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Abstract—This study evaluated Earth Observing 1 (EO-1)
Hyperion reflectance time series at established calibration sites
to assess the instrument stability and suitability for monitoring
vegetation functional parameters. Our analysis using three
pseudo-invariant calibration sites in North America indicated that
the reflectance time series are devoid of apparent spectral trends
and their stability consistently is within 2.5–5 percent throughout
most of the spectral range spanning the 12+ year data record.
Using three vegetated sites instrumented with eddy covariance
towers, the Hyperion reflectance time series were evaluated for
their ability to determine important variables of ecosystem func-
tion. A number of narrowband and derivative vegetation indices
(VI) closely described the seasonal profiles in vegetation function
and ecosystem carbon exchange (e.g., net and gross ecosystem
productivity) in three very different ecosystems, including a hard-
wood forest and tallgrass prairie in North America, and aMiombo
woodland in Africa. Our results demonstrate the potential for
scaling the carbon flux tower measurements to local and regional
landscape levels. The VIs with stronger relationships to the CO
parameters were derived using continuous reflectance spectra and
included wavelengths associated with chlorophyll content and/or
chlorophyll fluorescence. Since these indices cannot be calculated
from broadband multispectral instrument data, the opportunity
to exploit these spectrometer-based VIs in the future will depend
on the launch of satellites such as EnMAP and HyspIRI. This
study highlights the practical utility of space-borne spectrometers
for characterization of the spectral stability and uniformity of
the calibration sites in support of sensor cross-comparisons,
and demonstrates the potential of narrowband VIs to track and
spatially extend ecosystem functional status as well as carbon
processes measured at flux towers.
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I. INTRODUCTION

W ITH the changing climate, it has become critical to
understand land cover dynamics as ecosystems cycle

through seasonal changes and respond to variable environ-
mental conditions. The ability to monitor ecosystem carbon
accumulation is of great interest when evaluating the carbon
balance between various ecosystems. Long term satellite
observations and land cover records are required for such
environmental monitoring and change detection. However,
multi-date satellite monitoring of the terrestrial environment
requires adequate radiometric stability of the data to carry
out biophysical and geophysical parameter surveys that are of
sufficient sensitivity and accuracy, and are reproducible over
time.
The Hyperion1 spectrometer carried on the Earth Observing

One (EO-1) satellite has provided a rich high resolution data
record over more than a decade (2001–2012 ). Hyperion
spectra cover the 400 to 2500 nm range with 242 overlapping
spectral bands (196 of which are well calibrated) at approxi-
mately 10 nm spectral resolution and 30 m spatial resolution,
typically imaging a 7 km scenes. Use of these
hyperspectral images to characterize terrestrial surface states
and processes has rapidly increased since 2009, when the EO-1
Hyperion archive was made available at no cost by United
States Geological Survey (USGS) [1]. Hyperion data have
several advantages over multispectral satellite systems: they
provide information critical for atmospheric correction of top
of atmosphere (TOA) radiances to derive surface reflectance,
they enable the use of a broad array of spectral indices derived
throughout the continuous spectra, and they provide the ability
to simulate bands equivalent to broadband systems covering
similar spectral ranges [2].
Hyperion data have been successfully used in discriminating

among land cover types and species groups [3], deriving VIs
[2], [4], estimating biophysical products such as forest canopy
nitrogen [5], [6], primary production [6], forest canopy closure
[7], vegetation fractional cover [8], [9], and canopy biophysical
properties such as greenness, wetness and pigment content [10].
Earlier studies, describing the signal to noise ratio (SNR) of

Hyperion’s radiance measurements in comparison to AVIRIS,
the Landsat series and others [10]–[14], have found the data
comparable to 1990 Airborne Visible/Infrared Imaging Spec-
trometer (SNR 160:1 in the 0.4–1.0 m; and 40:1 in the

1Any use of trade, firm, or product names is for descriptive purposes only and
does not imply endorsement by the U.S. Government.
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1.0–2.5 m). Aggregating the 10-nm Hyperion bands into
simulated ETM+ multispectral bands has allowed radiometric
cross calibration between the Hyperion and Landsat ETM+,
or MODIS data, for comparison and conformation of the
obtained results [15]. However, most of these studies analyzed
individual images, or carefully selected scenes from the same
season. In 2008, the EO-1 mission expanded the collection of
time series for calibration and validation efforts, to assemble
datasets essential for vegetation assessments. Currently there
are collections of ten or more images at select sites with eddy
covariance towers for examining the dynamics of various land
covers at high spectral and spatial resolutions [1].
The goal of this study is to assess the potential of Hyperion re-

flectance time series to describe seasonal changes in ecosystem
functioning. Specific objectives include: 1) evaluation of the
temporal stability of Hyperion’s reflectance measurements over
three pseudo-invariant calibration sites (PICS) which have little
seasonal variation in land cover, and 2) quantification of the
relationships between VIs from Hyperion’s reflectance time
series and ecosystem carbon accumulation (e.g. Net and Gross
Ecosystem Production), measured over three validation flux
sites (VFS) which have strong and very different seasonal leaf
area index patterns.
The incoming surface radiance signal is subject to several fac-

tors that influence the stability and sensitivity of Hyperion (and
any orbital) spectral data. These include sensor shortcomings
such as relatively low SNR, and deficiencies in the informa-
tion and algorithms utilized in initial calibration and processing
streams (e.g., standards, measurements, models and accuracy
of calibrations performed along the data processing chain). To
study surface properties using imaging spectrometer data, ac-
curate removal of atmospheric absorption and scattering effects
(e.g., through implementation of atmospheric correction rou-
tines) is necessary to derive surface reflectance from top of at-
mosphere (TOA) radiances. These procedures account for the
differences in solar illumination during the year at various lo-
cations and correct for differences in atmospheric conditions at
the time of acquisition [16]. However, they may also introduce
variations into the reflectance data, due to differences between
the modeled and real atmospheres at the time the data were col-
lected [2], [16]. As a result, the cumulative error may lead to
a variation in the reflectance signal of several percent in each
spectral band, which could severely limit the sensitivity of the
data, and/or introduce an apparent spectral trend.
Vegetation properties are often assessed by computing VIs

using a combination of two or more spectral bands. VIs are
designed to relate more clearly to biophysical variables (e.g.,
chlorophyll, water content) than the original bands alone [17].
Also they tend to minimize variations not related to the variables
of interest, such as illumination levels [4], [17]. VIs have been
applied to the characterization of vegetation cover using broad-
band systems, but have even more robust application using hy-
perspectral data and specific narrowbands for the estimation of
vegetation function (e.g., stress, water and light use efficiency,
and chlorophyll fluorescence parameters) [5], [17], [19] and a
range of leaf-level traits (e.g., pigments, cellulose and water
content) [5], [18]–[21]. Roberts et al. [4] summarized VIs into
three general categories of vegetation properties: structural, bio-

chemical, and plant function/stress. Recent reviews of hyper-
spectral VIs [4], [17] note that their use with reflectance time
series remains to be thoroughly examined.

II. METHODS

A. Study Sites

To assess the stability of the Hyperion reflectance spectra we
used three desert calibration sites and three vegetated validation
sites. The vegetated sites were selected to provide a variety of
vegetation types.
1) Pseudo-Invariant Calibration Sites (PICS): The three

desert Pseudo-Invariant Calibration Sites (PICS) are located
in the western USA and include: Frenchman Flat (FMF),
Ivanpah Playa (IP) and Railroad Valley Playa (RRVP). They
are characterized by high reflectances, high spatial and temporal
uniformity, high sun elevation, and minimal cloud cover. The
PICS (Table I) are among the sites endorsed by the Committee
on Earth Observing Satellites (CEOS, http://www.ceos.org/)
as standard references for the post-launch calibration of
space-based optical imaging sensors [22]. The FMF site is
situated in the homogeneous section of the Frenchman Flat
dry lakebed located NNE of Mercury, Nevada, USA on the
Nevada Test Site range. It serves as The LED-based Spectral
(LSpec) vicarious calibration test site [23]. The site is also
included in the Aerosol Robotic Network (AERONET [24]),
and is ideal for use with sensors with less than 300 m pixel
size. The IP site is a dry-lake playa, located in the Prim Valley
on the border of California and Nevada, USA and is large
enough for use with mid spatial resolution sensors ( 1 km).
The RRVP site is located in a large dry lakebed in central
Nevada, approximately 300 miles north of Las Vegas and 100
miles east of Tonopah, and has a dry climate typical of the high
desert of western USA [25]. Because of its large size, RRVP
is suitable for sensors with even larger footprints (1–10 km),
and is automated with instrumentation used extensively for the
vicarious calibration of terrestrial imaging sensors covering
the visible (VIS), near-infrared (NIR) and shortwave infrared
(SWIR) wavelength ranges [26], [27].
The surface layers and composition of all three sites are rel-

