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Abstract—This paper introduces a novel approach for esti-
mating the numbers of endmembers in hyperspectral imagery. It
exploits the geometrical properties of the noise hypersphere and
considers the signal as outlier of the noise hypersphere. The pro-
posed method, called outlier detection method (ODM), is automatic
and non-parametric. In a principal component space, noise is
spherically symmetric in all directions and lies on the surface of a
hypersphere with a constant radius. Reversely, signal radiuses are
much larger that noise radius and vary in all directions, thus signal
lies in a hyperellipsoid. The proposed method involves three steps:
1) noise estimation; 2) minimum noise fraction transformation;
and 3) outlier detection using inter quartile range. Estimation of
the number of endmembers is accomplished by the estimation of
the number of noise hypersphere outliers using a robust outlier
detection method. The ODM was evaluated using simulated and
real hyperspectral data, and it was also compared with well-known
methods for estimating the number of endmembers. Evaluation
of the method showed that the method produces robust and
satisfactory results, and outperforms in relation to its competitors.

Index Terms—Hyperspectral imagery, outlier detection method
(ODM), signal processing, signal subspace.

I. INTRODUCTION

E STIMATION of the number of signals is a fundamental
problem in signal processing. In the scientific field of

hyperspectral imagery, signals are related to the unique con-
stituent deterministic spectral signatures, called endmembers
[1]. A predetermined number of endmembers is required by
the majority of the existing endmember extraction methods in
order to detect the optimal set of endmembers. Estimation of
the correct number of endmembers has significant impact on
the performance of the endmember extraction algorithms and
consequently on the accuracy of the spectral unmixing process.
According to [2], the accuracy of spectral unmixing will be the
highest when the exact number of endmembers that are required
to account for the spectral variability is utilized in the model.
Using fewer endmembers than the actual number would lead to
the increase of the root mean square error between the original
and the reconstructed image, while too many endmembers
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would make the model sensitive to instrumental noise, atmo-
spheric influences, and natural variability in spectra, resulting
in abundance estimation error. Furthermore, the number of
endmembers is associated with the intrinsic or, in a more wide
sense, with the virtual dimensionality of a hyperspectral dataset
[3], [4], as it determines the optimal number of dimensions to
be retained after dimensionality reduction in order to represent
the dataset. Hence, an accurate determination of the number
of the endmembers significantly contributes to the accuracy of
the spectral unmixing processing and enables low-dimensional
representation of spectral vectors, yielding gains in computa-
tional time and complexity, data storage and signal-to-noise
ratio (SNR) [5].
In recent years, many algorithms have been developed which

contribute to the estimation of the number of endmembers. The
available methods can be classified into separate categories. The
first category comprises eigen-based energy methods [6], [7].
These methods involve a dimensionality reduction method and
estimate the minimum number of the transformed components
for which the total variance of the data is equal to a specified
percentage of energy. However, the cut-off threshold should be
manually chosen, which is very difficult to determine since the
eigenvalues corresponding to signals and noise are sometimes
very similar [8]. In the second category, information criteria
based on likelihood functions [9], [10] are included. Two well-
known information criteria for model order selection are Akaike
information criterion (AIC) [9] and minimum description length
(MDL) [10]. Since the criteria require the prior knowledge of the
mixture model or likelihood function, the estimation may suffer
from model mismatch errors resulting from incorrect prior in-
formation. Moreover, it has been shown in [4] that the results
of AIC and MDL when applied to hyperspectral data are seri-
ously overestimated due to the invalid Gaussian distribution as-
sumption made on the abundances [8]. The third category con-
sists of eigenvalue-based methods [4], [8]. Harsanyi-Farrand-
Chang (HFC) and noise-whitened HFC (NWHFC) [4] methods
estimate the virtual dimensionality (VD) based on the fact that
the eigenvalues of the correlation matrix and of the covariance
matrix will be equal if noise exists. Thus, eigenvalues of both
data correlation and covariance matrices are calculated and if
their difference is positive—according to a determined proba-
bility false alarm parameter—then a signal source is present.
VD methods might overestimate the number of the endmem-
bers because they estimate the spectrally distinct signal sources
which could comprise known and unknown image endmembers,
background signatures, interferences and anomalies [4]. HFC
and NWHFC methods impose limitations to automation since
they result in different estimates for different false alarm pa-
rameters. Recently, a new empirical method for estimating the
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number of endmembers presented in [8] modifies the VD con-
cept. The method is called eigenvalue likelihood maximization
(ELM), and it is based on the fact that the eigenvalues which cor-
respond to the noise are identical in the covariance and the cor-
relation matrices, while eigenvalues corresponding to the signal
are larger in the correlation matrix than in the covariance matrix.
The eigenvalue-based methods are based only on the eigenvec-
tors of the observed data correlation or covariance matrix. Since
signal subspace dimension is unknown inmost real applications,
it must be inferred from data leading to a model-order problem
which may lead to poor results [11]. Authors in [11] presented
hyperspectral signal subspace identification by minimum error
(HySime) method which selects the subset of eigenvectors that
best represents the signal subspace in the minimummean square
error sense.
All of the aforementioned methods arguably consider the ex-

