu et al. [13] developed information mining system to
retrieve remote sensing imagery from a database. The system
allows semantic interpretation of the imagery using Bayesian
networks. Unsupervised clustering of the features leads to ob-
taining an abstract vocabulary of signal classes. The vocabulary
of signal classes is linked to the user-defined semantic landcover
types using Bayesian networks.

The concept of factor graph (FG) was first devised in 1997
[14] and since then the application of FGs for signal/image
processing and recognition is gradually emerging. B. Frey et
al. [15] performed a thorough and exhaustive work on com-
parison of learning and inference methods for probabilistic
graphical models (Bayesian networks, Markov random fields,
factor graphs). For complex models that accurately describe
many problems, direct application of Bayes rule leads to an
intractable number of computations. A graphical model (factor
graph) identifies the modules in the system and can be used to
derive algorithms that achieve exponential speedups. Factor
graphs subsume properties of Bayesian networks and Markov
random fields. Any Bayesian network or Markov random field
can be easily converted to a FG, without loss of information.
Further, there exist models that have independence relation-
ships that cannot be expressed in a Bayesian network or a
Markov random field, but that can be expressed in a FG. FGs
are more explicit about the factorization of the distribution than
Bayesian networks and Markov random fields. Another advan-
tage of FGs is that, because they explicitly identify functions,
they provide a useful graph for message-passing algorithms,
such as belief propagation [15].

Application of factor graphs for sensor fusion is performed by
J. Moura et al. [16] on synthetic data. In this study a fusion of
data collected by several heterogeneous sensors is performed to
obtain a common goal. Successful fusion results were obtained
on simulated scenarios with high sensing resolution and small

sensor network, or low sensing resolution and large sensor net-
work (e.g., 150 sensors and 200 targets). Application on sonar
data is performed by K. Kampa ef al. [17]. In this work a dy-
namic factor graph is employed for data fusion (3 real targets
taken by 2 sensors) and segmentation (in the sense of proba-
bilistic framework). The linear-time inference is achieved on
a tree-structured network using the sum-product algorithm. R.
Naphade ef al. [18] employed factor graphs for semantic anno-
tation of video sequences. A factor graph is used for mapping
low-level features to high-level semantics. To reduce the com-
plexity and computational cost of the factor graph (probability
function is exponential in the number of variables), a factoriza-
tion of the function is enforced (instead of one joint probability
mass function, several mass functions of two argument variables
were used).

Remotely sensed data have a high complexity and the pro-
cessing or interpretation requires a definition of a model. The
model should have properties like, for example, an established
mathematical basis, tractable learning and inference, good gen-
eralization capabilities, calculation time, absence of curse of di-
mensionality. Explicit factorization properties of factor graphs
allow to compose complex models from simpler modules and
establish links among the simpler modules using the rules of
probability theory. Approximate inference methods applied for
factor graphs allow to receive fast and plausible decisions; plau-
sible decisions by inference on non-full data are possible to per-
form. These properties give a good motivation to employ factor
graph model for data and imagery interpretation especially in re-
mote sensing applications. Nevertheless, factor graphs are not
widely employed yet especially for remotely sensed data pro-
cessing and interpretation.

This research is motivated by previous works of the authors
on single-/multisensory data classification [19] of satellite data.
The used method employs input data/feature representation
(separately for each data source) using an unsupervised clus-
tering. £-means clustering or entropy based k-means (allows
automatic computation of a proper number of clusters [20]) can
be used. The unsupervised clustering allows to combine objects
and structures with similar (i.e., spectral or textural) properties,
reduce the size of the data, and make a higher level of feature
abstraction. Since the represented data have a finite number
of states a proper fusion method following consensus theory
should be used. Considering the properties, factor graphs were
chosen to perform multisensory data integration.

This paper is organized as follows. In Section II a detailed in-
troduction and description of the proposed method for multisen-
sory data fusion is given. Section III gives a short introduction to
factor graphs, presents description of relationships of variables
and factors in the factor graph, and a proper model of the factor
graph is selected. Information on configuration and inference
methods is also given. Description of the employed multisen-
sory data, fusion strategies, results of the experimental part and
discussion are given in Section IV. Conclusion and prospective
development of the fusion model are given at the end of the

paper.
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II. ALPHABET-BASED DATA FUSION

Different types of data (qualitative and quantitative) are
represented using different scales, e.g. nominal scale (color,
flavour, or specie, an unordered set of qualitative “values”,
numbers are used as labels and express no mathematical prop-
erties); ordinal scale (the result of qualitative or quantitative
data, e.g., student rank in a school, numbers indicate the relative
position of items); interval scale (opinion scale, time difference,
or date in calendar, numbers indicate difference between items,
there is no absolute zero point); ratio scale (length in meters,
duration in hours, numbers indicate difference and there is a
fixed zero point); absolute scale (the number of books in a
library, numbers are properties of the attribute).

Performing fusion and classification of features represented
on different scales and obtained from different acquisition de-
vices (e.g., the features possess different statistical properties
and distributions) may be difficult using parametric statistical
methods and may lead to errors. An assumption on a parametric
distribution for the employed features may not always hold. To
overcome these difficulties we perform feature transformation
to make an intermediate representation of a feature (e.g., assume
a categorical (multinomial) distribution [21] separately for each
transformed feature). This transformation (representation on the
alphabet, or a vocabulary of signal classes [13]) makes another
level of feature abstraction, generalized by similarity in the fea-
ture space, simultaneously performing data reduction. k-means
unsupervised clustering is the most popular and easy way to per-
form this transformation and used in works [11], [13],[19], [21],
[22]. The number of clusters can be selected empirically or by
using approaches to determine the optimal number. In work [11]
the optimal number of clusters is selected by modeling the fea-
tures as a Gaussian mixture and using the minimum description
length criteria to accede to the optimal complexity of the model
[23]. The unsupervised clustering method by entropy minimiza-
tion [20] performs clustering of data with automatic definition
of a proper number of clusters.

Factor graph is a discrete graphical model (each variable can
take any value of a finite predefined domain) therefore the input
features can only be discrete. A trade-off between the number of
clusters and the accuracy of fusion and classification is investi-
gated. A factor graph is employed to integrate the multisensory
data represented in a finite domain. Employment of this type
of graphical models is motivated by the fact that factor graphs
were used effectively in a wide range of application areas such
as Decoding of codes, Behavioral modeling, Probabilistic mod-
eling, Fast Fourier transform [14].

Detailed explanation of the fusion framework is given in the
following.

A. Framework

The fusion framework consists of three main steps:

1) Information fission: feature extraction from input
datasets. The aim of this step is to extract information and
to make a full description of the input data (to provide the
quasi-full description) [19]. For each data source relevant

features are extracted. These features are expected to char-
acterize different properties of structures and objects in
each data source. After feature extraction a large amount
of redundant information is obtained.

2) Feature representation on an alphabet. The aim of this
step is to represent a feature on a finite predefined do-
main—alphabet. The number of states of the feature value
is reduced, i.e., a kind of “quantization” is performed. The
objects with similar properties are combined and the data
size is decreased. This representation can be made using
several methods, e.g., unsupervised clustering. k-means
clustering is used. All features extracted from multisensory
data are processed in this way and a vector of features is
composed. This vector is used as input evidence for a con-
figured (learned on training data) factor graph.

3) Fusion and classification of coded data or features is
performed using the factor graph [14], [24]. Configurations
(parameter sets) of the FG are calculated according to su-
pervisely selected classes and training areas. Configured
FG is used for inference on evidence data (i.e., clustered
input features). The posterior probability (maximum prin-
ciple) or calculated marginal distribution of a latent vari-
able is employed for data classification.

The overall scheme is given in Fig. 1. Different feature types
can be extracted to make an exhausting description of the data.
For example, a multispectral image can be used for extraction
of spectral information, DVI indexes and texture features (Har-
alick, Gabor, or Laws). For some data sources (e.g., DEM) fea-
ture extraction is not carried out and the data are directly repre-
sented on the alphabet. The size of the alphabet should be appro-
priately defined for data or features (multispectral, textural, or
DEM). At the final step the evidence (a code composed from
features represented on an alphabet) is given to factor graph
(factor graph is configured for several classes) and a class label
is selected according to the maximum likelihood probability.

III. FACTOR GRAPH DEFINITION

A. Feature Representation on Finite Alphabet

Input data and extracted features have varying value ranges,
statistics, and physical nature. For example, WorldView-2 has
11-bit coded multispectral data, TerraSAR-X has 16-bit coded
data, while other sources of data and extracted features may
have other value ranges. Clustering of input data is performed
to fit the nature and properties of the data fusion method or clas-
sifier (e.g. neural network, Bayesian network, Markov random
field, or Factor graph).

The aim of such feature coding is to represent a feature using a
predefined finite domain (alphabet). The finite domain refers to
the unique values (or a list of values) the feature can have. Here
we use a finite domain consisting of natural numbers. To repre-
sent the input data source (or a feature) on the finite domain, the
data are proposed to be processed by unsupervised clustering
[20]. A cluster’s number is assumed as the value from the de-
fined domain. The number of clusters is set empirically or can
be automatically computed by the clustering method (according
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Fig. 1. Inference (classification) is performed using a configured factor
graphon evidence (input features for the graph). After belief propagation on
the graph the likelihood probability is calculated and a pixel is labeled by the
class k that has the maximum probability (minimum energy) of the configured
factor graph.
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Fig. 2. An illustrative example of simple factor graph with three variables
21, 2, 3 and two function nodes f1(x1,22) and fa(x2, 23).

to the scene complexity) and equals to the size of the domain.
Unsupervised clustering allows to group objects in the data
source by the properties described by the sensor (intensity, DN
value, or spectral properties) and to reduce the complexity of
the data set.

After clustering, each feature is represented on a domain with
a particular size (the number of clusters can be different and
should be defined for each feature) and a vector is composed
from the represented features. This vector (code vector, under
some assumptions) is the input data (evidence) for a factor
graph.

B. Factor Graph for Discrete Data

Factor graphs are more general graphical models than
Bayesian networks or Markov random fields (according to the
Hammersley-Clifford theorem [25], Bayesian networks and
Markov random fields are particular cases of corresponding
factor graphs). A FG possesses properties of Bayesian network
and Markov random field and allows to describe relationships
among parts of a modeled system using the rules of probability
theory. Probability propagation in a Bayesian net is equiv-
alent to the application of the sum-product algorithm to the
corresponding factor graph [18]. FGs were found efficient for
discrete-valued data recognition in various applications [16],
[26], [27].

A factor graph is a bipartite graph containing two types of
nodes: variable nodes (z;,i = 1...n) and function nodes (fac-
tors) (fj(x1,22,...,2n),j = 1...m), where a variable node
x; takes value on a finite domain (alphabet A;) [14]. A variable
node z; is connected to a factor node f; if and only if z; is an
argument of the f;. A factor f;(z1,®a....,2y,) is a function of
the variables x; with a configuration space O:

O=A; xA;x ... x A,. €))

Fig. 2 presents an example of a factor graph with three vari-
ables x1, x9. 23 and two function nodes f; and f5 with factor-
ization: g(z1, T2, 73) = f1(z1.72) * fo(z2, T3).