atively smooth and spatially homogeneous, consisting of com-
pacted clay-rich lacustrine deposits [22]. All sites suffer from
the presence of iron absorption features, which effects
the spectral properties and is a typical characteristic of playas in
this region of the USA [22], [25]. Compared to RRVP, the sur-
face layers at FMF and IP contain less loose sand and evaporate
salts, and are therefore more stable and spatially uniform [22],
[25]–[28].
2) Vegetated Validation Flux Sites (VFS): The selected Vali-

dation Flux Sites (VFS) are located in Konza Prairie near Man-
hattan, Kansas, USA, the Duke Forest near Durham, North Car-
olina, USA, andMongu, Zambia in Africa. Their characteristics
are also described in Table I. The vegetated sites were part of
the FLUXNET network, and had instrumented towers providing
meteorological and eddy covariance data (Table I). The Konza
and Mongu VFS are a part of the network of Earth Observing
System (EOS) Land Validation Core Sites for land product val-
idation.
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TABLE I
DESCRIPTION OF CALIBRATION AND VALIDATION STUDY SITES: LOCATION AND LAND COVER TYPE/SPECIES COMPOSITION

asl - above sea level

The Duke Forest (North Carolina, USA) study site includes
two adjacent ecosystems, with flux towers operating during
2001–2010 by Duke University. One of the towers was located
in an even-aged 20 year-old loblolly pine (LP) plantation and
the other in a mixed hardwood stand (HW). The two forests
differ in predominant vegetation cover type and canopy struc-
tures, while experiencing nearly identical climatic and edaphic
conditions. The LP site was established in 1983 following a
clear cut and a burn events [28], [29], and is comprised pri-
marily of P. taedawith some emergent Liquidambar styraciflua
L. and a diverse sub-canopy. The mixed HW mature forest is
a 90–110-year old stand, dominated by oaks (Quercus alba
L., Q. michauxii Nutt., Q. phellos L.) and hickories (Carya
tomentosa (Poir.) Nutt., C. glabra (P. Mill). Sweet.), with
some yellow poplar (Liriodendron tulipifera L.) and sweetgum
(Liquidambar styraciflua L.) [28], [29].
The Konza Prairie site (Kansas, USA, Table I) includes two

flux towers located in grasslands managed under one- and four-
year burn cycles [30]–[32]. The vegetation is primarily ( 90%)
native tallgrass (TG) prairie species dominated by perennial
grasses such as Andropogon gerardii, Sorghastrun nutans,

Panicum virgatum and Schizachyrium scoparium. However, nu-
merous sub-dominant grasses, forbs and woody species con-
tribute to the high floristic diversity of the Konza Prairie site
[30], [31]. It has a continental climate characterized by warm,
wet summers and dry, cold winters. The mean annual precipi-
tation of 835 mm is sufficient to support woodland or savanna
vegetation. Consequently, drought, fire and grazing are impor-
tant in maintaining this topographically complex grassland [31],
[32].
The African validation site near Mongu, Zambia (Table I) is

monitored by one eddy covariance tower located in a forested
area [33], [34] where flux measurements have been acquired
since 2008. The site is dominated by hardwood trees and re-
ferred to as Miombo woodland (MW) with a fractional cover of
65% as measured by Scholes et al. [35]. Grass cover is minimal
[33] with the remaining surface area consisting of bare aeolian
sand. Canopy cover heterogeneity is largely the result of distur-
bances associated with subsistence forestry, grazing, and fire,
which contribute to the patchiness of the land surface. Based
on a 20-yr average (1973–93) mean annual rainfall for Mongu

was 879 mm, with 94% of this amount received during the wet
season months of October–March [34].

B. Data Collections and Processing

1) EO-1 Hyperion Time Series Collection: The Hyperion
image collection in the 2001–2011 timeframe over the study
sites is comprised of more than 350 images with varying extents
of cloud cover. The comparisons and analyses were restricted
to cloud-free ( 20%) data with a maximum of five degrees
difference in sensor viewing geometry. The optimal Hyperion
images (Table II) were selected and downloaded as calibrated
at-sensor radiances from the USGS (EarthExplorer, http://earth-
explorer.usgs.gov/), and processed using ENVI [36], ERDAS
Imagine [37] and PRISM [38].
The TOA radiances measured by Hyperion were converted

to surface reflectances, using the commercially-available soft-
ware, Atmosphere CORrection Now (ACORN) [39], designed
for pushbroom imaging spectrometers with cross-track spectral
calibration variation. ACORN uses the MODTRAN4 [40]
radiative transfer model, constrained by the elevation and the
observation geometry, to explicitly simulate the absorption and
scattering effects of atmospheric gases and aerosols, in order
to produce apparent surface reflectance. A key characteristic
of ACORN is the use of full spectral fitting methods to solve
for the overlap of absorptions between water vapor and liquid
water in surface vegetation [39]. From calibrated Hyperion
radiances, the ACORN routine (mode 1 pb) produced a high
spectral resolution apparent surface reflectance image cube and
a water vapor single-band image for each acquisition (Table II)
estimated on a pixel-by-pixel basis using the absorption bands
at 940 and 1150 nm. Both transmitted radiance and atmo-
spheric reflectance were calculated for each pixel using the
derived water vapor, atmospheric pressure, site elevation, and
aerosol optical depth estimates. Apparent surface reflectance
was derived using either mid-latitude summer or winter atmo-
spheric models [39] depending on the acquisition date and site
location. ACORN offers artifact (e.g., spectrally incoherent
noise) suppression options, which were not employed in order
to preserve original spectral variability. Also, the images were
not geographically or geometrically rectified.
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TABLE II
EO-1 HYPERION IMAGES USED IN THIS STUDY

TABLE III
SUBSET OF HYPERION 224 BANDS TO 171 AT PICS AND 159 VFS

Band subsetting was used to remove uncalibrated and over-
lapping bands, and bands with low SNR and high variability
(e.g., bands adjacent to water absorption features), resulting in
subsets of 171 bands for PICS and 159 for VFS, covering por-
tions of the VIS, NIR and SWIR regions (Table III). The smaller
spectral band subset at the VFSs is due to the stronger effect of
canopy water absorption features on the adjacent bands, causing
errors in the atmospheric correction procedure. Bands in wave-
length ranges around 1430 nm and 1930 nm were also elimi-
nated due to strong disturbance by atmospheric water vapor.
Local spatial statistics were used to discern spatially homo-

geneous areas for spectral extraction at the PICS. We evaluated
spatial uniformity for all dates by calculating the Getis Ord
statistics and Moran’s I index in ENVI [41]. A cluster of pixels
with high (or low) digital count values is indicated by largely
positive (or negative) values [36], [41]. Moran’s I index,
a measure of local spatial uniformity, ranges between 1 and
1, where 1 defines spatially correlated pixels (i.e. those with

clustered data values) and 1 spatially uncorrelated data (i.e.,
pixel values with no clustering). We also calculated mean re-
flectance at each band and used the coefficient of variation (CV)
and the ratio of the standard deviation (SD) over the mean (x)
[22], to characterize the radiometric and temporal stability for
each band.
We identified the position of the FLUXNET sites on the im-

ages using available maps, photos and images. Spectra were ex-
tracted, from corresponding areas, from 20–30 pixels within the
Hyperion images. We calculated mean reflectance at each band
and used the coefficient of variation (CV) and the ratio of the
standard deviation (SD) over the mean (x), to characterize the
temporal variation for each band. The slight shifts in the overlay
of the pixels of spectral extraction on the ground unavoidably

introduce statistical uncertainty and random variation, which
maybe more pronounced at the Mongu site, where the wood-
land canopy cover is more sparse and variable. We chose to re-
tain the nearly full-spectral range of Hyperion data, in order to
test the ability of the band depth analysis and spectral VIs to de-
tect changes in vegetation function and to track seasonal
dynamics measured at the FLUX towers.
2) Eddy Covariance Data at Validation Flux Sites (VFS):