istence of two different distributions, the one related to noise
and the other related to signal, or in geometrical approach they
consider two different subspaces one of noise and one of signal.
However, in hyperspectral space, signal vectors are very few in
order to estimate their population distribution properly or to sta-
tistical analyze them.
In this paper, a new automatic nonparametric method for es-

timating the number of endmembers is introduced. Its novelty
lies in the fact that it considers only the existence of noise and
treats signals as outliers of noise. No estimation of statistical
distributions is required. The new method, called outlier detec-
tion method (ODM), explores the geometrical properties of the
noise hypersphere. It searches for the signals whose radius is by
far larger than the one of the noise introducing for the first time
in virtual dimension theory a robust outlier detection method. In
particular, the ODM implements noise estimation andwhitening
process. Afterwards, observed data are transformed into a new
principal component space, where noise is expected to lie in
a hypersphere of constant radius. Estimation of the number of
noise hypersphere outliers using a robust inter quartile range
based outlier detection method [12] results in the estimation of
the number of endmembers. In [13] an empirical method for es-
timating the number of endmembers is presented which implies
the approach adopted by ODM.
The remainder of this paper is organized as follows. Section II

formulates the estimation of the signal subspace dimension
problem. Section III describes the theoretical fundamentals
which substantiate the proposed approach. Section IV presents
two well-known noise estimation methods and Section V pro-
vides elaborate description of the proposed method. Evaluation
of the proposed method compared with state-of-the-art relevant
methods using simulated and real data is given in Section VI.
Finally, Section VII provides concluding remarks.

II. DATA MODEL AND PROBLEM FORMULATION

Consider that, if is the total number of bands, each observed
spectral vector , , consists of a signal vector ,
, and an error term , , for additive noise which

includes sensor noise, endmember variability, and other model
inadequacies [1], [8], [11], [14]:

(1)

Furthermore, a signal vector lies in an unknown -dimensional
subspace of the band space, where , and it is described by

(2)

Under the subspace model scenario, the signal vectors
are linearly independent (or otherwise is a full rank

matrix), serving as a basis for the spectral subspace [1] and is
considered a vector containing coefficients . Under the
linear spectral mixing concept [14], matrix
comprises the endmember spectra and
their corresponding abundances. The latter should obey to
sum-to-one and positivity constraints in order to be physically
meaningful. In this paper, we study the subspace model which
specifies the linear vector subspace region of the spectral space
in which spectral vectors are allowed to reside regardless the
adopted spectral mixing model, linear or nonlinear [1], [11].
According to [15], in the case of independent and identically

distributed (i.i.d.) zero mean noise with variance , signal
subspace can be estimated, even if signal vectors are unknown,
by the orthogonal decomposition of the covariance matrix of the
observed vectors , . The estimate of the signal subspace is
the span of the eigenvectors of , ,
whose respective eigenvalues are larger
than of noise. Of course, in most real applications, the di-
mension of the signal subspace is unknown and noise is not
i.i.d.. Therefore, in many cases, noise estimation is a prerequi-
site for the denoising or whitening process which is discussed
in Section IV. A plethora of signal subspace estimation methods
[4], [6]–[10] are based on the eigenvalues of the covariance or
correlation matrix of the observed spectral vectors . The draw-
backs of using only the eigenvalues are presented in [11]. In this
paper, the estimation of the signal subspace dimension is based
on the transformation of the observed vectors using the eigen-
vectors of . The new transformed space is then statistically
analyzed based on information theory concepts which are pre-
sented in the following section.

III. DEFINITION OF NOISE HYPERSPHERE

A. Multivariate Normal Distribution

Let be a random vector. Its
mean value is given by , stands for expected
value, and its covariance matrix by .
Assuming that random is multivariate normal and is a

nonsingular matrix, the following quadratic form:

(3)

is a weighted norm which is called the Mahalanobis distance
from to . The locus of points for which is constant is
also a locus of points for which the density is constant. In
case that the locus is a hypersphere, its radius is equal to [15].

B. Noise Hypersphere

Based on information theory [16], [17] the zero mean
white Gaussian noise vector has constant
noise spectral density . It is spherically symmetric in
all directions in the spectral space and lies on the surface
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Fig. 1. Illustration of noise hypersphere in three dimensions
.

of a hypersphere with radius equal to . More specifi-
cally, in an -dimensional hypersphere, the distance of point

from its origin (zero) point is according
to (3) and the distance of the
normalized noise vector is , which is the . The ad-
vantages of considering the normalized version of noise vector
as well as further details related to the above can be found in
[16]–[18].
Thereupon, are the standard devi-

ations of the normalized noise vector in each dimension of the
hypersphere and are equal to its radius as it shown in Fig. 1.
The signal vector has evidently and, since varies
in all directions, it lies in a hyperellipsoid. Further analysis of
the signal and noise locus is provided for a given dataset in
Section V-A. In order to utilize the aforementioned properties
of the noise hypersphere, it is requisite that the noise is zero
mean i.i.d. or that noise is known, and therefore it can be trans-
formed to zero mean i.i.d.. Both requisites do not stand in real
applications. However, many approaches have been developed
for noise estimation. Two of them are presented in Section IV.