The sum-product algorithm [14] works by computing mes-
sages at the nodes using a simple rule and then passing the mes-
sages between nodes according to a selected schedule [18]. A
message from a function node to a variable node is the product
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of all messages incoming to the function node with the func-
tion itself, summarized for the variable associated with the vari-
able node. A message from a variable node to a function node
is simply the product of all messages incoming to the vari-
able node from other functions connected to it. Consider a mes-
sage on the edge connecting function node f to variable node
x. Let mesg,_, s(x) denote the message sent from node = to
node f in the operation of the sum-product algorithm. Also let
mesg;_...(x) denote the message sent from node f to node .
Further, let neigh{v) denote the set of neighbors of a given node
v in a factor graph and let | indicate the summary operator [14],
[18]. Consider a function f (1, x2, 23) then a possible summary
operator could be the summation operator in (2):

J(z1, w0, 23) | 1 = Z J(x1, w2, 23). 2)

L2,L3

The message computations performed by the sum-product algo-
rithm can be expressed as follows. Variable to local function:

mesge— (1) = H

heneigh(z)\{f}

MesSgh—a (:1;)5 (3)

Local function to variable:

mesgs_(2)

= f(rnmg(f)) H

hEneigh(f)\{x}

mesgn—g(R) | |z (4)

In the case where a local function f;,7 = 1...m has ar-

guments from subset X;,7 = 1...m (each f; has a partic-
ular subset X ; of variables {x1, ©2, . . . #,, }), the product (global
function, g(x1,2,...,2s)) of local functions f; can be ex-
pressed as:

g(wl?w%"'vxﬂ) :Hfj(Xj)' Q)

C. Factor Graph Structure and Relationships Definition

The task of classification consists of determining the proba-
bility of a particular hypothesis given some observed evidence.
Usually, this is solved by calculation of the marginal probability
of a latent variable, or by calculating the posterior probability
(likelihood on the configured factor graph given the evidence):

atg max P(ci|B), ©6)

where the ¢y, is the class, £ is the evidence (the evidence is a set
of features: £ = {z1,%2,...,2Zn}).
Bayes rule allows to expand this rule to:

arg111I?XP(ck)P(E|ck)/P(E), @)

where the P(F) is the evidence E prior probability (fixed
during inference), P(cy,) is the k-th class prior probability (the
probability can be flat over classes).

(b)

Fig. 3. Fusion modelling using factor graph: (a) the exact model (high com-
plexity of learning and inference due to one configuration factor); (b) the inde-
pendent model (low complexity).

Assuming that the factor graph is configured (6(%) is the con-
figuration for class k) the joint distribution of P{E|cy) is the
following [28]:

arg max P(ex)P(E, 0(k)|ck)- ®)
Conditioning on #(k) we can write:
arg max Per)P(O(Kk) er)P(E|cr. 6(k)). ©)

The following models can be defined for (7): the exact model
(Fig. 3(a)) and the independent model (Fig. 3(b)). The exact
model assumes that the class configuration is a single factor with
dependent features. The independent model assumes that each
input feature is independent.

1) Exact Model: Assume that we have n coded input features
(denote as ;) as an evidence £. The exact model factor graph
Jexact (Fig. 3(a)) can be written as:

7:En)

= z.(er)f(z1, 22, ..

gCXaCt(:L.la L2y ...

s cr)zi(@n)ze(xe) oz (2s)  (10)
where the variables z1,%»,....x, are the input features
(evidence FE), ¢ is the k-th class, z. is the factor defining
prior probability of class variable c, f(z1,%2,...,2n,Ck)
is the factor of input features and class variable c¢y,
z1(x1)z2(x2) .. . 2, (x, ) are the factors defining prior probabil-
ities (1)/(p(r1)), (1)/(p(r2)), -, (1)/(pln)) (normalizing
factors).

Message updating for the exact model factor graph (Fig. 3(a))
is described in Fig. 4.

2) Independent Model: The independent model factor graph
Jindependent (Fig. 3(a)) can be written as:

Jindependent (51;17 L2y ... :xn)
= zo(ew) 1z, cp) fol@a,cr) oo« fulan, ck)

21 (.’[71)22(-’”2) cee Zn(xn)

(11)
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Fig. 4. Message update diagram for function node f(2y, x2,...,2,, ) (an
equivalent to the joint mass function), the =, node defining the prior probability
of class variable ¢, , and the normalization functions z; (1 )z2(22) . . . 2. (2,)
in the exact model factor graph (Fig. 3(a)) (also see Naphade et al. [18]).

Fig. 5. Message update diagram for function nodes f1{x1, i), f2(72. 1),
o fa(@n. ok ) , the z. node defining the prior probability of class variable ¢,
and the normalization functions z1 (1 )z2(#2) . .. ,{x, ) in the independent
model factor graph (Fig. 3(b)).

where the factors f1, fo,..., f, are the factors of the features
Z1,%s,..., T, and share the class variable c¢g; ¢ is the k-th
class variable; z. is the factor defining the prior probability of
class variable ¢y,.

Message updating for the independent model graph
(Fig. 3(b)) is described in Fig. 5. Detailed step-by-step message
propagation map for the independent model is given in the
Appendix.

Different topologies of the graph pose some difficulties and
advantages on the graph use. A single configuration factor ( f)
in the exact model allows to perform exact inference but makes
learning and inference problematic on this graph due to its high
complexity, while the independent model is an equivalent to
a tree-structured Bayesian network and has low complexity
leading to easier configuration and inference.

Several modifications of the exact model can be made in order
to allow usage of the arbitrary number of input features:

1) Factorization of functions. The factor f in (10) has expo-
nential nature on the number of input variables (features),
therefore the cost of computation increases quickly. In-
creasing the number of input features as well as the al-
phabet size, the factor graph will obtain a high and in-
tractable state space and the configuration of this factor
graph as well as inference may become difficult to per-
form. To overcome this disadvantage a factorization of
mass functions can be done (e.g., [18]).

2) Features as binary variables. Additionally an input feature
can be represented using several binary variables to reduce
the state space of an input feature variable (then the number
of input feature variables increases).

D. Model Learning: Graph Configuration

The structure of a factor graph (the exact or independent
model) defines a dependency of class variable node ¢, on input
features x1, xs, ..., x, (evidence E). The probability p(ci|E)
can be calculated using the configured (learned) factor graph.
The use of training data allows to calculate a configuration
(parameter set 6(k)) for the factor graph (the #(k) is calculated
to maximize the p(cg|E), (6)—(9)).

An important issue is a proper way to configure (make su-
pervised learning) the graph. The configuration of the FG con-
sists of two steps. In the first step we maximize the total likeli-
hood subject to all the factors (estimated factors are z1, . ..
fi,--., fn, and z.) using training data for all the classes (the
number of samples for each class should be almost equal). In
the second step, the factors 21, . . ., 2,, and 2. (prior probabilities
over the features and class) are fixed and the factors fi,..., f,
are estimated for each class % using only training data for the
class k. Such a two step configuration procedure allows the com-
parison of factor graph (parametrized by #(k)) posterior proba-
bilities for the classes using the maximum rule.

The gradient ascent method is employed for the calculation
of the graph configuration #(%). An inference on the configured
factor graph given the evidence data allows to calculate a prob-
ability. A comparison of the calculated probabilities allows to
make a classification of the input scene (maximum rule is used).

7ZT7/7

E. Inference

Usually the task of inference means one of two scenarios: 1)
to compute a configuration of latent variables to maximize the
posterior probability (in our task a latent variable is ¢}, and the
task is to maximize the p(c}|E)); 2) to compute the marginal
distribution p(¢y|E) for a single node, or marginal distributions
over sets of nodes: p(c(,)|#) (see [29]).

The task of marginalization could be difficult to perform be-
cause of a high complexity of the model together with a high
number of input features (the number of variables can be up to
300) as well as a quite high number of classes (23 classes in this
work). In order to avoid such marginalization problems the first
scenario (maximization of the posterior probability) is selected.
Mean field inference [15] is employed.

IV. EXPERIMENTS, RESULTS, AND DISCUSSIONS

The main aim of this section is to illustrate fusion and clas-
sification advantages of the proposed method in comparison
with other known methods. Fusion and classification accuracy
of a method can be numerically assessed on multisensory
data. The same multisensory data and fixed training and test
samples are employed by all compared fusion methods and
numerical measures are calculated using the test samples.
Comparison of the numerical assessment results can reveal the
method providing the best accuracy. Standard assessment mea-
sures such as overall accuracy, Cohen’s Kappa, McNemar’s
test, and calculation of confusion matrices are used for the
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TABLE I
PARAMETERS OF THE WORLDVIEW-2 AND TERRASAR-X DATA FOR MUNICH TEST SCENE
Parameter WorldView-2 [33] TerraSAR-X
Product Ortorectified Standard Imagery | EEC
Sensor mode Multispectral, PAN Spotlight HS
Orbit Descending Descending
Acquisition date and time (UTC) | 10 July 2010, 10:30:17 7 June 2008, 05:17:48
Look angle 5.2°, Left 49.2218°, Right
Ground pixel size, m 0.5 % 0.5 0.5 % 0.5
Polarization - Single, VV
Bits per pixel 11 16

comparison. Well known and employed methods such as
maximum likelihood classification (based on statistics, not
following consensus theory) and neural network (widely used
for multisensory data fusion, following consensus theory) are
selected for comparison. Single sensor (multispectral World-
View-2) and multisensory data (WorldView-2+Elevation or
WorldView-2+Texture (SAR and Optical)+Elevation) were
employed for comparison of fusion and classification accuracy.
Experimental analysis is run on two multisensory data sets
(WorldView-2, TerraSAR-X, and elevation data) acquired for
Munich (23 classes) and London (14 classes) cities.

A. Munich Test Area

1) Multisensory Data and Features: For an experimental
evaluation, a combination of very high resolution (VHR) satel-
lite data from the optical spectrum (WorldView-2) and the mi-
crowave range (TerraSAR-X) together with a digital surface
model (DSM) are used. Multispectral data allow to classify ob-
jects by spectral properties, but the single-angle acquisition im-
ages do not allow to reveal the elevation of an object, therefore
some classes can be confused (e.g., asphalt material can belong
to a road or can be a roof material). SAR data (here X-band
is assumed) allows to assess the homogeneity, object surface
structure, and other properties of the objects. This kind of infor-
mation can be used for proper description and delimitation of
objects with similar spectral properties. The DSM data allows
to obtain information on object height in the scene, but employ-
ment of the DSM for scene classification can not allow to de-
fine a high number of classes. An adequate fusion method of the
multisensory data allows to detect a higher number of landcover
classes with increased accuracy. Urban area (Munich city) is es-
pecially selected for data fusion because it contains a variety of
objects, structures and allows to define a high number of land-
cover classes.

Acquisition geometries of the employed WorldView-2 (5.2°
look angle, almost nadir view) and TerraSAR-X (49.2218° look
angle) data allow to use the multisensory data for fusion [30].
WorldView-2 (WV-2) multispectral data were pan-sharpened
by the General Fusion Framework method [31]. The optical and
SAR data were orthorectified (SRTM 30 m DEM) and distor-
tions introduced by terrain are decreased. Ortorectified World-
View-2 and SpotLight Level-1B Product TerraSAR-X (TSX)
data were used. A detailed description of the employed data
sets is given in Table I. The registration of optical and radar
data is made in ENVI using manual selection of control points.

In more complicated cases other registration methods should be
employed, e.g., [32].

Highly detailed Digital Surface Model (DSM) of urban scene
is generated using the Semiglobal Matching algorithm using in
this case two Worldview-2 stereo pairs with small convergence
angles (less than 20 degrees) [34].

Specific features should be extracted from the data to make an
exhaustive description of landcover classes, structures, and ob-
jects. For example, a multispectral image can be used for extrac-
tion of spectral information, Difference Vegetation Index (DVI)
indexes, well known texture features (Haralick features, Gabor,
or Laws), while the TSX data is primarily suitable for extraction
of texture features to describe specific properties of objects. For
some data sources (e.g., DSM) feature extraction is not carried
out and the data are directly represented on the domain. The size
of the domain should be appropriately defined for each different
feature (multispectral, textural, or the DSM).