Net Ecosystem Production (NEP) provides a comprehensive
measure of ecosystem net carbon accumulation which is defined
as the carbon accumulation within ecosystems and is the differ-
ence between gross primary production (GPP) and ecosystem
respiration (Re) [42]. NEP is measured with eddy covariance
methods using sonic anemometers mounted on towers above the
canopies [42]. For each VFS, we assembled a set of data (e.g.,
NEP and associated meteorological parameters such as precipi-
tation and temperature) covering the timeframe of the Hyperion
image acquisitions. For the analysis, the flux data and the Hy-
perion reflectance were paired by date of acquisition. Data for
theMongu site were downloaded from the CarboAfrica web site
(http://www.carboafrica.net/data_en.asp, PI for Mongu Dr. W.
Kutsch), and flux data from the other sites were provided by
their tower managers Dr. Brunsell (KNZ-LTER) for the Konza
Prairie site, and Dr. Kimberly Novick (The School of the Envi-
ronment at Duke University) for the Duke Forest sites.
Midday flux averages were calculated as the average of the

observations collected between 11:00 AM and 1:00 PM local
time. The data for Mongu and Konza were not gap-filled. The
Duke NC data were gap-filled using methods described in Stoy
et al. 2006 [43].
NEPwas partitioned into Gross Ecosystem Production (GEP)

and Ecosystem Respiration (Re). For the Duke and Konza sites,
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 11,2023 at 17:07:19 UTC from IEEE Xplore.  Restrictions apply. 
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daytime Re was calculated from relationships developed be-
tween nighttime NEP and air temperature [44], [45]. For the
Mongu site, air temperature alone did not provide a good de-
scription of variation in Re, so the Re model used both air tem-
perature and soil moisture. GEP was computed as the sum of
NEP and Re.
3) Reflectance Time Series for Validation Sites: The Hy-

perion time series included multiple scenes in order to con-
struct a phenology season, with many images collected over
multiple years. Due to the non-continuous temporal resolution
(i.e. tasked and targeted image acquisition) of Hyperion datasets
used in this study (Table II), annual documentation of seasonally
representative vegetation phenological changes was not pos-
sible. However, both spectra and the corresponding eddy co-
variance flux measurements were organized in seasonally
successive chronological order based on the day of year (DOY),
regardless of acquisition year.
4) Continuum Removal and VIs From High Spectral Resolu-

tion Spectra: We applied the ‘band depth analysis of absorption
features’ method [46] that enhances and standardizes known
spectral chemical absorption features. Continuum removal nor-
malizes reflectance spectra to allow comparison of individual
absorption features from a common baseline [38], [46], [47].
The continuum is a straight line segment fitted over the hull
of the spectrum, thus connecting the local maxima [46]. The
continuum-removed reflectance is obtained by dividing the re-
flectance value in the absorption minimum by the reflectance
level of the continuum line at the corresponding wavelength.
The Processing Routines in IDL for Spectroscopic Measure-
ments (PRISM) provide a uniform and automated approach for
obtaining continuum removed (CR) Hyperion reflectances, with
spectral profile output having values between 0 and 1 for en-
hancing the selected features [38], [46].
Six known chemical absorption features have been associ-

ated with foliar chemistry, including the VIS chlorophyll ab-
sorption features (470–520 nm, 550–750 nm), and SWIR ab-
sorption features (1110–1285 nm, 1630–1790 nm, 2005–2195
nm, and 2220–2380 nm) detecting water, lignin and cellulose
[38], [46], [48]. We applied the band depth analysis to study
the seasonal changes in feature depth (FD) in the well-defined
chlorophyll absorption feature (between 500–800 nm). Feature
depth was computed as

(1)

where CR is the continuum removed reflectance at 675 nm, so
that increasing amounts of chlorophyll absorber yield increasing
FD. We selected this strong feature because it is in a high Hy-
perion S/N region, away from atmospheric water absorption
bands, and thus less subject to noise or residual atmospheric
contamination.
Recent review articles [4], [17] provide a summary of the

utility of VIs derived from high resolution ( 10 nm bands) re-
flectance and derivative spectra [19], [20]. At the VFS, we tested
the ability of a subset of reflectance VIs applicable for agricul-
ture and forestry to track the dynamics in vegetation as-
similation parameters (e.g., NEP and GPP). Using the full spec-
tral range of Hyperion, and adjusting the formulas to Hyperion’s

band centers and 10 nm resolution, we generated 76 high res-
olution VIs: 18 for structure (e.g., LAI and biomass), 31 for
biochemical content (e. g., chlorophyll, 18; carotenoids, 2; an-
thocyanins, 2; photosynthetic pigments, 5; water, 3; and lignin
and cellulose, 1); 27 for plant function (e.g., stress, 12; light use
efficiency, 4; and chlorophyll fluorescence, 11). We were not
able to generate VIs that required the use of blue wavelengths
below 450 nm (e.g., SIPI for pigment content), or wavelengths
between 1350–1500 nm (for canopy structure, water content)
and 1950–2100 nm (for lignin and cellulose content), due to
the lower data quality at these wavelengths. These 76 useful
VIs included band ratios of derivative (typically first derivative)
spectra, which have been demonstrated to be strongly related to
chlorophyll concentration, chlorophyll fluorescence and forest
stress [19], [20]. The first derivatives (D) of reflectance were
calculated using the formula:

(2)

where is the first derivative and is the mean reflectance
value at wavelength. The derivative transformation provides
spectral data that are less sensitive to the effects of variable ir-
radiance and the influences of canopy structural and bidirec-
tional properties. To compare the above high spectral resolution
VIs with broadband VIs we simulated the bands of Landsat TM
(lower spectral resolution), and calculated the most widely used
Normalized Difference Vegetation Index (NDVI) and the En-
hanced Vegetation Index (EVI).
5) Statistical Analysis: Analysis of Variance routines and de-

scriptive statistics [49] are used to assess temporal spectral uni-
formity and/or VIs at each site. The resulting mean (x) and stan-
dard deviation (SD) statistics are reported as plots for each site
and summarized for comparison between the sites. To examine
the temporal variability in the spectral properties of VFS, the
means and standard deviations for each of the sites were plotted
and discussed further in the results section. Also at the VFS,
analyses of variances and regression procedures were used to
relate the Hyperion VIs to NEP and GEP tower measurements
[49]. Spectra were analyzed individually for each VFS, as well
as collectively as a multi-site dataset.

III. RESULTS

A. Seasonal Dynamics of Hyperion Reflectance at
Pseudo-Invariant Calibration Sites (PICS)

The statistics and Moran’s I index describe the spatial
uniformity of the PICS (Figs. 1 and 2, Table IV). The FMF
site offers an approximately 2 2 km area with relatively uni-
form high reflectance distribution, as determined by the sta-
tistics (Figs. 1(a), 2(a)). The homogenous area at IP was ap-
proximately 2 4 km (Figs. 1(b), 2(b)). RRVP had an area of
approximately 6 10 km with relatively uniform reflectance
(Figs. 1(c), 2(c)). The highest reflectance values were measured
across the 650–2000 nm region at FMF, followed by IP and
RRVP (Figs. 1, 2). At RRVP, we observed that certain areas of
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Fig. 1. Pseudo invariant calibration sites (PICS): (a) Frenchman Flat (FMF), (b) Ivanpah Playa (IP), and (c) Railroad Valley (RRVP). The center of the region
(30–40 pixels) of reflectance extraction is marked with a cross. Two portrayals are shown for each site from a summer acquisition: natural color composites (fig.
(a)1, (b)1, (c)1; RGB: 651,549,447 nm), and the Getis statistics calculated to indicate homogeneous pixel clusters (fig. (a)2, (b)2, (c)2).

Fig. 2. Temporal variation in the Hyperion reflectance at select wavelengths: (a) Frenchman Flat (FMF, 7 images acquired in 2005–2008), (b) Ivanpah
(IP, 6 images acquired in 2003–2005) and (c) Railroad Valley (RRVP, 15 images acquired in 2001–2008). The seven Hyperion bands selected to represent the
seasonal reflectance trends are centered at: 447, 549, 651, 854, 1003, 1679 and 2204 nm.

the site are brighter than others. Since the site is completely de-
void of vegetation, this contrast can be explained by soil mois-
ture effects and variations in the mineral composition of the
playa’s surface.
The three calibration sites (Fig. 3) can be characterized as

having high mean reflectance values, across a wide spectral

range, which agrees with previous studies conducted over the
same sites using field radiometers and/or space-borne multi-
spectral sensors [12], [14], [37]. Mean reflectance in the blue re-
gion (450–550 nm) was highest at FMF (25–40%, 2.3–2.5%,
Fig. 3(a)), lowest at IP (8–12, 2.1–2.8%, Fig. 3(b)), and inter-
mediate at RRVP (18–28, 2–2.5, Fig. 3(c)).
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TABLE IV
HYPERION REFLECTANCE AND MORAN I STATISTICS FOR SEVEN WAVELENGTHS AT THESE PSEUDO INVARIANT CALIBRATION SITES (PICS)

Mean (x), Standard Deviation (SD), Coefficient of Variation
Moran’s I index expresses local spatial uniformity, ranges between +1 and -1 ( ,

, )

However, in the green and red region (550–700 nm), reflec-
tivity was highest at FMF (40–45, 2.5–2.8%), intermediate at
IP (35–40, 2.4–2.8%), and lowest at RRVP (30–40, 2.5%).
The same trend continued in the NIR (700–2000 nm): FMF
50–55% ( 3.1–7.2%), IP 42–48% ( 1.5–5%), and RRVP
37–40% ( 2.3–5.8%); and in the SWIR (2000–2450 nm):
FMF 48–52% ( 3–18%), IP 40–48% ( 2–6.5%), and RRVP
32–45% ( 3–7.5%). The highest SDs were associated with
artifacts due to imperfections in the atmospheric correction
procedures for scattering in the blue region and for absorption
by water vapor near absorption features at 930 nm, 1450 nm
and 1950 nm. In the 2360–2450 nm region, where the derived
reflectance is less stable, due to lowered SNR of the instrument,
the variation in the moisture content in the playa caused greater
overall impact and the SD were consistently higher at all sites.
The temporal variation in the reflectance characteristics of

the three PICS are represented by individual bands in the blue,
green, red, NIR, and SWIR regions (means and SD, Fig. 2).
While the magnitude of the reflectance differed per spectral
band, all reflective regions exhibited relatively uniform and
flat temporal profiles, devoid of consistent temporal trends
(Fig. 2). Lower reflectance values (with higher SD) across all
spectral bands occurred during winter months at FMF (DOY
12, 337) and RRVP (DOY 12, 288), which could be attributed
to lower incoming radiation, higher shadow component, local
illumination effects not accounted for in the atmospheric cor-
rection model, and/or increased soil moisture at these playas.
Fig. 3(a), (b), (c) and Table IV summarize the long-term spectral
reflectance responses at the three PICS. The statistics (x, SD,
CV) summarize band responses across time (Fig. 3, Table IV).
The reflectance time series at the PICS were devoid of ap-

parent spectral trends, allowing us to have sufficient confidence
in the data to describe the temporal dynamics at the VFS sites.

B. Seasonal Dynamics in Hyperion Reflectance Parameters
and NEP at Validation FLUXNET Sites (VFS)

Seasonal changes in Hyperion reflectance spectra over the
forested Duke LP (Fig. 4(a)) and HW sites (Fig. 4(b)), the
Konza prairie TG site (Fig. 4(c)), and the Mongu MW site
(Fig. 4(d)) displayed typical vegetation reflectance trends:

relatively low VIS reflectance due to high absorption by leaf
photosynthetic pigments, with a peak 550 nm, relatively
bright NIR reflectance (700–1300 nm) because absorption is
weak but scattering is strongly expressed by canopy structural
components and the contrast between indices of refraction for
water-rich cells and intercellular air spaces, and strong absorp-
tion in the SWIR (1450–2450 nm) by leaf water, cellulose,
lignin, and other plant materials causing vegetation to appear
relatively dark.
Hyperion’s reflectance time series captured seasonal dif-

ferences among the site-specific VFS carbon dynamics. Red
reflectance wavelengths ( 700 nm) had the largest variation
(large CV) during the year at both the grassland and deciduous
hardwood sites where CV 30% (HW, 50%; TG, 47%; and
MW, 31%), but CV was less variable at the pine stand (LP,
26%). The largest spectral variations were observed in the
blue and red VIS spectrum (Table V). For blue wavelengths
(450–500 nm), there were no statistically significant differences
among the seasonal spectra for any VFS, which is attributed
to the very large CV (70%–128%) in this region, due to the
lower S/N of Hyperion’s first detector and imperfections in
the correction for atmospheric scattering. Due to a pronounced
wet/dry seasonality, the time series of red wavelengths at
Mongu (Fig. 4) best tracked fluxes throughout the growing
season.
Fig. 5 depicts the temporal profile of the continuum removal

analyses for reflectances in the chlorophyll absorption features
at each VFS. The normalized reflectances have values between
0 and 1, enhancing the feature and allowing feature depths (FD,
measured at 675 nm) to be computed for temporal comparisons
at each site, and among sites. At the Duke LP site, the FD did not
vary significantly (during the year (mean FD 0.81–0.84, p
0.25), while at the DukeHW site. FD dramatically changed from
0.23 (DOY 6) to 0.90 (DOY162). The FD also varied greatly
throughout the year at the Konza TG site, from 0.81 (DOY 205)
to 0.05 (DOY13) and at the MonguMW from 0.83 (DOY 22) to
0.33 (DOY 253). At the Konza TG prairie site, the very low FDs
(0.05–0.16) can be explained by the dormancy and complete
dieback of the above ground tallgrass biomass.
Attempts to analyze the dynamics in the SWIR absorption

features (2220–2380 nm) associated with lignin, cellulose and
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Fig. 3. Mean reflectance (%, solid line) and standard deviation (%, dashed line) for time series for: (a) Frenchman Flat (FMF, ), (b) Ivanpah Playa (IP,
), and (c) Railroad Valley Playa (RRVP, ). Means and standard deviations are listed in Table IV.

Fig. 4. Temporal variation in the Hyperion reflectance acquired over the validation sites: (a) Duke (loblolly pine, LP), (b) Duke (hardwoods, HW), (c) Konza
(tallgrass, TG), and (d) Mongu (Miombo woodland, MW). Each line represents the mean site reflectance from a single day, designated in the labels as “DOY year”.

nitrogen contents were not successful, due to low SNR which
obscured the features and precluded the band depth analysis.
Hyperion narrowband VIs were calculated using contin-

uous reflectance spectra or reflectance derivative (PRI1, PRI4,
Dmax), and included wavelengths associated with chlorophyll
content (e.g., PRI4, G94 and G32) and/or chlorophyll fluo-
rescence (e.g. Dmax/D704, ) (Tables VI,
VII). Using a regression approach, we established that many
of the VIs were closely related to NEP and GEP. The VIs
with the strongest relationships to NEP and GEP are listed in
Table VI, along with the simulated Landsat broadband VIs
(e.g., NDVI, EVI) for comparison. The set of best performing
VIs for estimating NEP varied among the sites. At the Duke LP
site, the most successful narrowband VI for association with
NEP was the DPI a derivative index using three
wavelengths, followed by linear relationships obtained with
two variations of the photochemical reflectance index: PRI4

( , Fig. 6(a)) and PRI1 . At the Duke HW
site, the performance of PRI4 was non-linear but performed
best ( , Fig. 6(a)), followed by Dmax .
The PRI4 performed well at both LP and HW (Fig. 6(a)), how-
ever it saturated at values 0.2, not being able to effectively
discriminate for .
At the TG Konza site, however, the most successful

VIs for relating best to NEP were the narrowband G94
( , Fig. 6(b), Table VI) and Dmax .
G94 uses narrowband wavelengths in the NIR and red
( , Fig. 6(b)) and it saturated at for

. At the Mongu MW site, the most
successful VIs for relating to NEP were G32 ( ,
Fig. 6(c)), Dmax/D704 , and Dmax .
G32 combines wavelengths from the blue, red and NIR
regions (Fig. 6(c)). At values of this parameter
saturated for .
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TABLE V
SEASONAL VALUES FOR OF HYPERION REFLECTANCE AT VALIDATION FLUXNET SITES (VFS)

ns—no statistically significant differences among means by day of year (based on ANOVA)
when not noted as ns, there were statistically significant differences among means by day of year at level

Fig. 5. Temporal variation in the mean normalized reflectance (continuum removed) from the chlorophyll absorption feature, (550–750 nm) illustrating the spectral
dynamics at each validation site by DOY: (a) Duke LP , (b) Duke HW , (c) Konza TG ( , each line is an average of spectra
from areas under 1 and 4 year burn), and (d) Mongu MW .