The TSX image is employed for the characterization
of surface and textural properties. Optical WV-2 data are
also used for textural feature extraction and for providing
spectral information on the objects of the scene. In our ex-
periment Gabor features [35] were calculated on TSX data
and on Red color channel (630-690 nm) from WV-2 data. A
bank of Gabor wavelets consists of 18 filters (6 orientations
(0,7/6,7/3,7/2,(2)/(3)7,(5)/(6)7), 3 different periods of
filter’s sine component (7/3,(2)/(3)m, 7), and 1 sigma value
(o = 4)). A recursive implementation of Gabor filtering is
employed [36].

A subscene (7115 x 4516 pixels) is used in the experiments.
k-means clustering is employed for feature representation on
the alphabet. In this experiment we try to set the size of the al-
phabet as small as possible to illustrate that the represented data
allows to reach a higher accuracy of the fusion and classifica-
tion comparing to the full range of values. We assume that mul-
tispectral data requires a larger alphabet size to preserve more
spectral information, while the texture and the DSM data can be
represented on the alphabet with a smaller size. The number of
clusters is selected empirically and set to 10 for Gabor features
(calculated on SAR and optical data), 10 for the DSM, and 50
for the WV-2 multispectral data.

2) Fusion Strategies and Classification: One of the main
interests is to assess the influence of multisensory data employ-
ment on classification accuracy and to compare the fusion re-
sults with the results of single sensor data classification. Quan-
titative assessment allows to illustrate usefulnesss of multisen-
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TABLE II
MUNICH TEST AREA. CLASS OF INTEREST, ACRONYM, NUMBER OF TRAINING AND TEST SAMPLES *-VALIDATED GROUND TRUTH CREATED BY DR. WIEKE

HELDENS (AVAILABLE ONLY FOR A LIMITED NUMBER OF OBJECTS), T -VALIDATED GROUND TRUTH SELECTED FROM ATKIS VECTOR MAP, *-TRAIN AND TEST
AREAS WERE SELECTED USING VISUAL INTERPRETATION OF WV-2 VISIBLE RANGE DATA TOGETHER WITH BING MAPS, GOOGLE EARTH, AND GOOGLE STREET
VIEW. PER CLASS FUSION AND CLASSIFICATION ACCURACIES OF THE ML, NN, AND FG METHODS ON WV-2, WV-24DSM, AND WV-2+TEXTURE+DSM

WV-2 WV-2+DSM WV-2+Texture+DSM
Class Acronym Training samples Test samples ML NN FG ML NN FG ML NN FG

1| Water" WA 13231 14335 81.35 | 9871 | 72.95 || 83.01 | 100 | 76.61 || 88.92 | 99.99 | 91.52
2| ForestTrees FO 10564 27730 99.45 [ 99.60 | 79.07 || 96.72 | 87.99 | 8233 || 9871 | 86.91 | 96.83
3| Grass/Low vegetation' | GR 2654 32896 4325 | 5326 | 7343 || 25.58 | 3447 | 6231 || 1142 | 3943 | 77.52
4| Bare soil’ BS 7180 14046 84.15 | 67.53 | 015 || 5736 | 6232 | 1.96 || 61.40 | 64.62 | 92.99
5 | Construction site? Ccs 15258 17693 7001 | 8445 | 6342 || 7429 | 82.33 | 9599 || 88.11 | 86.47 | 77.11
6 | Swimming pool’ SP 2667 3489 100.0 | 99.97 | 99.97 |[ 100.0 | 100 [ 99.97 [| 98.37 | 100.0 | 99.46
7 | Asphalt road’ RO 2681 60033 58.23 | 51.38 | 29.02 || 59.65 | 56.67 | 31.62 || 4033 | 69.38 | 71.37
8 | Football field? FF 21829 27263 91.82 | 98.06 | 3932 || 99.45 | 94.97 | 4328 || 94.66 | 93.69 | 70.34
9 | Tennis field" TF 4722 3300 99.27 [ 100 [ 9818 || 90.76 | 99.94 | 98.18 || 93.85 | 99.55 | 98.88
10 | Green house? GH 11920 12734 91.97 | 93.09 | 0 92.98 | 97.56 | 055 || 9433 | 95.79 | 16.05
11_| Rail road’ RR 5888 23279 6818 | 79.44 | 50.10 || 61.96 | 8261 | 71.01 || 43.15 | 89.65 | 86.71
12 | Tram line? TL 1009 1017 27.83 | 3432 | 42.18 || 34.81 | 2035 | 55.06 || 12.19 | 29.89 | 44.05
13 | Cemetery CE 4195 8481 94.67 | 86.15 | 60.75 || 89.66 | 74.64 | 64.17 || 90.17 | 84.51 | 86.51
14_| Parking/car? PA 3882 13628 61.43 | 3761 | 0 54.40 | 2949 | 3.00 || 59.30 | 52.83 | 93.33
15 | Shadow? SH 3551 8473 61.93 | 9321 | 9848 || 64.67 | 99.24 | 9848 || 5040 | 98.19 | 84.86
16 | Concretef Co 46 137 292 [ 8029 | 7299 [ 292 | 8248 | 78.10 [ 0 7810 | 100
17 | Red roofing tiles” R-RT 915 1050 9895 | 9971 | 9419 || 99.24 | 100 | 9924 || 0 9981 | 57.62
18| Roofing concrete™ R-CO 887 1198 4023 | 87.65 | 1244 || 31.47 | 50.17 | 1594 || O 50.08 | 39.57
19 | Vegetation roof” R-VE 1605 1723 93.73 | 93.62 | 74.17 || 98.08 | 9971 | 99.0L || O 100.0 | 62.86
20 | Dark roofing tiles” R-DT 1164 2563 6387 | 89.70 | 5548 || 20.50 | 44.83 | 4861 || 0 30.28 | 45.81
21 | Zinc roof” R-ZI 968 6418 7577 | 89.98 | 2694 || 71.42 | 6536 | 3236 || O 6513 | 2822
22 | Roofing copper” R-CP 912 953 9381 | 8898 | 8531 || 94.86 | 98.74 | 8531 || O 97.80 | 79.85
23 | Grey roofing tiles™ R-GT 1354 2492 86.12 | 75.60 | 69.82 || 95.30 | 96.07 | 75.28 || 0 94.02 | 7099

sory data for proper landcover class identification. Comparison TABLE III

of different fusion and classification methods on multisensory
data is also of an interest. Availability of 8-band WV-2 mul-
tispectral data allows to increase the accuracy of fusion and
classification comparing to well known IKONOS, Quickbird,
or Geoeye sensors acquiring only 4-bands. The following com-
binations of multisensory and single-sensor data can be created:

1) WV-2 (8 features (spectral bands)),

2) WV-24-DSM (9 features),

3) WV-24Texture (SAR and Optical)+DSM (45 features).

Single data sets like DSM or only texture were not selected
for comparison since the data do not allow to obtain a com-
parable classification accuracy. Altogether, 23 classes were
defined, the number of training and test samples is given in
Table II. Selection of training and test regions is made manually
on a color composite of WorldView-2 according to available
ground truth data. The training and test samples are spatially
uncorrelated. It should be noted that the validated ground truth
is limited in size (e.g., vector data on class Nr. 12 and 16-23
is available only for a small number of objects and buildings).
The ground truth for the area under investigation is proofed by
the ATKIS vector map provided by Bavarian State Agency for
Surveying and Geoinformation (Landesamt fiir Vermessung
und Geoinformation). Vector data on the materials available in
the scene is created and provided by W. Heldens [37].

3) Results and Discussion: Table Il presents results (overall
accuracy and Cohen’s Kappa) on fusion and classification of
single sensor and multisensory data. Results of two other
methods: Maximum Likelihood (ML) (not following con-
sensus theory) and Neural Network (NN) are also given for
comparison. All the methods were run on the same feature
set and the same training/test regions were employed. Neural

MUNICH TEST AREA. CLASSIFICATION ACCURACY USING DIFFERENT
METHODS TOGETHER WITH THE PROPOSED APPROACH. ML-MAXIMUM
LIKELIHOOD (NOT FOLLOWING CONSENSUS THEORY), NN-NEURAL NETWORK,
FG-FACTOR GRAPH. OVA—OQOVERALL ACCURACY, KAPPA—COHEN’S KAPPA

Method | Employed features OVA, % | Kappa
ML WV-2 (8) 72.51 0.7010
ML WV-2+DSM (9) 68.98 0.6620
ML WV-2+Texture+DSM (45) | 58.53 0.5502
NN WV-2 (8) 75.00 0.7282
NN WV-2+DSM (9) 71.18 0.6867
NN WV-2+Texture+DSM (45) | 76.33 0.7411
FG WV-2 (8) 47.89 0.4536
FG WV-2+DSM (9) 52.46 0.4909
FG WV-2+Texture+DSM (45) | 76.75 0.7438

network (multilayer perceptron) is chosen since it is shown
to be an efficient and popular solution for multisensory data
fusion and provides a high classification accuracy [3], [6]. The
Neural Network is a 3 layer (2 hidden layers) feed-forward net
trained with Kalman filter, implemented in IDL [38]. The input
features are normalized to one. The number of neurons in the
hidden layer is selected experimentally. Running the neural
network on the same feature set (WV-2+Texture (SAR and
Optical)+DSM) and employing different number of neurons
(5, 10, 20, 60, and 80) in the hidden layers it is found that the
three layer network with 20 neurons in the two hidden layers
allows to obtain the best result on fusion and classification
(Table IV). The same number of neurons is employed for the
WV-2 and WV-2+DSM feature sets. For the ML classification
ENVI software package is used.

The independent model of the factor graph is selected for
fusion and classification since less calculation time is required
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o
TABLE IV =7 0. M 0 M- m oM A —
MUNICH TEST AREA. CLASSIFICATION ACCURACY USING THE NN ON n (R ML
WV-2+TEXTURE (SAR AND OPTICAL)4+DSM DATASET (ALL TOGETHER | I M \
45 FEATURES). THE NN IS A 2 LAYER NETWORK (1 HIDDEN LAYER) OR | ) A
A 3 LAYER NETWORK (2 HIDDEN LAYERS) WITH A DIFFERENT NUMBER < - I
OF NEURONS IN THE HIDDEN LAYER/LAYERS (5, 10, 20, 60, AND 80) ARE | i
EMPLOYED TO FIND THE MOST SUITABLE ARCHITECTURE OF THE NETWORK n
AND REACH THE HIGHEST FUSION AND CLASSIFICATION ACCURACY X | |
§ 8- il | 1
1 hidden layer | 2 hidden layers K I I )
Number of neurons | OVA, % | Kappa | OVA, % | Kappa = )
5 7217 [0.6966 | 73.67 |0.7118 g
10 75.83 0.7357 | 75.70 0.7338 5 o I
20 72.53 0.7005 | 76.33 0.7411 g ¥ 7
60 7488 |0.7251 | 7415 | 0.7176 S
80 55.13 0.5158 | 75.21 0.7288
o _|
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© | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
I | Class number
8 L
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Fig. 6. Munich test area. Per-class accuracy for the WV-2 data classification 8
using the ML, NN, and FG.
o |
N
for the configuration and inference. Estimation of marginal dis-
tribution for class variable can be used when there is a rela-
tively low number of input features and the number of classes e - T A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

is not high. Employment of a high number of input features and
classes (e.g., 45 features and 23 classes) makes it problematic
to estimate the posterior marginal of class variable (confusion
among classes is high). To avoid the confusion among classes,
total maximum likelihood probability of the factor graph is cal-
culated to produce a probability map separately for each class,
and maximal MAP selection allows to assign the class labels.
Figs. 6, 7, and 8 illustrate the fusion and classification accu-
racy using the defined combinations of multisensory data. Intro-
duction of the textural features and the DSM allowed to increase
the overall accuracy for the NN and the FG fusion methods
from 75.00% and 47.89% up to 76.33% and 76.75%, respec-
tively. Kappa values were increased from 0.7282 and 0.4536
up to 0.7411 and 0.7438 for the NN and FG, respectively. Con-
fusion matrices for the fusion and classification of the WV-2,

Class number

Fig. 8. Munich test area. Per-class accuracy for the WV-24-Texture(SAR and
Optical)+DSM data fusion and classification using the ML, NN, and FG.