At all VFSs, the VIs best related to NEP were also strongly
related to GEP, with strongest relationship for the Konza TG site
(Table VI). The broadband EVI also performed well at the Duke
HW site (NEP, ), Konza TG site (NEP, ;
GEP, ) and at the Mongu MW site (NEP, ;
GEP, ). Fig. 7 depicts the best performing VIs for NEP
across all sites. Most of these relationships were curvilinear
(Fig. 6, Table VI). Hyperion narrowband VIs with the stronger
relationship to parameters (Tables VI and VII) were calcu-
lated using continuous reflectance spectra or reflectance deriva-
tive (e.g. PRI1, PRI4, Dmax), and included wavelengths associ-

ated with chlorophyll content (e.g., PRI4, G94 and G32) and/or
chlorophyll fluorescence (e.g. DPI, Dmax/D704).
To assess the potential of using a common high resolution

VI for tracking seasonal dynamics across multiple sites
and ecosystems, we combined the data from all VFS ( ,
Table VII, and Fig. 8). The derivative parameters Dmax (as-
sociated with vegetation stress) and DP22 (associated with
chlorophyll fluorescence) exhibited a strong relationships to
NEP and GEP ( –0.73 and –77, respec-
tively), as did the normalized difference water index (NDWI,

to NEP and to GEP, Table VII). These
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TABLE VI
HYPERION VEGETATION INDICES (VIS) HAVING STRONGEST RELATIONSHIPS TO UPTAKE PARAMETERS (NEP AND GEP), BY STUDY SITE. HYPERION’S
BEST PERFORMING HIGH SPECTRAL RESOLUTION VIS ARE LISTED FIRST. THE BROADBAND LANDSAT PARAMETERS ARE LISTED FOR COMPARISON IN ITALICS

NEP (net ecosystem production), GEP (gross ecosystem production), L (linear relation), NL (non-linear regression)
NIR (average R760-900 nm), Red (average R620-690 nm), Blue (average R450-500 nm), after the Landsat bands

results illustrate the possibility for establishing a common
spectral approach based on high resolution VIs for tracking

ecosystem dynamics. Dmax was able to provide separa-
tion for most of the data, but it saturated at for

(Fig. 8). The use of derivatives,
reducing the effects of variable irradiance, canopy structure
and bidirectional properties, offers an important potential when
analyzing reflectance time series.
It is important to note that the Landsat broadband VIs never

performed as well as the narrow-band indices. At the HW, TG
and MW sites EVI performed almost as well as the “optimal”
narrow-band VIs, but not at the LP site (Table VI) or when an-
alyzing the combined data set (Table VII).

IV. DISCUSSION

We were able to evaluate Hyperion reflectance stability over
the full instrument spectrum and large portion of the EO-1 life-

time, for which there was available data. Since the collection of
sufficient number of free of clouds images to generate the time
series took multiple years, we constructed a seasonal time line
by arranging the data consecutively by acquisition day from any
given year.
Our results from the three PICS demonstrate the spectral sta-

bility of Hyperion’s reflectance time series, and provide spa-
tial uniformity descriptors at each of these well-known sites
where the time series have been collected. This spectral stability
verifies the potential of Hyperion’s reflectance time series for
ecosystemmonitoring. As new images are added to the seasonal
time lines, the ability of the reflectance time series to assess veg-
etation function will likely improve. Future work is required to
refine the atmospheric correction process and to improve the re-
flectance estimates in spectral regions with lower stability (e.g.
2000–2450 nm region, and near water absorption bands). Fur-
ther improvements in the atmospheric correction approach, the
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TABLE VII
SPECTRAL BIO-INDICATORS OF VEGETATION FUNCTION WITH BEST CORRELATION TO UPTAKE FOR MULTIPLE SITES (COMBINED DATA SET FROM

THE THREE VFS, )

NEP (net ecosystem production)
GEP (gross ecosystem production)
L (linear relation), NL (non-linear relation)
NIR (average R760-900 nm), Red (average R620–690 nm), Blue (average R450–500 nm), after the Landsat bands

Fig. 6. Relationship of Hyperion’s best performing VIs in relation to NEP at each study site . At Duke (Fig. 6(a)), the photochemical reflectance
index PRI4 using green and red wavelengths , performed well at both LP and HW
forests. However, the index saturated at , not being able to effectively discriminate . At the TG Konza site, the most
successful VI was narrowband G94 ( , Fig. 6(b); ), which saturated at , not being able to separate

. At theMonguMW site, the most successful VI was G32 ( , Fig. 6(c), ) combining
wavelengths from the blue, red and NIR regions. At low values of this parameter saturated, not allowing separation of .

incorporation of topographic information, and additional cali-
bration of Hyperion reflectances to targeted in situ field spec-
tral measurements, are required to expand the number of useful
reflectance bands at VFS. These improvements are especially
needed in the 850 to 2500 nm range where they may allow better
reflectance retrieval and thus, narrow-band VIs using bands in
these ranges may be better correlated to NEP and GEP than in
the current analysis.
Hyperion’s long-term reflectance measurements offer the

potential for cross-comparison with other optical sensors.
Cross-calibration of current multispectral sensors to hy-
perspectral instruments such as Hyperion, could serve for
inter-comparisons and retroactive data processing. Currently
there is a consistent NDVI record that extends more than 2
decades, generated from the Advanced Very High Resolution
Radiometer (AVHRR) instruments, which provides a histor-
ical perspective on vegetation dynamics necessary for global
change research. Long term spectral records are also avail-
able from SPOT-Vegetation, SeaWiFS, Moderate Resolution
Imaging Spectroradiometer, Landsat ETM+ data and others.

While the spectral vegetation indices (VIs) are considered more
directly transferable between sensors, and an intercalibrated,
sensor-independent NDVI data record could be feasible, there
are significant challenges and higher discrepancies associated
with the inter-comparison of biophysical products, which are
generated using different instruments with varying spectral
and spatial resolution, modeling approaches and ground data
[50]–[52].
Simultaneous calibration of old and new sensors against each

other over a common set of targets on the Earth is a key re-
quirement for maintaining long-term records (http://wgcv.ceos.
org/). Our results indicate that the use of space-borne spectrom-
eters allow assessment of the spectral stability and spatial vari-
ability of the calibration sites. The reflectance measurements at
the PICS confirm that they meet the CEOS/WGCV surface re-
flectance requirement for above 30% reflectivity and flat spec-
tral signature over the 600–2000 nm range.
In recent years, a growing number of studies have recognized

the importance of collecting spectroscopy observations at flux
towers to better understand the relationship between vegeta-
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Fig. 7. Temporal variation in the best performing spectral indices for Konza, Duke (LP), Mongu (reflectance means (x) by DOY). Dotted line is NEP while dashed
line is precipitation.

Fig. 8. Relationship of Hyperion’s derivative index Dmax (the maximum
amount of the first derivative in the 650–750 nm region) to the as-
similation (NEP, ) across the three VFS. Dmax had closest
relationship when using the combined data set ( , ). However,
this parameter saturated at , precluding the separation of

.

tion function and optical signals [53]. Our results at the three
VFSs demonstrate the close link between Hyperion’s VIs and
carbon fluxmeasurements and the potential for scaling the tower
measurements to local, regional and potentially global levels.
Multiple observations at individual sites are required to test the
ability of the VIs to describe seasonal and transient variations
in fluxes. It is noteworthy that the VIs with stronger relation-
ships to the parameters were derived using continuous re-
flectance spectra or reflectance derivatives, and included wave-
lengths associated with chlorophyll content and/or chlorophyll
fluorescence (e.g. DPI, Dmax/D704 and PRI). Since these in-
dices cannot be calculated from broadband multispectral instru-
ment data, the opportunity to exploit these spectrometer-based
VIs in the future will depend on the launch of satellites such as
En MAP and HyspIRI.
Space borne spectrometers offer potential for establishing a

generalized approach for scaling dynamics across multiple

sites and to local and regional levels. Site-specific equations
provided more accurate results than the multisite groupings,
although the trade-offs between the improved accuracy of a
site-specific algorithm versus an algorithm for general use have
yet been established. The development of common (i.e. global)
spectral approaches to track vegetation function and scale up
carbon estimates requires diverse spectral data sets, comprised
of the major ecosystem types in a broad range in functional
states.
The performance of narrow-band VIs from satellite time se-

ries remains to be thoroughly examined for various vegetation
types exhibiting a range of local conditions. Future workwill ex-
pand the analysis by extending the time series at our study sites
as well as adding additional sites representing other ecosystem
types, including rain forest, temperate and sub-arctic vegeta-
tion. Testing algorithms over longer time series and more di-
verse cases will increase our ability to determine fluxes with
higher confidence. Using hyperspectral data operationally will
allow us to develop newmore dynamic and accurate approaches
to predict ecosystem parameters.

V. CONCLUSIONS

With over 11 years of data record including more than 65,000
globally distributed hyperspectral images collected to date (as of
July 20 2012), the Hyperion data record provides an important
and unique resource for various Earth observations. This study
provides a step towards better understanding and broader use
of the Hyperion reflectance time series for monitoring of vege-
tation function and ecosystem dynamics. Hyperion reflectance
measurements were shown to be stable over time in all spec-
tral regions. The most stable portion of the spectrum was the
visible and near infrared region, providing higher confidence
for common use of chlorophyll based VIs. In three different
ecosystems, Hyperion’s VIs were found to be correlated with

flux parameters. The VIs with the strongest relationships
required continuous spectra, or numerous wavelengths associ-
ated with chlorophyll content and/or first derivative parameters,
which are not available from broad-band multispectral instru-
ments. This study showed their use with Hyperion’s time series,
demonstrating their close relationship to ecosystem carbon dy-
namics and potential for improved monitoring of carbon fluxes.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 11,2023 at 17:07:19 UTC from IEEE Xplore.  Restrictions apply. 



288 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 6, NO. 2, APRIL 2013

ACKNOWLEDGMENT

Flux tower data for this study was provided by Dr. Brun-
sell (KNZ-LTER) for the Konza Prairie site, by Dr. Kimberly
Novick (The School of the Environment at Duke University)
for the Duke Forest sites, and by CarboAfrica (http://www.car-
boafrica.net/, PI forMonguDr.W.Kutsch). The authors warmly
acknowledge their support and collaboration.

REFERENCES

[1] E. M. Middleton, D. J. Mandl, P. K. Campbell, L. Ong, S. W. Frye,
and S. G. Ungar, “A ten year summary of NASA’s Earth Observing
One (EO-1) mission,” in ESA Hyperspectral Workshop, 17-19 March
2010, Frascati, Italy. Proceedings SP-683, May 2010.

[2] B. Datt, T. R. McVicar, T. G. Van Niel, and J. S. Pearlman, “Prepro-
cessing EO-1 hyperion hyperspectral data to support the application of
agricultural indexes,” IEEE Trans. Geosci. Remote Sens., vol. 41, no.
2, pp. 1246–1259, 2003.

[3] P. A. Townsend and J. R. Foster, “Comparison of EO-1 Hyperion to
AVIRIS for mapping forest composition in the Appalachianmountains,
USA,” in IEEE Int. Geoscience and Remote Sensing Symp., 2002, vol.
2, no. 24–28, pp. 793–795.

[4] D. A. Roberts, K. L. Roth, and R. L. Perroy, “Hyperspectral Vegetation
Indices,” in Hyperspectral Remote Sensing of Vegetation, P. S. Thenk-
abail, J. G. Lyon, and A. Huete, Eds. New York: Taylor and Francis,
2011, ch. 14.

[5] M. E. Martin, L. C. Plourde, S. V. Ollinger, M.-L. Smith, and B. E. Mc-
Neil, “A generalizable method for remote sensing of canopy nitrogen
across a wide range of forest ecosystems,” Remote Sens. Environ., vol.
112, no. 9, pp. 3511–3519, 2008.

[6] S. V. Ollinger, A. D. Richardson, M. E. Martin, D. Y. Hollinger, S.
E. Frolking, P. B. Reich, L. C. Plourde, G. G. Katul, J. W. Munger,
R. Oren, M.-L. Smith, K. T. Paw Ug, P. V. Bolstad, B. D. Cook, M.
C. Day, T. A. Martin, R. K. Monson, and H. P. Schmid, “Canopy ni-
trogen, carbon assimilation, and albedo in temperate and boreal forests:
Functional relations and potential climate feedbacks,” Proc. National
Academy of Sciences, vol. 105, no. 49, 2008.

[7] Y. Zeng,M. E. Schaepman, B.Wu, J. G. P.W. Clevers, andA. K. Bregt,
“Forest structural variables retrieval using EO-1 Hyperion data in com-
bination with linear spectral unmixing and an inverted geometric-op-
tical model,” J. Remote Sens., Special Issue on ISPMSRS05, vol. 11,
no. 5, 2008.

[8] J. P. Guerschman, M. J. Hill, L. J. Renzullo, D. J. Barrett, A. S. Marks,
and E. J. Botha, “Estimating fractional cover of photosynthetic veg-
etation, non-photosynthetic vegetation and bare soil in the Australian
tropical savanna region upscaling the EO-1 Hyperion and MODIS sen-
sors,” Remote Sens. Environ., 2009.

[9] G. P. Asner, “Hyperspectral remote sensing of canopy chemistry, phys-
iology and diversity in tropical rainforests,” in Hyperspectral Remote
Sensing of Tropical and Subtropical Forests, M. Kalacska and G. A.
Sanchez-Azofeifa, Eds. New York: Taylor and Francis, 2008, ch. 12.

[10] K. J. Thome, S. F. Biggar, and W. T. Wisniewski, “Cross-comparison
of EO-1 sensors and other earth resources sensors to Landsat-7 ETM+
using Railroad Valley Playa,” IEEE Trans. Geosci. Remote Sens., vol.
41, pp. 1180–1188, 2003.

[11] S. F. Biggar, K. J. Thome, and W. T. Wisniewski, “Vicarious radio-
metric calibration of EO-1 sensors by reference to high-reflectance
ground targets,” IEEE Trans. Geosci. Remote Sens., vol. 41, pp.
1174–1179, 2003.

[12] K. J. Thome, J. Czapla-Myers, and S. Biggar, ESA/IVOS05, “Railroad
Valley Playa for use in vicarious calibration of large footprint sensors,”
in IVOS Workshops, 2009, vol. 29.

[13] R. O. Green, B. E. Pavri, and T. G. Chrien, “On-orbit radiometric and
spectral calibration characteristics of EO-1 Hyperion derived with an
underflight of AVIRIS and in situ measurements at Salar de Arizaro,
Argentina,” IEEE Trans. Geosci. Remote Sens., 2003.

[14] G. P. Asner and K. B. Heidebrecht, “Imaging spectroscopy for de-
sertification studies: Comparing AVIRIS and EO-1 Hyperion in Ar-
gentina drylands,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6,
pp. 135–155, 2003.

[15] L. S. Galvão, J. R. dos Santos, D. A. Roberts, F. M. Breunig, M.
Toomey, and Y. M. de Moura, “On intra-annual EVI variability in the
dry season of tropical forest: A case study with MODIS and hyper-
spectral data,” Remote Sens. Environ., vol. 115, no. 9, pp. 2350–2359,
2011.

[16] B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmo-
spheric correction algorithms for hyperspectral remote sensing data of
land and ocean,” Remote Sens. Environ., vol. 113, pp. S17–S24, 2009,
(Supplement 1).

[17] H. G. Jones and R. A. Vaughan, Remote Sensing of Vegetation: Prin-
ciples, Techniques and Applications. New York: Oxford University
Press, 2010, ISBN 978-0-19-920779-4.

[18] S. V. Ollinger, “Sources of variability in canopy reflectance and
the convergent properties of plants,” New Phytologist, vol. 189, pp.
375–394, 2011.

[19] P. J. Zarco-Tejada, J. Pushnik, S. Dobrowski, and S. L. Ustin, “Steady-
state chlorophyll-a Fluorescence detection from canopy derivative re-
flectance and Double-Peak Red-Edge effects,” Remote Sens. Environ.,
vol. 84, no. 2, pp. 283–294, 2003.

[20] P. K. E. Campbell, E. M. Middleton, L. A. Corp, J. E. McMurtrey
III, and E. W. Chappelle, “Comparison of foliar fluorescence and re-
flectance measurements for the detection of vegetation stress,” J. Env-
iron. Quality, vol. 36, pp. 832–845, 2007.

[21] A. A. Gitelson, “Nondestructive estimation of foliar pigment (chloro-
phylls, carotenoids, and anthocyanins) contents: Evaluating a semian-
alytical three-band model,” in Hyperspectral Remote Sensing of Vege-
tation, P. S. Thenkabail, J. G. Lyon, and A. Huete, Eds. New York:
Taylor and Francis, 2011.

[22] P. M. Teillet, J. A. Barsi, G. Chander, and K. J. Thome, “Prime candi-
date earth targets for the post-launch radiometric calibration of space-
based optical imaging instruments,” in Proc. SPIE Conf. 6677 on Earth
Observing Systems, vol. XII (2007) Society of Photo-optical Instrumen-
tation Engineers, San Diego, CA.