Texture, and DSM data (Tables V, VI, and VII) allow to com-
pare per class confusion.

The introduction of the textural features extracted from the
SAR data increase the accuracy of the ground class labeling but
the accuracy of building classification is decreased (Table II).
A strong backscatter from a building can reduce the accuracy
of the building and nearby objects classification. Therefore the
fusion with SAR for urban area classification should be used
with caution and employment of multispectral and texture
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TABLE V

MUNICH TEST AREA. CONFUSION MATRIX, THE ML CLASSIFICATION USING WV-24TEXTURE (SAR AND OPTICAL)+DSM DATA.
OVERALL ACCURACY = 58.53, KAPPA = 0.5502

[ 1T Ground truth (Percent) ]
[[WATFO [GR[BS [ CS [ SP [RO [ FF | TF | GH [ RR | TL | CE | PA | SH | CO [R-RT[R-CO[R-VE[R-DT[R-ZI [R-CP[R-GT [[User Acc.[Comission|

|__Class
WA [[8892] 0 [0 [ O0OJOJO[O0OJTOJTOJOJOJO[O[OJTOTOJOJOJOJT O[] OT[O0OTO 100 0
FO 0 (98711102 0 [0 | 0 [ 0 [0 [0 [0 | 0 [ 0 [948]006[894] 0 [ 0 | 0 | 0 [218] 0 | 0 |5.10 || 8359 | 1641
GR 0 [0 [1#] 0 [0 [0 [0 [0 [0 ]0]0]0]002[0][0][0[]0]0]0][0]0]0][O0 99.95 0.05
BS 0 [0 | 0 [6140[0.14] 0 [034] 0 [ 0 [ 0 | 0 [069] 0 | 0 [ 0 [2993] 0 | 0 [070] 0 | 0 [ 0 | 0 96.76 324
CS 1023[ 001 | 0 |[38.52[88.11] 0.06 [1648] 038 | 3.27 492 [4.10 [2.95| 0 [3798] 1.86 [13.14[41.14]63.69| 9.81 [46.9868.67[62.75(52.93 || 32.19 | 6781
SP 0 [0 00019370 [0]0]0]0]0][0[0[0]0]0]0]0[O0]0]0T]0 100 0
RO 0 [0 [0 0] 00 [43]0 [0 [042[007][511] 0 [ 0 [0 [0 0[] 0][0][0]0]0][0 99.50 050
FF 076 [015 [7112] 0 | 0 | 0 |0.01[9466] 0 | 0 [2.07]265[027] 0 |2834] 0 | 0 | 0 | 0 [1030] 0 | 0 | 040 |[ 4899 | 5101
F 0 [0 O0]O0O[0[0 ][0 [0980[0]0][0[0[0]0[O0[]O0[0[O0]O0]0]O0 100 0
GH 0.07 | 0.06 [0.04]0.09 [ 267 | 0 [3534] 0 | 0 |94:33]49.82|68.53] 0.06 [ 2.66 | 9.49 | 657 |3648] 0.17 | 0 [30.94[19.43] 451 [3.13 || 2414 | 75386
RR 0O [oJoJo[o o472 000 [41578[ 0 [0 [0 0[]0 00 [23]0 0 7716 | 2284
i 0 [0 000 [0 [14[ 0000 [21O0][0][0]0]0]0]0[0]0]07]0 1239 | 8761
CE 0 [095[640] 0 [ 0 [ 0 [ 0 [496[ 0 [ 0 [ 0 [ 0 [9047] 0 [ 0 [ 0 [0 [ 0 [0 [0 [0 ][00 6730 | 3270
PA 002012001 0 |908|1.58132] 0 [288[034[079| 0 | 0 [59.30] 097 [50.36[9.90 [3589] 0 | 0 |[031[021[ 0 69.63
SH 0O {oJoJof[oJo[oJo][o[o]o][o]o]o(504 0[0]o0o ][0 ][0]0][0]oO 100
CO 0 [0 0 O[O0O[O0[0[0[0[0[]0][0][0]0][0 01248000 [056]0]0 0
R-RT 0 [0 o[ o[ 000000000000 0]025[0][0]0][0]0 0
R-CO 0 [0 0[O0 [0 [0 [0 [0 [0[0]0][0][0][0]0] 0| 0 [850260]05]45[08 0
R-VE 0 [0 0[O0 [0 [0 ][0 ][0 [0 ]0[0][0][0][0]0]0]0]O0][0]460[0]0]0 0
R-DT 0 [0 0[O [O0O[O0O[O0[O0[O0[O0[O0O[O0O[0][O0[O0 ][00 0[]0 [0 [1040]0 0
R-ZI 0 [0 ] 0 [0[0]0]0]0[0][0]0]0]0]0][0]0][0]0][0 ][0 |0 [2802 0 0 100
R-CP 0 [0 JO0JO[O0O[O0O[O0[O0[O0[O0[O0O[O0O[0[O0[O0[O0]O0O[O0]0][0]0[0[3760 0 100
R-GT 0 [0 0 [0[ 0000 [0[0]0][0]0[0][0]0[0]0][0][0]0][0]0 0 0
Total__[[100.0[100.0[100.0[100.0]100.0]100.0]100.0[ 100.0[100.0 100.0[ 100.0] 100.0] 100.0] 100.0] 100.0[ 100.0[ 100.0[ 100.0] 100.0] 100.0] 100.0] 100.0[ 100.0

Prod. Acc.|[88.92[98.71[11.42[61.40[88.11[98.37|40.33[94.66[93.85[94.33[43.15[12.19]90.17 | 59.30[50.40[ 0.00 [ 0.00 [ 0.00 [ 0.00 [ 0.00 [ 0.00 | 0.00 | 0.00

Omission |[11.08] 1.29 |88.58]38.60[ 11.89] 1.63 [59.67| 5.34 | 6.15 | 5.67 |56.85|87.81] 9.83 [40.70]49.60|100.0[ 100.0[ 100.0] 100.0 [100.0] 100.0[100.0[ 100.0

TABLE VI
MUNICH TEST AREA. CONFUSION MATRIX, THE NN FUSION AND CLASSIFICATION USING WV-2+TEXTURE (SAR AND OPTICAL)+DSM DATA.
OVERALL Accuracy = 76.33, Kappa = 0.7411

1T Ground truth (Percent)
[

Class || WA [ FO [ GR | BS | CS | SP [ RO | FF | TF | GH | RR | TL | CE | PA | SH | CO |R-RT[R-CO[R-VE[R-DT| R-ZI [R-CP|R-GT][User Acc.|[Comission|
WA_[[9999] 0 [ 0 [ 0 J 0 0] 0] 0] O] OO 0] O0]O0J04]0]0]O0]O0]O0]O0]O0J00a]] 9976 | 024
o) 0 [8691[046] 0 | 0 | 0 [ 0 [ 0 [ 0 | 0 [024] 0 [272[ 112001 0 [ 0 [ 0 [ 0 [ 0 [ 0 [ 0 [ 0 [[ 9760 | 240
GR 0 [251[3943] 0 [ 0 | 0 | 0 [626] 0 [ 0 [ 0 | 0 [1131] 0 [ 0 [ 0 [ 0 [ 0 [0 [ 0 [ 0] 0| 0 || 7945 | 2055
BS 0 | 0 [0 [6462[037] 0 [007] 0 [ 0 [ 0 [ 0 [ 0 [0 [001[ 0 [730] 0 | 0 [0 [0 [0 00 9871 129
CS 0 | 0 | 0 [3528[8647] 0 [073] 0 | 0 [063]056] 0 | 0 [2085] 0 [1460] 0 [159] 0 | 0 [039] 0 | 0 || 6425 | 3575
SP 0 |0 [0 [0 0000 0[]0 [0[0[]0[O0[0]O0O[O0[O0O]O0O[O0O[O0O][O0]O0]o0]o0 100.0 0
RO 0 | 0 | 0 [ 0 [014] 0 [6938] 0 | 0 [1.26]058[39.72[ 0 [1.63] 0 [ 0 | 0 | 0 | 0 [070][009] 0 | 0 9773 | 227
T 0 [0.10]4630[0.01| 0 | 0 [003[9369] 0 | 0 [021] 0 [146]012] 0 [ 0 [ 0 | 0 | 0 [027] 0 [ 0 [ 0 62.17
T 0 [0 [0 J006] 0 [0 [0 [0 [9%5] 000 0][0][0][0]0[167] 00 [034]0]0 9847
GH 0 | 0 [ 0| 0 [029] 0 [729[001| 0 [95:9]437 442 0 [1821[006] 0 | 0 | 0 | 0 [636]1.85]1.05]0.16 || 59.58
RR 0 | 0 | 0 0] 00 [267] 0| 0 [138]8965[472] 0 |2.80[002] 0 | 0 [0.17] 0 [3.63]238] 0 | 0 89.46_| 10.54
L 0 [ 0 [0 [0 [019] 0 [839] 0 | 0 [011][3.62[2989] 0 [040] 0 [ 0 | 0 0 [0 [002[ 0 [0 434 | 9516
CE 0 [1027]13.82] 0 [ 0 | 0 | 0 [003] 0 [ 0 [0.09] 0 [8451]091[001] 0 | 0 [ 0 [0 [0 [0 [0 [0 4870 | 5130
PA 0 [ 0 [ 0 | 0 [1252] 0 [1137] 0 | 0 [0.02]0.57 [21.24] 0 [5283[ 005 0 [0.19[2613] 0 | 0 [009] 0 | 0 [| 4255 | 574
SH 0.01 0.8 0 [ 0 [001] 0 [ 0 | 0 | 0 [0 | 0 [0 0 |017[9819] 0 | 0 [ 0 [ 0 | 0 [ 0 | 0 [482][ 9770 | 230
CO 0 [0 0] 0[]0 ]0][0[0]0][0[0]0][ 0[]0 08100 0][0][0]0]o0 100.0 0
R-RT 0 [ 0 [0 [002]002] 0 [ 0 | 0 [045] 0 |001| 0 | 0 [030] 0 | 0 [9981]2037] 0 | 0 [2873] 0 | 0 3274 | 6126
R-CO 0 [ 00 0[]0 ]0[0[0]0][ 0[]0 0][0]007[ 0[]0 0 [5008 00 [028]0]0 95.69 | 431
R-VE 0 {001 0 [ 0 [0 [0 [001] 0] 0 [020]001] 0 | 0 [037] 0 [ 0 [ 0 | 0 [1000[7.14] 0 | 0 [068[| 8572 | 1428
RDT 0 [001[ 0 [ 0 [0 [0 [0 000 [009[ 00 [009[007] 0] 0] 0|0 [3028 0] 0 0 || 9475 | 525
RZI 0 | 0 | 000 [0 [004] 00 [037] 0] 0] 0J005] 0] 0] 0] 0] 00 [6503] 00 98.19 131
R-CP 0 [0 [0 000000024000 J008[0 ][ 0] 0] 00 |0 [069[9780]028] 91.02 | 898
R-GT 0 | 0 | 0] 000 00I] 0| 0] 0] 0] 0] 0] 0 [LO] 0] 0 0|0 [51.62] 0 II5][9402]] 61.89 | 38.11
Total _[[100.0[100.0]100.0] 100.0[100.0] 100.0] 100.0[ 100.0] 100.0] 100.0[ 100.0] 100.0] 100.0[ 100.0] 100.0] 100.0[ 100.0] 100.0] 100.0] 100.0] 100.0[ 100.0] 100.0

Prod. Acc. |[99.99]86.91[39.43]64.62[86.47]100.0]69.38]93.6999.55[95.79| 89.65[29.89 [ 84.51[52.83[98.19| 78.10[ 99.81| 50.08 | 100.0 | 30.28 | 65.13|97.80[94.02

Omission || 0.01 [13.09]60.57]35.38[13.53| 0 _|30.62] 631 | 0.45 | 4.21 [10.35]70.11[15.49[47.17] 1.81 [21.90] 0.19 [49.92| 0 _|69.72|34.87] 2.20 | 5.98

TABLE VII
MUNICH TEST AREA. CONFUSION MATRIX, THE FG FUSION AND CLASSIFICATION USING WV-24-TEXTURE (SAR AND OPTICAL)+4DSM DATA.
OVERALL Accuracy = 76.73, Kappa = 0.7438

[ T Ground truth (Percent) ]
[[WATFO [GR [ BS [ CS [ SP [RO | FF | TF | GH | RR [ TL | CE | PA | SH | CO [R-RT[R-CO[R-VE[R-DT[R-ZI [R-CP[R-GT[[User Acc.[Comission|

| Class
WA 91.52[ 017 0 0 0 0 |010[947] 0 0 0 0 0 0 [14.09[ 0 0 0 0 [347[ 0 ]0.10]10.23 75.70 24.30
FO 0 196.83]7.03| O 0 0 0 0 0 0 0 0 |541| 0 [050] O 0 0 [023] O 0 0 036 9047 9.53
GR 0 |0.06|77.52] O 0 0 0 [16.09] 0O 0 0 0 |778] O 0 0 0 0 0 0 0 0 0 83.48 16.52
BS 0 0 0 19299(590| 0 |0.07]031| 0 |0.08] O 0 0 1004 O 0 0 0 0 0 [1622] 0O 0 85.42 14.58
CS 0 0 0 |7.01(77.11] 0 0 0 0 |839] 0 0 0 |071] O 0 0 [30.38[232] 0 [446]| O 0 82.77 17.23
SP 0 0 0 0 ]0.09 [99.46[0.02| 0 0 1069] O 0 0 004 O 0 0 0 0 0 [2.18]0.63]0.20 92.66 7.34
RO 0 0 0 0 [3.18] 0 |71.37)0.66 [ 0 [21.77{10.43]129.20] 0 |3.07[ O 0 0 050 | 0 [12.21]23.22{12.07| 0 83.32 16.68
FF 8.41[0.03 [15.10[ 0O 0 0 10.09 [70.34] 0 |1.52]0.02[26.35] O 0 0 0 0 0 [081[968[ 0 0 028 73.25 26.75
TF 0 0 0 0 0 0 ]0.53|1.84(9888] 0 (001 O 0 0 0 0 [314] 0 0 0 |404] O 0 74.53 2547
GH 0 0 0 0 |044| 0 [154] 0 0 |16.05] 0O 0 0 |09 ] O 0 0 [484] 0 |0.62[271]| O 0 59.84 40.16
RR 0 0 0 0 005 0 [639] O 0 |31.73[86.71| 020 | O 0 0 0 0 [351] O 0 0 |3.04 [ 4.05 71.46 28.54
TL 0 0 0 0 0 0 |13.86] O 0 |3.740.06 |[44.05] O 0 0 0 0 0 0 0 [136] 0 0 4.79 95.21
CE 0 [1.39[035] 0 |010] 0 |0.01[067] O 0 0 0 [86.51]0.01[ 0 0 0 [1.25([1004[ 0 [047] O 0 88.81 11.19
PA 0 0 0 0 |521 0 [197] O 0 0 1015] O 0 193.33(043[ 0O 0 [200]226] 0 [005] O [3.89 84.48 15.52
SH 0.06[130[ 0 0 0 0 1002] O 0 0 0 0 0 0 [84.86[ O 0 0 0 0 0 0 0 94.96 5.04
CO 0 0 0 0 1036 O 0 0 0 0 0 0 0 0 0 100 0 [1.09] O 0 0 0 0 63.72 36.28
R-RT 0 0 0 0 |047| 0 [017] O |112| O 0 0 0 0 0 0 [57.62]492| 0 [819[860] 0O 0 36.67 63.33
R-CO 0 10221 0 0 |553[ 0 [351] 0 0 9771025020028 [143]0.12| 0 [39.24|39.57|21.47|2.03 | 288 [ 0 [4.53 7.54 92.46
R-VE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [6286] 0 [277] O 0 85.88 14.12
R-DT 0 0 0 0 0 0 0 [062] 0 |035]1.19| O [001[0.11] O 0 0 200 O [4581|231( O [546 59.11 40.89
R-Z1 0 0 0 0 [154]054]020] 0 0 [1.79] 0 0 0 [020] O 0 0 [993] 0 |1.25]28.22] O 0 68.94 31.06
R-CP 0 0 0 0 0 0 |005] O 0 |301] O 0 0 0 0 0 0 0 0 0 [0.53[79.85] O 63.10 36.90
R-GT 0 0 0 0 [002] 0 |0.08] O 0 |1LI2|{119] 0 0 1015] O 0 0 0 0 [16.74[ 0 |4.30]70.99 64.75 3525
Total 100.0]100.0{100.0]100.0] 100.0{100.0{ 100.0| 100.0{100.0{100.0] 100.0{100.0{100.0{ 100.0| 100.0{ 100.0{100.0{ 100.0 [ 100.0| 100.0]| 100.0{100.0{ 100.0
Prod. Acc. |[91.52]96.83[77.52]92.99]|77.11{99.46{71.37]70.34[98.88[16.05]|86.71|44.05[86.51{93.33]|84.86[100.0|57.62[39.57 | 62.86 | 45.81|28.22|79.85[70.99
Omission || 8.48 | 3.17 [22.48] 7.01 |22.89( 0.54 [28.63]29.66( 1.12 [83.95]13.29]55.95[13.49] 6.67 | 15.14 0.00 [42.38(60.43|37.14|54.19]71.78(20.15{29.01
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Fig. 9. Munich test area. A region of the classification map (WV-2+Texture (SAR and Optical)+DSM): (a) visible range multispectral image (bands 5,3,2),
(b) fusion and classification by the ML; (¢) fusion and classification by the NN; (d) fusion and classification by the FG.

information extracted from the multispectral data, as well as
elevation data should be employed.

Overall, the ML provides a high confusion of buildings with
construction sites in the whole scene on all features (Fig. 9(b)).
Such low accuracies of the ML classification method may
be achieved, since the ML classifier can not efficiently deal
with different distributions of data (spectral and textural)
and features, or the multisensory data is not classified in
the way of consensus classification [7]. The ML fusion and
classification of the WV-2+4Texture (SAR and Optical)+DSM
data illustrated zero accuracy of the selected material classes
(classes 16-23).

Having a high classification accuracy on single sensor data
(WV-2) the ML illustrates difficulties to employ multisensory
data (see Table III), therefore with addition of the other fea-
tures the fusion and classification accuracy decreased from
OVA =72.51% and Kappa = 0.7010 down to OVA = 58.53%
and Kappa = 0.5502, respectively. Here, fusion and classifica-
tion using the ML (employing stacked data) may not satisfy the
assumptions on different statistical properties of multisensory
data.

Fusion of multisensory data using the FG method (OVA =
76.75%, Kappa = 0.7438) allowed to obtain an increase of
the accuracy comparing to the fusion and classification results
obtained by the neural network (OVA = 76.33%. Kappa =
0.7411).

FG based fusion allows better labeling of roads, and com-
paring to the NN the FG allows also better labeling of tram
lines and railroads. Also, the FG fusion illustrates less accu-
rate detection of the class Green house comparing to the NN.
Low accuracy for classification of single source data by the FG
method (WV-2, 8 features) as well as fusion of WV-2+DSM
data (9 features) can be caused since the size of the alphabet is
low and might not be sufficient (50 for multispectral). There-
fore a loss of information during clustering influences the ac-
curacy comparing to the methods dealing with original 11-bit
single source data. It should be noted that the specially selected
classes (roofing materials of buildings) are difficult to identify
using the employed data, while hyperspectral data allows better
classification of materials [39]. Separability of these classes is
better obtained using the fusion method based on neural net-
work. Fig. 10 presents labels taken from FG classification map,
Fig. 11 illustrates the full size classified image for Munich test
area.

Given the contingency table (see example Table IX) Mc-
Nemar’s test [40] allows to compare the performances of
two classification methods. McNemar’s test has a chi-square
distribution with 1 degree of freedom and the x2 is computed
as follows:

2 _ (|7L01 — 7L1()| — 1)2 ) (12)

no1 + n1o
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Q) (k) o

Fig. 10. Munich test area. Examples of class labels produced by WV-2-+Texture+DSM data fusion and classification using factor graphs: (a), (b) Football field;
(¢) Tram line; (d), (¢) Asphalt road and Parking/car classes; (f) Zink roof; (g) Red roofing tiles; (h) Rail road; (i) Cemetery; (j) Construction site; (k) Construction

site vs. Bare soil classes; (1) Dark roofing tiles.

TABLE VIII
MUNICH TEST AREA. 2 X 2 CONTINGENCY TABLE FOR THE ML AND FG
FUSION (WV-2+TEXTURE(SAR AND OPTICAL)+DSM). x? = 4139.0665.
ngg IS THE NUMBER OF SAMPLES MISCLASSIFIED BY BOTH METHODS, 1293 IS
THE NUMBER OF SAMPLES MISCLASSIFIED BY METHOD I BUT NOT II, 714 IS
THE NUMBER OF SAMPLES MISCLASSIFIED BY METHOD II BUT NOT I, 744 IS
THE NUMBER OF CORRECTLY CLASSIFIED SAMPLES BY BOTH METHODS

noo = 28702 | ng1 = 57333
nio = 37518 ni1 = 161218
TABLE IX

MUNICH TEST AREA. 2 X 2 CONTINGENCY TABLE FOR THE NN AND FG
FUSION (WV-24+TEXTURE(SAR AND OPTICAL)+DSM). x2 = 16.4581

noo = 24224
nio = 41996

no1 = 43181
ni11 = 175370

A low p-value calculated from the x? suggests that the null
hypothesis should be rejected meaning that the two classifiers
achieve different results. For the ML and FG (Table VIII),
and the NN and FG (Table IX) fusion on the WV-2+4Texture

TABLE X
FUSION AND CLASSIFICATION USING THE FG ON THE INPUT DATA
REPRESENTED ON THE ALPHABET WITH VARYING SIZE (MUNICH AREA,
WV-2+TEXTURE (SAR AND OPTICAL)+DSM FEATURES, 23 CLASSES)

Alphabet size | OVA, % | Kappa
20 74.12 0.7140
50 75.25 0.7266
100 72.89 0.7010

(SAR and Optical)+DSM features the x? values are 4139.06
and 16.45, respectively. The p-values for the ML and FG,
and the NN and FG are less than 0.05, meaning that the FG
classification have different performances (better accuracy) on
the same data.