[23] H. N. Gross and S. L. Green, “Experimental determination of bi-direc-
tional reflectance distribution at the LSpec vicarious calibration site,”
in Algorithms and Technologies for Multispectral, Hyperspectral, and
Ultraspectral Imagery XV, Proc. SPIE 7334, S. S. Shen and P. E. Lewis,
Eds., 2009, pp. 733412–733421, 10.1117/12.818488.

[24] B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer,
E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I.
Jankowiak, and A. Smirnov, “AERONET—A federated instrument
network and data archive for aerosol characterization,” Remote Sens.
Environ., vol. 66, pp. 1–16, 1998.

[25] K. P. Scott, K. J. Thome, and M. R. Brownlee, “Evaluation of the Rail-
road Valley Playa for use in vicarious calibration,” Proc. SPIE 2818,
pp. 158–166, 1996.

[26] J. Czapla-Myers, K. Thome, and N. Leisso, “Radiometric calibration of
earth-observing sensors using an automated test site at Railroad Valley,
Nevada,” Can. J. Remote Sens., vol. 36, no. 5, pp. 474–487, 2011.

[27] J. S. Czapla-Myers, K. J. Thome, and S. F. Biggar, “Design, calibration,
and characterization of a field radiometer using light-emitting diodes as
detectors,” Appl. Opt., vol. 47, no. 36, pp. 6753–6762, 2008.

[28] K. Novick, R. Oren, P. Stoy, J.-Y. Juang, M. Siqueira, and G. Katul,
“The relationship between reference canopy conductance and simpli-
fied hydraulic architecture,” Advances in Water Resources, vol. 32, pp.
809–819, 2009.

[29] R. Oren, C. I. Hsieh, P. Stoy, J. Albertson, H. R. McCarthy, P. Harrell,
and G. G. Katul, “Estimating the uncertainty in annual net ecosystem
carbon exchange: Spatial variation in turbulent fluxes and sampling
errors in eddy-covariance measurements,” Global Change Biol., vol.
12, pp. 883–896, 2006.

[30] D. J. Bremer and J. M. Ham, “Net carbon fluxes over burned and un-
burned native tallgrass prairie,” Rangeland Ecol. Manage., vol. 63, pp.
72–81, 2010.

[31] N. A. Brunsell, S. Schymanski, and A. Kleidon, “Quantifying the ther-
modynamic entropy budget of the land surface: Is this useful?,” Earth
System Dynamics, vol. 2, pp. 87–103, 2011, 10.5194/esd-2-87-2011.

[32] N. A. Brunsell, J. B. Nippert, and T. L. Buck, “The impact of season-
ality and surface heterogeneity on water use efficiency in mesic grass-
lands,” Ecohydrology, 2013, in review.

[33] T. M. Scanlon and J. D. Albertson, “Canopy scale measurements
of CO and water vapor exchange along a precipitation gradient in
southern Africa,” Global Change Biol., vol. 10, no. 3, pp. 329–341,
2004.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 11,2023 at 17:07:19 UTC from IEEE Xplore.  Restrictions apply. 



CAMPBELL et al.: EO-1 HYPERION REFLECTANCE TIME SERIES AT CALIBRATION AND VALIDATION SITES 289

[34] R. J. Scholes, P. R. Dowty, K. Caylor, D. A. B. Parsons, P. G. H. Frost,
and H. H. Shugart, “Trends in savanna structure and composition on
an aridity gradient in the Kalahari,” J. Veg. Sci., vol. 13, pp. 419–428,
2002.

[35] R. J. Scholes, P. G. H. Frost, and Y. H. Tian, “Canopy structure in
savannas along a moisture gradient on Kalahari sands,”Global Change
Biol., vol. 10, pp. 292–302, 2004.

[36] ENVI, Environment for Visualizing Images, Image Processing Soft-
ware, ver. 4.7, 2009, Research Systems, Inc., ITT Visual Information
Solutions. Boulder, CO, USA [Online]. Available: www.ittvis.com

[37] ERDAS Imagine 2010. ERDAS: Earth Resources Data Analysis
System 2009, ERDAS, Inc.. Norcross, GA, USA.

[38] R. F. Kokaly, PRISM: Processing routines in IDL for spectroscopic
measurements (Installation Manual and User’s Guide, ver. 1.0), U.S.
Geological Survey Open-File Report 2011-1155, 432, 2011.

[39] Atmosphere CORrection Now (ACORN v. 6.1b), © 2004-08 Im-
Spec LLC, “Analytical Imaging and Geophysics LLC (AIG),” 2001,
ACORN User’s Guide Stand Alone Version, 64 p.

[40] A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe,
M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, Jr., S. C.
Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke,
“MODTRAN4 radiative transfer modeling for atmospheric cor-
rection,” SPIE Proc. 3756, Optical Spectroscopic Techniques and
Instrumentation for Atmospheric and Space Research III, 1999.

[41] A. A. Bannari, K. Omari, P. M. Teillet, and G. Fedosejevs, “Mul-
tisensor and multiscale survey and characterization for radiometric
spatial uniformity and temporal stability of Railroad Valley Playa
(Nevada) test site used for optical sensor calibration,” Proc. SPIE
5234, p. 590, 2004.

[42] D. Baldocchi, “TURNER REVIEW No. 15. ‘Breathing’ of the ter-
restrial biosphere: Lessons learned from a global network of carbon
dioxide flux measurement systems,” Australian J. Botany, vol. 56, no.
1, pp. 1–26, 2008.

[43] P. C. Stoy, G. G. Katul, M. B. S. Siqueira, and J.-Y. Juang, “An
evaluation of models for partitioning eddy covariance-measured net
ecosystem exchange into photosynthesis and respiration,” Agricultural
and Forest Meteorology, vol. 141, pp. 2–18, 2006.

[44] B. D. Amiro, A. G. Barr, T. A. Black, H. Iwashita, N. Kljun, J. H. Mc-
Caughey, K. Morgenstern, S. Murayama, Z. Nesic, A. L. Orchansky,
and N. Saigusa, “Carbon, energy and water fluxes at mature and dis-
turbed forest sites, Saskatchewan, Canada,” Agricultural and Forest
Meteorology, no. 136, pp. 237–251, 2006.

[45] M. Reichstein et al., “On the separation of net ecosystem exchange
into assimilation and ecosystem respiration: Review and improved al-
gorithm,” Global Change Biol., vol. 11, no. 9, pp. 1424–1439, 2005.

[46] R. F. Kokaly and R. N. Clark, “Spectroscopic determination of leaf bio-
chemistry using band-depth analysis of absorption features and step-
wise multiple linear regression,” Remote Sens. Environ., vol. 67, pp.
267–287, 1999.

[47] R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative
analysis techniques for remote sensing applications,” J. Geophys. Res.,
vol. 89, no. B7, pp. 6329–6340, 1984, 10.1029/JB089iB07p06329.

[48] O. Mutanga, A. K. Skidmore, and H. H. T. Prins, “Predicting in situ
pasture quality in the Kruger National Park, South Africa, using con-
tinuum-removed absorption features,” Remote Sens. Environ., vol. 89,
pp. 393–408, 2004.

[49] “SYSTAT 12, Version 12.02.00,” SYSTAT Software, Inc., San Jose,
CA, USA, 2007.

[50] F. Baret, M. Weiss, D. Allard, S. Garrigues, M. Leroy, H. Jeanjean, R.
Fernandes, R. B. Myneni, J. T. Morissette, J. Privette, H. Bohbot, R.
Bosseno, G. Dedieu, C. Di Bella, M. Espana, V. Gond, X. F. Gu, D.
Guyon, C. Lelong, P. Maisongrande, E. Mougin, T. Nilson, F. Verous-
traete, and R. Vintilla, “VALERI: A network of sites and amethodology
for the validation of medium spatial resolution land satellite product,”
Remote Sens. Environ. [Online]. Available: http://w3.avignon.inra.fr/
valeri/documents/VALERI-RSESubmitted.pdf

[51] M. E. Brown, J. E. Pinzon, K. Didan, J. T. Morisette, and C. J. Tucker,
“Evaluation of the consistency of long-term NDVI time series derived
from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat
ETM+ sensors,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 7, pp.
1787–1793, 2006.

[52] S. Garrigues, R. Lacaze, F. Baret, J. T. Morisette, M. Weiss, J. Nick-
eson, R. Fernandes, S. Plummer, N. V. Shabanov, R. Myneni, and W.
Yang, “Validation and intercomparison of global leaf area index prod-
ucts derived from remote sensing data,” J. Geophys. Res., vol. 113, no.
G2, p. G02028, 2008, 10.1029/2007JG000635.