The FG fusion and classification approach allows to achieve
an acceptable accuracy even on a small size of the representation
domain (in the paper experiment the domain sizes are 10 for
Gabor features, 10 for DSM and 50 for multispectral data). Even
a simple structure of the FG allows to increase the fusion



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

MAKARAU et al.: ALPHABET-BASED MULTISENSORY DATA FUSION AND CLASSIFICATION USING FACTOR GRAPHS 13

Wwater

MForest/Trees

M Grass/Low vegetation
Bare soil
Construction site

M Swimming poal

M Asphalt road

W Faotball field
Tennis field

M Green house
Rail road

BTram line

M Cemetery

M Parking/car
Shadaw
Concrete

M Red roofing tiles

MRoofing concrete

WVvegetation roaf

M Dark roofing tiles

M Zinc roof
Roofing copper

M Grey roofing tiles

Fig. 11. Munich test area. Full size image employed for the FG fusion and classification. (a) visible range multispectral image (bands 5,3,2), (b) FG fusion and

classification (WV-2+Texture (SAR and Optical)+DSM).

accuracy. The independent model of the factor graph is easy to
configure and apply for real data.

4) Alphabet Size Influence on the Fusion Accuracy: A
trade-off between the size of the alphabet (the number of
clusters) and the accuracy of the FG fusion is of interest. An
experiment is run to assess the influence of the alphabet size
on the FG fusion accuracy. The FG structure, the training

and test samples, and the data (WV-2+Texture (SAR and
Optical)+DSM features) are as in the Munich test area exper-
iment. The multisensory data (all features) were represented
using different size of the alphabet: 20, 50, and 100 (Table X).
Here, the increase of the alphabet size does not allow to rise
the accuracy of the FG fusion and classification and it is possible
to conclude that there is no trend on the accuracy improvement
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THE RANK OF THE FIRST 10 FEATURES SELECTED BY THE MRMR METHOD FROM THE FEATURE SET EMPLOYED FOR MUNICH AREA FUSION AND CLASSIFICATION

TABLE XI

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

USING FACTOR GRAPHS (10 CLUSTERS FOR GABOR FEATURES, 10 FOR THE DSM, AND 50 FOR THE WV-2 MULTISPECTRAL DATA REPRESENTATION)

Rank | Feature number | Feature type Parameters

1 41 WV-2 spectral Band 5 (Red, 630-690 nm)

2 45 DSM

3 30 Gabor feature (Optical) | 0 = 4,w = 2/37,0 =5/67
4 34 Gabor feature (Optical) | 0 =4, w=7,0 = 7/2

5 44 WV-2 spectral Band 8 (NIR2, 860-1040 nm)
6 23 Gabor feature (Optical) | 0 =4, w=2/3m,0 =0

7 27 Gabor feature (Optical) | 0 =4, w =2/371,0 = /3
8 26 Gabor feature (Optical) | 0 = 4,w =2/371,0 = /6
9 31 Gabor feature (Optical) | 0 =4, w=7,0 =0

10 37 WV-2 spectral Band 1 (Coastal Blue, 400-450 nm)

TABLE XII
PARAMETERS OF THE WORLDVIEW-2 AND TERRASAR-X DATA FOR LONDON TEST SCENE

Parameter WorldView-2 [33] TerraSAR-X
Product Ortorectified Standard Imagery | EEC
Sensor mode Multispectral, PAN Spotlight HS
Orbit Descending Ascending
Acquisition date and time (UTC) | 22 Oct 2011, 11:34:14 12 Jan 2009, 17:52:29
Look angle 6.3°, Left 48.23°, Right
Ground pixel size, m 0.5 x 0.5 0.5 x 0.5
Polarization - Single, VV
Bits per pixel 11 16

TABLE XIII

LONDON TEST AREA. CLASS OF INTEREST, ACRONYM, NUMBER OF TRAINING AND TEST SAMPLES (TRAIN AND TEST AREAS WERE SELECTED
USING VISUAL INTERPRETATION OF WV-2 VISIBLE RANGE DATA TOGETHER WITH BING MAPS). PER CLASS FUSION AND CLASSIFICATION
ACCURACIES OF THE ML, NN, AND FG METHODS ON WV-2, WV-24+DSM, AND WV-24TEXTURE4+DSM

WV-2 WV-2+DSM WV-2+Texture+DSM
Class Acronym Training samples Test samples ML NN FG ML NN FG ML NN FG
1 Water WA 1678 50401 100 100 100 100 99.92 | 99.97 99.77 | 99.97 | 98.27
2 Forest/Trees FO 1936 12709 97.26 | 94.40 | 89.97 96.77 | 9293 | 93.0 98.31 97.76 | 93.01
3 Grass/Low vegetation | GR 229 7396 23.97 13.01 61.74 11.15 | 592 62.51 3.68 10.64 | 67.54
4 Bare soil BS 630 2556 19.80 | 29.81 82.51 3130 | 5798 | 87.25 29.19 | 99.06 | 82.63
5 Football field FF 4316 1640 94.82 | 89.33 | 28.29 96.40 | 87.87 | 60.49 89.57 | 9598 | 69.70
6 Rail road RR 699 15170 88.30 | 64.30 | 52.24 90.82 | 54.34 | 77.36 76.88 | 34.70 | 70.20
7 Parking/car PA 596 4288 2383 | 7.14 12.41 8.0 1623 | 7.32 26.94 | 2838 | 4.69
8 Asphalt road RO 1174 88378 81.49 | 49.57 | 68.81 78.04 | 80.05 | 71.78 69.58 | 65.08 | 75.93
9 Shadow SH 1461 41789 7833 | 81.97 | 76.56 70.40 | 54.55 | 84.85 83.01 54.30 | 91.75
10 | High-rise building B-HR 1281 68674 26.37 | 26.68 | 38.76 90.29 | 82.93 | 5541 88.18 | 83.96 | 83.53
11 Low-rise building B-LR 8666 117373 20.73 | 5036 | 28.20 3279 | 58.99 10.72 26.21 56.17 | 33.27
12 | Medium-rise building | B-MR 1549 39903 19.43 10.59 16.06 42.24 | 41.57 | 36.76 33.57 | 34.13 | 39.29
13 | Tennis field TF 112 451 0 0 60.53 0 0 67.63 0 0 48.12
14 | Dock DO 2599 31491 98.03 | 95.99 100 99.47 | 99.54 100 98.70 | 99.34 | 99.99
TABLE XIV TABLE XV

LONDON TEST AREA. CLASSIFICATION ACCURACY USING DIFFERENT
METHODS TOGETHER WITH THE PROPOSED APPROACH (WV-2+4TEXTURE
(SAR AND OPTICAL)+DSM DATA). ML-MAXIMUM LIKELIHOOD (NOT
FOLLOWING CONSENSUS THEORY), NN-NEURAL NETWORK, FG-FACTOR
GRAPH. OVA—OVERALL ACCURACY, KAPPA—COHEN’S KAPPA

with enlargement of the alphabet size. It should be noted that
the increase of the alphabet size grows the time for the factor

LONDON TEST AREA. CLASSIFICATION ACCURACY USING THE NN ON
WV-2+TEXTURE (SAR AND OPTICAL)+DSM DATASET (ALL TOGETHER
45 FEATURES). THE NN IS A 2 LAYER NETWORK (1 HIDDEN LAYER) OR
A 3 LAYER NETWORK (2 HIDDEN LAYERS) WITH A DIFFERENT NUMBER
OF NEURONS IN THE HIDDEN LAYER/LAYERS (5, 10, 20, 60, AND 80) ARE
EMPLOYED TO FIND THE MOST SUITABLE ARCHITECTURE OF THE NETWORK

Method | Employed features OVA, % | Kappa AND REACH THE HIGHEST FUSION AND CLASSIFICATION ACCURACY

ML WV-2 (8) 55.33 0.4907

ML WV-2+DSM (9) 67.83 0.6322 1 hidden layer | 2 hidden layers

ML WV-2+Texture+DSM (45) [ 6430 | 0.5926 Number of neurons | OVA, % | Kappa | OVA, % | Kappa

NN WV2 (3) 3503 04733 5 60.88 0.5438 62.48 0.5635
10 64.65 0.5878 | 65.41 0.5964

NN WV-2+DSM (9) 70.95 0.6632 _

NN | WV2+TexturetDSM (35) [66.96  [0.6157 20 6463 10.5878166.96 |0.6157
60 61.06 0.5433 | 64.06 0.5810

FG WV-2 (8) 55.60 | 0.4860 30 6427 | 05850 |61.79 | 0.5545

FG WV-2+DSM (9) 57.67 0.5231

FG WV-2+Texture+DSM (45) | 68.37 0.6387

graph configuration and further fusion. A moderately low and
sufficient size of the alphabet allows to reach a competitive ac-
curacy of the FG fusion and classification and to have a low
calculation time.
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TABLE XVI
LONDON TEST AREA. CONFUSION MATRIX, THE ML CLASSIFICATION USING WV-24+TEXTURE (SAR AND OPTICAL)+DSM DATA.
OVERALL ACCURACY = 64.30, KAPPA = 0.5926

Ground truth (Percent)

[ Il
I

[ Class WA | FTO | GR | BS | FF_ | RR | PA | RO | SH | B-HR | BILR | B.MR | TF_| DO ]| User Acc. | Comission |
WA 9977 _0 0 0 0 0 0 _[016] 0 0 [ 007 [ 038 ] 2018 [ 0 99.08 092
FO 0 | 9831 [4152] 0 0 0 | 126 [ 018 | 052 | 005 | 201 | 011 | 022 | 0 67.78 222
GR 0 0 [ 368 ] O 0 0 0 0 0 0 0 0 0 0 100 0
BS 0 | 001 | 154 [2909| 073 [ 002 | 0 | 094 [ 0 [ 002 | 1.03 | 002 | 1220 | © 25.00 75.00
FF 0 | 064 [5287 | 0 [ 8957 028 | 0 | 001 | 155 | 0 | 3.07 | 0.07 0 0 15.02 84.98
RR 0 0 0 0 0 | 7688 | 1.00 | 1981 | 001 | 001 | 411 | 0.75 | 931 0 3391 66.09
PA 0 | 002 [ 0 [ 223 | 0 | 004 [2694 022 | 001 | 004 | 453 | 078 0 0 1631 83.69
RO 0 0 0 0 0 | 810 | 1.17 [ 6958 | 2.56 | 2.51 | 13.64 | 2502 | 5388 | 0 66.98 33.02
SH 0 0 0 0 0 0 0 | 022 [ 8301 | 244 | 085 | 027 0 121 91.19 331
B-HR 023 | 098 | 037 | 33.06 | 573 | 1.78 | 21.27 | 2.38 | 9.64 [ 8818 | 20.15 | 1740 | 089 | 0.09 60.73 39.27
B-LR 0 | 004 | 003 | 3549 | 3.96 | 11.63 | 4834 | 6.26 | 035 | 2.3 | 2621 | 2163 | 333 | 0 59.89 2011
B-MR 0 0 0 | 004 [ 0 | 127 | 002 | 024 | 0.06 | 461 | 2433 [ 3357 | 0 0 2941 70.59
TF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DO 0 0 0 0 0 0 0 0 | 230 0 0 0 0 [9870 || 97.00 3.00
Total 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 1000 | 100.0 | 100.0 | 100.0 | 100.0
Prod. Acc. |[ 99.77 | 9831 | 3.68 | 29.19 | 89.57 | 76.88 | 2694 | 69.58 | 83.01 | 88.18 | 2621 | 33.57 | 0 | 98.70
Omission || 023 | 1.69 | 9632 | 70.81 | 10.43 | 23.12 | 73.06 | 3042 | 1699 | 11.82 | 73.79 | 6643 | 100.00 | 130

5) Feature Rank: Feature selection is run to analyze and find
the features, which are more relevant for the FG fusion and clas-
sification. Peng et al. [41] developed a new and popular method
for feature selection-the mRMR (minimum Redundancy Max-
imum Relevance Feature Selection). The features selected by
the method have a good performance on various types of clas-
sifiers with different methodology such as support vector ma-
chines, Naive Bayes, Linear discriminant analysis. Table XI
presents the rank of the first ten features selected for Munich
scene. The first five features were taken for the FG fusion and
classification experiment.

The FG fusion and classification on the selected five fea-
tures resulted in the overall accuracy equal to 74.44% and
Kappa = 0.7184. The experimental analysis illustrated that
the feature selection does not result in the accuracy increase.
Generally, a proper configuration (learning) of the factor graph
makes it sensitive to the more informative features (for a
particular class), while the less informative input features are
chosen by the FG less significant for the fusion and classifica-
tion. According to the feature rank, WorldView-2 multispectral
(places 1,5,10), Textural (Optical) (places 3,4,6-9), and the
DSM (2nd place) data bring the most significant contribution
for the classification accuracy. The feature rank illustrates that
the SAR textural features are less important for the classes
identification in comparison to Gabor features calculated on
optical data (places 3,4,6-9). The employment of the Gabor
features improves identification of the classes characterized by
spatial context properties. The DSM is placed on the 2nd place
noticing an importance of elevation data. The importance of the
DSM (classification of the objects with the help of the height
information) also corresponds to the rankings obtained in the
classification experiment on WorldView-2 and DSM data on
urban area carried out by Longbotham ez al. [42].

B. London Test Area

1) Multisensory Data and Features: A combination of
WorldView-2 multispectral, TerraSAR-X (SpotLight Level-1B
product), and a digital surface model is used. Acquisition
geometry of the employed WorldView-2 data is 6.3° off-nadir

view angle. Acquisition geometry of the TerraSAR-X data
is 48.23° off-nadir look angle. A detailed description of the
employed data sets is given in Table XII. The registration of
optical and radar data is made in ENVI using manual selection
of control points.

WorldView-2 multispectral data were pan-sharpened by
the General Fusion Framework method [31]. Digital Surface
Model (DSM) is generated using the Semiglobal Matching
algorithm [34]. A surface model generated from other sensor
type (LIDAR, for example) can be also employed. The optical
data were orthorectified. Gabor features were calculated on the
TSX data and Red color channel (630—-690 nm) from World-
View-2 data. A bank of Gabor wavelets consists of 18 filters (6
orientations (0,7 /6,7 /3,7 /2,(2)/(3)7, (5)/(6)x), 3 different
periods of filter’s sine component (7/3,(2)/(3)w,7), and 1
sigma value (¢ = 4)). A recursive implementation of Gabor
filtering is run [36].

A subscene (3101 x 3041 pixels) is used for the fusion and
classification experiments. k-means clustering is employed for
feature representation on the alphabet. The number of clusters is
selected empirically and set to 10 for Gabor features (calculated
on SAR and optical data), 10 for the DSM, and 50 for the WV-2
multispectral data.

2) Fusion Strategies and Classification: The following com-
binations of multisensory and single-sensor data are created:

1) WV-2 (8 features (spectral bands)),

2) WV-2+DSM (9 features),

3) WV-24Texture (SAR and Optical)+-DSM (45 features).

Altogether, 14 classes were defined, the number of training
and test samples is given in Table XIII. Selection of training
and test regions is made manually on visible color composite of
WorldView-2 multispectral data and Bing maps. The training
and test samples are spatially uncorrelated.

3) Results and Discussion: All the methods were run on
the same feature set and the same training/test regions were
employed (Table XIV presents overall accuracy and Cohen’s
Kappa for the compared methods: the ML, NN, and FG). The
Neural Network is a 3 layer (2 hidden layers) feed-forward net
trained with Kalman filter, implemented in IDL [38]. The input
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Fig. 12. London test area. Per-class accuracy for the WV-2 data classification
using the ML, NN, and FG.

features are normalized to one. The number of neurons in the
hidden layer is selected experimentally. Running the neural net-
work on the same feature set (WV-2+4Texture (SAR and Op-
tical)+DSM) and employing different number of neurons (5,
10, 20, 60, and 80) it is found that the network with two hidden
layers and 20 neurons in a hidden layer allowed to obtain the
best result on fusion and classification (Table XV). The same
number of neurons is employed for the WV-2 feature set clas-
sification. For the ML classification ENVI software package is
used. An independent model of the factor graph is selected for
fusion and classification. Probability maps are calculated for
each class and maximal MAP selection allows to assign the class
labels.

Table XIII and Figs. 12, 13, and 14 illustrate the fusion and
classification accuracy using single and multisensory data. In-
troduction of the textural features and the DSM allowed to in-
crease the overall accuracy and Kappa values for the ML, NN,
and FG fusion methods. Confusion matrices for the fusion and
classification of the WV-2, Texture, and DSM data (Tables X VI,
XVII, and XVIII) allow to compare per class confusion.

Fusion of multisensory data using the FG method
(OVA = 68.37%, Kappa = 0.6387, example in Fig. 15(d))
allowed to obtain a better accuracy comparing to the fusion
and classification results obtained by the neural network
(OVA = 66.96%, Kappa = 0.6157), and by maximum
likelihood classifier (OVA = 64.30%, Kappa = 0.5926). The
introduction of the DSM and textural features increased the
accuracy of the FG for classes Forest, Grass, Football field, Rail
road, Asphalt road, Shadow, High-rise building, Medium-rise
building, Low-rise building (Table XIII). In comparison to the
NN (Table XIII), the employment of the WV-2+4Texture (SAR
and Optical)+DSM allowed the FG to reach better labeling
of the classes: Grass/low vegetation, Rail road, Asphalt road,
Shadow, Medium-rise building, Tennis field, Dock.

Overall, the ML provides a comparable accuracy of fusion
and classification on all combinations of data (Table XIII).
Introduction of the textural features and the DSM increased
the accuracy for classes: Forest/Trees, Bare soil, Parking/car,
Shadow, High-rise building, Low-rise building, Medium-rise

1 2 3 4 5 6 7 8

Class number
Fig. 13. London test area. Per-class accuracy for the WV-2+DSM data fusion
and classification using the ML, NN, and FG.
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Fig. 14. London test area. Per-class accuracy for the WV-2+Texture(SAR and
Optical)+DSM data fusion and classification using the ML, NN, and FG.

building comparing to the employment of single-sensor multi-
spectral data. The reduce of the accuracy for the other classes
may be caused by the statistical assumptions on the input data
in the ML method. The ML fusion and classification of the
WV-2 and WV-2+4Texture (SAR and Optical)+DSM data
illustrated zero accuracy for class Tennis field.

The NN provides a less accurate overall accuracy on the
multisensory data in comparison to the FG. The NN allowed
better labeling of Water, Forest, Bare soil, Football field,
Parking, High-rise building, Low-rise building. Labeling of
Tennis field is difficult to perform by the NN; Parking class is
difficult to label by the FG.

Employment of single-sensor data (WV-2 multispectral data)
for classification allowed to reach a high and comparable ac-
curacy by all the methods (Table XIV; the ML resulted with a
slightly higher Kappa value than the others). Usually maximum
likelihood allows to reach a high accuracy for single-sensor op-
tical multispectral data.

For the McNemar’s test on the ML and FG (Table XIX), and
the NN and FG (Table XX) fusion results on the WV-2+Texture
(SAR and Optical)+DSM features, the x2 values are 3087.335
and 328.6979, respectively. The p-values for the ML and
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TABLE XVII
LONDON TEST AREA. CONFUSION MATRIX, THE NN CLASSIFICATION USING WV-24TEXTURE (SAR AND OPTICAL)+DSM DATA.
OVERALL ACCURACY = 66.96, KAPPA = 0.6157

Ground truth (Percent)

I I
I

| Class WA | FO | GR | BS | FF | RR | PA [ RO | SH | B-HR [ B-LR | B-MR [ TF | DO ” User Acc. | Comission |
WA S0%97 0 0 0.04 | 0.18 | 0.01 1.84 | 0.86 0 0.13 0.15 0.07 0 0 97.8 22
FO 0 97.76 | 20.48 0 0 0 1.21 0.09 | 2.89 0 1.09 0.01 0 0 75.01 24.99
GR 0 1.26 | 10.64 0 0 0 0.54 | 0.03 0 0.01 0.39 0 0 0 53.87 46.13
BS 0 0.01 1.60 | 99.06 | 3.60 0 0.96 | 0.06 0 0.92 9.49 1.04 0 0 16.9 83.1
FF 0 0.72 | 67.28 0 95.98 0 222 | 0.14 | 0.24 0.08 3.32 0.15 0 0 14.34 85.66
RR 0 0.02 0 0 0 3470 | 2.52 | 8.12 0 0.02 1.32 0.01 2.00 0 37.26 02.74
PA 0 0 0 0 0 0.03 | 28.38 | 0.61 0.18 0.53 1.62 1.92 0 0 25.01 74.99
RO 0 0.02 0 0.04 0 0.63 | 6.60 | 65.08 0 1.39 3.34 043 | 56.54 0 91 9
SH 0 0.02 0 0 0 0 0.79 | 0.34 | 54.30 0 0.98 0.09 0 0.66 92.91 7.09
B-HR 0 0 0 0.04 0 0.01 0.02 0 38.31 | 83.96 | 1.72 0.82 0 0 75.85 24.15
B-LR 0.01 0.12 0 0.82 | 0.24 | 64.63 | 5448 | 24.65 | 2.00 1.38 [ 56.17 | 61.33 | 41.46 0 52.18 47.82
B-MR 0 0.07 0 0 0 0 0 0 0.04 | 11.53 | 20.27 | 34.13 0 0 30.02 69.98
TF 0 0.01 0 0 0 0 0.12 | 0.01 0 0.01 0.04 0.02 0 0 0 100
DO 0.02 0 0 0 0 0 0.33 | 0.01 2.03 0.01 0.10 0 0 99.34 96.86 3.14
Total 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 [ 100.0 | 100.0 | 100.0 [ 100.0 [ 100.0
Prod. Acc. 99.97 | 97.76 | 10.64 | 99.06 | 9598 | 34.7 | 28.38 [ 65.08 [ 54.3 | 83.96 | 56.17 [ 34.13 0 99.34
Omission 0.03 | 224 | 8936 | 0.94 | 402 | 653 | 71.62 [ 3492 [ 45.7 | 16.04 | 43.83 | 65.87 100 0.66

TABLE XVIII
LONDON TEST AREA. CONFUSION MATRIX, THE FG CLASSIFICATION USING WV-2-+TEXTURE (SAR AND OPTICAL)+DSM DATA.
OVERALL ACCURACY = 68.37, KAPPA = 0.6387

Ground truth (Percent)