[53] J. A. Gamon, Y. Cheng, H. Claudio, L. MacKinney, and D. Sims, “A
mobile tram system for systematic sampling ecosystem optical proper-
ties,” Remote Sens. Environ., vol. 103, pp. 246–254, 2006.

Petya K. Entcheva Campbell (M’99) received the
B.S. degree in forest engineering and silviculture
from the University of Forestry, Sofia, Bulgaria, the
M.S. degree in forest ecology from the University
of Massachusetts, Amherst, MA, USA, and the
Ph.D. degree in forest analysis/remote sensing from
University of New Hampshire, Durham, NH, USA.
Currently she is a Research Assistant Professor at

the Joint Center for Earth Systems Technology, Uni-
versity of Maryland Baltimore County (UMBC). She
is affiliated with the Department of Geography and

Environmental Systems at UMBC, where she has taught GES481/681 under-
graduate/graduate classes in “Remote sensing for environmental applications”.
She is a research associate at the Biospheric Sciences Laboratory at NASAGod-
dard Space Flight Center (GSFC), Greenbelt, MD, USA.
Her research focuses on remote sensing of vegetation bio-physical parame-

ters and function for assessing ecosystem processes and dynamics, conducting
spectral reflectance and fluorescence analyses and using satellite, airborne, field
and laboratory measurements. At GSFC she contributes to the research of spec-
tral bio-indicators of vegetation function, and participates in the Mission Sci-
ence team for the Earth Exploring One (EO-1). Dr. Campbell is a member
of American Society for the Advancement of Science (AAAS), Geoscience
& Remote Sensing Society (IEEE GRSS), International Association for Land-
scape Ecology (IALE), Society of American Foresters (SAF), and has previ-
ously served as the Technical Secretariat for the WGCV/CEOS.

Elizabeth M. Middleton received the B.S. degree in
zoology from the University ofMaryland in 1967, the
M.S. degree in ecology from the University of Mary-
land in 1976, and the Ph.D. degree in botany from the
University of Maryland in 1993.
Dr. Middleton is a Senior Scientist with the

Laboratory for Biospheric Sciences (new Code
618) at NASA/GSFC, Greenbelt, MD. She is cur-
rently the Mission Scientist for the Earth Exploring
One (EO-1) satellite and the GSFC lead for the
NASA HyspIRI satellite concept development.

Dr. Middleton recently received in 2011 a Career Achievement Award from
the Hydrospheric and Biospheric Sciences Laboratory at GSFC. She also
received NASA Group Achievement Awards in 1983, 1994, 1995 and 2003,
respectively, in addition to numerous Performance Awards. She has previously
served, and is currently serving, as the Outside Observer on the Mission
Advisory Group (2007–2009, 2011 ) for a European Space Agency’s Phase
A satellite mission concept—the FLuorescence Explorer (FLEX). In addition,
she was a member of NASA/GSFC Carbon Cycle Science Working Group
(2000–2007) and the NASA representative to the US Federal Geographic Data
Committee’s Vegetation Subcommittee for many years. Dr. Middleton leads a
research team that studies vegetation spectral bio-indicators of plant stress and
photosynthetic function, including plant fluorescence. She is Associate Editor
of the Journal of Applied Remote Sensing.

Kurt J. Thome received the B.S. degree in meteo-
rology from Texas A&MUniversity and theM.S. and
Ph.D. degrees in atmospheric sciences from the Uni-
versity of Arizona. He then joined what is now the
College of Optical Sciences, becoming full Professor
in 2006.
He served as the Director of the Remote Sensing

Group from 1997 to 2008. He moved to NASA’s
Goddard Space Flight Center in 2008 as a Physical
Scientist in the Biospheric Sciences Branch. He has
been a member of the Landsat-7, ASTER, MODIS,

and EO-1 Science Teams providing vicarious calibration results for those and
other imaging sensors. He is a Fellow of SPIE, is the Instrument Scientist
for the Visible Infrared Imaging Radiometer Suite on the Joint Polar Satellite
System and is serving as the calibration lead for the Thermal Infrared Sensor on
the Landsat Data Continuity Mission. Dr. Thome is the Deputy Project Scientist
for CLARREO for which he is also the instrument lead for the Reflected Solar
Instrument.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 11,2023 at 17:07:19 UTC from IEEE Xplore.  Restrictions apply. 



290 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 6, NO. 2, APRIL 2013

Raymond F. Kokaly (M’07) received his B.S. degree in Aerospace En-
gineering from the University of Texas at Austin in 1991 and his M.S. in
Aerospace Engineering Sciences from the University of Colorado at Boulder
in 1993. From 1994 to 1996, he was a Professional Research Assistant at the
National Snow and Ice Data Center at the University of Colorado at Boulder.
Since 1996, he has been a Research Geophysicist at the U.S. Geological Survey
in Denver, Colorado. His research generally focuses on characterizing vege-
tation and other organic substances with spectroscopy and the development
of spectroscopic methods of remote sensing for biologic, geo-botanical and
environmental studies. His applications of hyperspectral remote sensing data
also include the identification of bedrock and soil mineralogy using imaging
spectrometer data. He is a member of the American Geophysical Union (AGU),
the American Society for Photogrammetry and Remote Sensing (ASPRS), and
the Society of Photo-Optical Instrumentation Engineers (SPIE).

Karl Fred Huemmrich received the B.S. in physics
from Carnegie-Mellon University and a Ph.D. in ge-
ography from the University of Maryland, College
Park. Presently he is a Research Associate Professor
in the Joint Center for Earth Systems Technology at
the University of Maryland Baltimore County and
works in the Biospheric Sciences Laboratory at God-
dard Space Flight Center. His work involves deter-
mining biophysical variables using remote sensing,
combining both models and field measurements. He
worked on a number of field studies including the

First International Satellite Land Surface Climatology Project Field Experiment
(FIFE) and Boreal Ecosystem and Atmosphere Study (BOREAS).

David Lagomasino was born in Athens, GA and moved to Miami, FL as a
young boy. While in Florida, he graduated with a B.S. in geological sciences
from Florida International University. He then continued his education at East
Carolina University in Greenville, NC and earned a M.S. in geology. After
earning his M.S., he then moved back to Florida and to his alma mater to pursue

a Ph.D. in geological sciences. During his time at ECU, David was a Research
Assistant in the Oceanography and Radioactive Isotope Laboratories and fo-
cused primarily of wetland sedimentation and coastal processes. Currently, he
is a Research Assistant in the Hydrogeology Lab at FIU, where he combines
water chemistry and remote sensing. His research areas include the sedimen-
tology and ecohydrology of coastal wetlands and estuaries, with particular in-
terest in remote sensing and groundtruthing.Mr. David Lagomasino is amember
of American Geophysical Union and Geological Society of America.

Kimberly A. Novick was born in Montgomery County, Maryland. Novick re-
ceived a B.S.E in Civil and Environmental Engineering from Duke Univer-
sity (Durham, NC, USA) in 2002, and Ph.D in environmental science from the
Nicholas School of the Environmental at Duke University in 2010. She is cur-
rently an assistant professor at the School of Public and Environmental Affairs
(SPEA) at Indiana University (Bloomington, IN, USA). From 2010–2012, she
worked as a research ecologist with the USDA Forest Service Southern Re-
search Station, based at the Coweeta Hydrologic Laboratory. Her research is fo-
cused on quantifying and modeling the biosphere-atmosphere exchange of mass
and energy. Her most recent work is focused on methodological approaches
for interpreting eddy covariance flux measurements over complex terrain, and
theoretical approaches to describe host resistance to bark beetle herbivory. Dr.
Novick is a member of the American Geophysical Union.

Nathaniel A. Brunsell received his B.S. degree from the University of New
Mexico in Earth and Planetary Sciences and his Ph.D. from Utah State Uni-
versity in Biometeorology. He was a post-doctoral research associate at Duke
University from 2002–2004.
Since 2004, he has been in the Dept. of Geography at the University of Kansas

where he is currently an associate professor. His research generally focuses on
land-atmosphere exchange processes and the role of spatial and temporal het-
erogeneity on these fluxes. He utilizes a range of modeling, field observations
and satellite data.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 11,2023 at 17:07:19 UTC from IEEE Xplore.  Restrictions apply. 


	Public Domain
	EO-1_Hyperion_Reflectance_Time_Series_at_Calibration_and_Validation_Sites_Stability_and_Sensitivity_to_Seasonal_Dynamics