I I
I

| Class WA [ FO [ GR [ BS [ FF [ RR [ PA [ RO [ SH [B-HR [B-LR [B-MR [ TF [ DO _[[ User Acc. [ Comission |
WA 9827] © 0 0 0 0 0 JO014T 0 T 005 0 0 0 0 99.68 0.32
FO 0 [9301][2838[ © 0 0 | 054 | 006 [ 469 [ 024 [ 316 | 027 0 0 59.29 4071
GR 0 [224 [6754] © 0 0 0 [o12] o 0 04 0 953 [ 0 8322 16.78
BS 0 0 0 [8263] 0 0 [812] 0 0 | 053 2733 ] 0.99 0 0 5.8 94.02
FF 0 | 145 | 012 [ 532 [6970 [ 0 [ 396 | 036 | 0 | 027 | 201 | 031 0 0 24.73 7527
RR 0 Jo4a2] o 0 0 [7020] 009 [ 020 [ 044 | 0 [ 467 | 220 0 0 61.10 38.90
PA 0 [024 ] 0 [ 211 [1177] 0 [469 [ 078 | © 0 [ 054 ] 004 0 0 11.05 88.95
RO 011 | 0 [315] 0 146 | 1061 | 9.07 [ 7593 | 0O 0 [ 433 [ 004 [4124| © 89.84 10.16
SH 0 |00 © 0 0 0 | 026 | 036 [91.75 | 068 | 1.38 | 045 0 | 001 93.62 6.38
B-HR 0 | 015 0 [016 [ 006 [ 0 [ 009 | 002 | 0.11 | 8353 | 512 | 2205 | 0 0 79.37 20.63
B-LR 161 | 237 | 081 | 544 | 1695 [ 19.18 [ 65.62 [ 19.51 | 1.08 | 9.04 [ 3327 [ 3437 [ 1.1l | 0 46.50 53.50
B-MR 001 [ 002 [ 0 [434[006 | 0 [756 [023 [ 0 [ 566 |17.62[3929 [ 0 0 3833 61.67
TF 0 0 0 0 0 0 0 [23 ] o 0 [ 007 0 [4812] 0 9.33 90.67
DO 0 0 0 0 0 0 0 0 192 [ 0 0 0 0 [99.99 97.51 249
Total 100.0 [ 100.0 [ 100.0 | 100.0 | 100.0 | 100.0 [ 100.0 [ 100.0 [ 100.0 [ 100.0 | 100.0 [ 100.0 [ 100.0 [ 100.0

Prod. Acc. || 9827 [ 93.01 [ 67.54 | 82.63 | 69.70 | 70.20 | 4.69 | 7593 [ 91.75 | 83.53 | 33.27 | 39.29 | 48.12 [ 99.99

Omission || 1.73 | 6.99 | 32.46 | 17.37 | 30.30 | 29.80 | 9531 | 24.07 | 825 | 1647 | 66.73 | 60.71 | 51.88 | 0.01

TABLE XIX TABLE XXI

LONDON TEST AREA. 2 x 2 CONTINGENCY TABLE FOR THE ML AND FG
FUSION (WV-2+TEXTURE(SAR AND OPTICAL)+DSM). y? = 3087.335

noo = 99949 no1 = 72201
nig = H2573 ni1 = 257496
TABLE XX

LONDON TEST AREA. 2 x 2 CONTINGENCY TABLE FOR THE NN AND FG
FUSION (WV-2+4TEXTURE(SAR AND OPTICAL)+DSM). xy? = 328.6979

noo = 85180 | no1 = 74163
ni1g = 67342 | n11 = 255534

FG,and the NN and FG McNemar’s tests are less than 0.05,
meaning that the FG classification have different performances
(better accuracy) on the same data.

Fig. 16 illustrates the full size classified image for London
test area. Fig. 17 illustrates artifacts which can appear during
fusion in the areas with high-rise buildings. This is an illustrative
example where the NN classifier is influenced by the DSM data
and produces a wrong decision (a confusion of shadowing and
High-rise building classes appears).

FUSION AND CLASSIFICATION USING THE FG ON THE INPUT DATA
REPRESENTED ON THE ALPHABET WITH VARYING SIZE (LONDON AREA,
WV-24TEXTURE (SAR AND OPTICAL)+DSM FEATURES, 14 CLASSES)

Alphabet size | OVA, % | Kappa
20 68.34 0.6361
50 64.66 0.5964
100 61.62 0.5581

4) Alphabet Size Influence on the Fusion Accuracy: A
trade-off between the size of the alphabet and the accuracy
of the FG fusion is also performed for London test area.
The FG structure, the training and test samples, and the data
(WV-2+Texture (SAR and Optical)+DSM features) are as in
the London test area experiment. The multisensory data (all
features) were represented using different size of the alphabet:
20, 50, and 100 (Table XXI).

In this experiment we may conclude that there is no trend on
the accuracy increase of the fusion and classification accuracy
with the increase of the alphabet size (the same conclusions are
made for Munich test area).

5) Feature Rank: Feature selection is run to find the most
relevant and important features for the FG fusion and classifi-
cation. The same feature selection method (mRMR, Peng et al.
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Fig. 15. London test area. A region of the classification (WV-24Texture (SAR and Optical)4+DSM data) map: (a) visible range multispectral image (bands 5,3,2),
(b) fusion and classification by the ML; (c) fusion and classification by the NN; (d) fusion and classification by the FG.

TABLE XXII
THE RANK OF THE FIRST 10 FEATURES SELECTED BY THE MRMR METHOD FROM THE FEATURE SET EMPLOYED FOR LONDON AREA FUSION AND CLASSIFICATION
USING FACTOR GRAPHS (10 CLUSTERS FOR GABOR FEATURES, 10 FOR THE DSM, AND 50 FOR THE WV-2 MULTISPECTRAL DATA REPRESENTATION)

Rank | Feature number | Feature type Parameters

1 45 DSM

2 25 Gabor feature (Optical) | 0 =4, w =2/3m,0 =0

3 37 ‘WV-2 spectral Band 1 (Coastal Blue, 400-450 nm)
4 10 Gabor feature (SAR) oc=4,w=2/3r,0 =7/2
5 22 Gabor feature (Optical) | 0 = 4,w = 7/3,0 = 7/2

6 2 Gabor feature (SAR) oc=4,w=m/3,0="7/6

7 44 WV-2 spectral Band 8 (NIR2, 860-1040 nm)
8 31 Gabor feature (Optical) | 0 =4, w=7,0=0

9 18 Gabor feature (Optical) | 0 =4, w=7/3,0=0

10 7 Gabor feature (SAR) oc=4,w=2/3m,0=0

[41]) is employed as in the experiment on Munich test area data.
Table XXII presents the rank of the first ten features selected
from the feature set calculated for London area experiment. The
first five features were taken for the FG fusion and classification
experiment.

The FG fusion and classification on the selected five features
resulted in the overall accuracy equal to 64.74% and Kappa =
0.5877. As in the experiment for Munich area, the analysis il-
lustrated that the feature selection does not result in the accu-
racy increase. The DSM is placed on the Ist place noticing a
high importance of elevation data for the identification of the
classes (corresponds to the rankings obtained in the classifica-

tion experiment on urban area carried out by Longbotham et
al. [42]). Availability if the DSM makes possible identification
and reduces the confusion of the following classes character-
ized by elevation like building type (High-rise, Low-rise, and
Medium-rise building), Asphalt road, and Bare soil. The identi-
fication of buildings, for example, can be difficult without ele-
vation data. In this experiment, three Gabor features calculated
on SAR data were selected (places 4,6,10) among the selected
WorldView-2 spectral bands (places 3,7) and Gabor features
calculated on optical data (places 2,5,8,9). The feature rank for
London area contains several features also selected in Munich
area experiment: the DSM, WorldView-2 Band 1 (Coastal Blue,
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Fig. 16. London test area. Full size image employed for the FG fusion and
classification. (a) visible range multispectral image (bands 5,3,2), (b) FG fusion
and classification (WV-2+Texture (SAR and Optical)+DSM).

400—450 nm), Band 8 (NIR2, 860—1040 nm), and Gabor fea-
tures on optical data (parameter sets are: 0 = 4,w = 2/37,0 =
0; 0 = 4, w = 7,6 = 0) as in Munich experiment. Selected fea-
tures can be dependent on landcover classes and can vary with
the change of the classes.

V. CONCLUSION

Multisensory remote sensing data fusion allows to perform
more precise decisions about the landcover present in the scene
and allows to identify a higher number of specific classes. In
most of the cases some specific landcover classes and objects as
well as a high number of classes in the scene are not possible to
identify using only single-sensor data.

Among several choices for multisensory data fusion, the se-
lection of factor graphs for the fusion allows to perform a classi-
fication into an extended set of classes. It also provides a possi-
bility for the fusion model development and opens possibilities
to augment the model to define more complex systems.

Representation of multisensory data and extracted features
using an alphabet (a predefined domain with finite states) allows

to deal with incommensurable features and data of different na-
ture, statistical properties, and distributions. Such representation
allows easier processing of data using factor graph. Separate
processing of input features (spectral bands, textural features,
or other multimodal features) and employment of the presented
data fusion model is not influenced by the limitations of data
dimensionality (i.e., there is no the curse of dimensionality).
Proper selection of a factor graph structure allows the fusion
model to be tractable for real use and application for remotely
sensed data of arbitrary size. Approximate inference on inde-
pendent models makes it possible to perform inference on input
evidence of moderately high size. Application of factor graph on
real multisensory data (WorldView-2, TerraSAR-X, and DSM)
allows to obtain better results than the results reached by appli-
cation of a multilayer perceptron.

The proposed fusion model is influenced and can be lim-
ited by the following properties. The quality of factor graph
configuration depends on the learning method. An appropri-
ately chosen learning method and it’s parameter set (iterations
number, learning step, convergence guarantee, and other) can
increase the generalization of the model and reduce the fusion
error. The initialization of the learning method according to the
knowledge of landcover classes, data type, or data acquisition
parameters should lead to a faster convergence and an increase
of the learning accuracy. Representation of input multisensory
data on the alphabet reduces the data range and a chance on in-
formation loss can exist. A low size of the alphabet can lead
to the fusion and classification error while a very high size can
make the model intractable. To reduce the possibility of infor-
mation loss the size of the alphabet should be chosen sufficient
enough to preserve the necessary information from the input
data. A relevant and sufficient method for the representation
should be selected (knowledge on the data should be taken into
account). The structure of a factor graph is one of the main as-
pects for an efficient solution. An inappropriate structure of the
factor graph can increase the model complexity leading to in-
tractability. The graph structure should be designed carefully
to model the task and keep the tractability of the model. In-
ference method directly influences the decision making error
in a factor graph. Recently developed approximate inference
methods allow to benefit decision accuracy and inference time.

The fusion and classification model is managed to be aug-
mented and developed in several directions. The first direction
is on extension of the graph structure to preserve spatially uni-
form land-cover labeling and to include prior information on
data to perform landcover extraction in unsupervised way. An-
other main direction is towards the employment of multisensory
data and semantic information for modelling of evolution pro-
cesses in a system. Higher levels of data interpretation are to
be modeled by the employment of latent variables, approximate
inference methods, and inference on non-full data. More thor-
ough validation of the method is going to be performed on new
available ground truth data.

APPENDIX

Detailed step-by-step message propagation for the indepen-
dent model is as follows:
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Fig. 17. London test area. An example of artifacts (shadowing) appearing in the area with high-rise buildings. Here, a wrong decision on a class is made by the
neural network (shadowed building is classified as high-rise building, but not shadow; here a high influence of the DSM in the fusion and classification process).
Also, the neural network classification demonstrate a confusion of shadow with class Dock. The same region is classified correctly by the FG fusion and classifi-
cation method. (a)RGB, (b) DSM, (c) NN fusion and classification, (d) FG fusion and classification.
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