IV. NOISE ESTIMATION

Noise estimation is of great importance not only for hy-
perspectral imagery but generally for signal processing. Here,
nearest neighbor difference (NND) [19] and multiple regres-
sion theory [20] based methods are analyzed since these are
widely used by signal subspace estimation algorithms [10],
[11]. Both of these noise estimation methods are evaluated
using simulated data in Section VI.

A. Nearest Neighbor Difference

The nearest neighbour difference (NND) method [19], also
called shift difference method, is considered to be the easiest
method for noise estimation. The procedure exploits the fact that
signal exhibits strong spatial correlation among nearby pixels in
an image, while the spatial correlation for noise is very weak.
Therefore, it is assumed that noise samples are independent and
have the same statistics [11]. The shift difference method should
be applied on a homogeneous area. More precisely, it is per-
formed on the data by differencing the two adjacent pixels to
the right and above each pixel and averaging the results to ob-
tain the noise value to assign to the pixel being processed. The

idea can be illustrated using two adjacent observed vectors,
and , with essentially the same target. Subtracting them yields

(4)

where are the signal vectors and are noise vec-
tors. Depending on the image, the noise estimation may be per-
formed in a homogeneous subset of pixels, assuming that noise
is the same throughout the whole image. Therefore the covari-
ance matrix of noise can be estimated, instead of noise value
per observed spectral vector. The drawback of the NNDmethod
is that due to its assumption that adjacent pixels have the same
signal information, the method is not proper for all the datasets,
because the amount of pixels belonging to homogeneous areas
may not be adequate for an accurate calculation of noise statis-
tics.

B. Multiple Regression Theory-Based Method

The multiple regression theory-based approach [11], [20] is
amenable to hyperspectral data since it can accommodate many
explanatory variables which may be correlated, such as data in
adjacent spectral bands. In particular, let be a data
matrix, where are the observed spectral vectors, and
be the spectral bands. Define , a vector
containing the values of all of the pixels in band and

is a matrix containing
the pixel values of all the bands except for band . Assuming
that vector can be expressed as a linear combination of the
remaining data of bands, the following equation can be
written:

(5)

where is the explanatory data matrix, is the
regression vector, and is the residual error of size

. The linear regression coefficients are determined by

(6)

Noise estimation of band is accomplished by the following
equation:

(7)

V. OUTLIER DETECTION METHOD (ODM)

Here, the proposed method for estimating the number of end-
members, ODM, is introduced and described analytically. The
method is fully automatic and nonparametric. It comprises three
steps: 1) noise estimation; 2) MNF transformation; and 3) out-
lier detection. The main key points of the proposed method are
summarized here.
• There is a big effort in hyperspectral community to de-
fine a threshold between signal and noise [8]. The ODM
introduces a new concept which considers only the exis-
tence of noise and treats signal as outlier. Consequently,
no threshold is needed.

• Contrary to the existing relevant algorithms which focus
on signal subspace, the ODM exploits the properties of
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noise subspace. It relies on the mathematical description of
the noise hypersphere radius which is given by information
theory.

• A new modified version of MNF is introduced which ini-
tially performs multiple regression theory based method
for noise estimation, instead of NND. Results showed that
this modification optimize the MNF method.

• For the first time in virtual dimensionality theory, a robust
outlier detection method is used, called inter quartile range
(IQR)-based method. Its benefit lies in the fact that it can
be used when data distribution is unknown and thus, no
statistical parameter estimation is needed. The risk of esti-
mating erroneously the signal distribution due to its small
population is omitted.

• The proposed method is characterized by its simplicity.
The first step of the proposed method is noise estimation. Ex-

periments with simulated and real data (Section VI) show that
the performance of the proposed method is better when mul-
tiple regression based method is applied in comparison to NND
method.
The second step includes noise whitening and trans-

formation into a new principal component space. More
analytically, the noise covariance matrix is estimated.
The orthogonal decomposition of results in the matrix

of size which consists of
noise eigenvectors , each one of size . Suppose that the
observed data matrix , where are the observed
spectral vectors and the spectral bands, is transformed using
the noise eigenvectors. The transformed data is given by

(8)

The matrix of size consists of transformed spectral
vectors of size . Define , a vector

contains the values of all the transformed pixels in
band . Dividing each data of band with the standard deviation
of noise (symbol stands for the estimated value) of the
corresponding band

(9)

results in the matrix , which is the transformed data
with equal noise variance in each band, which means that
noise is whitened in the transformed space. The next step is
the orthogonal decomposition of the covariance matrix of ,
which results in the matrix containing the
eigenvectors of size . The transformation of using
the eigenvectors of

(10)

defines a new principal component space in which transformed
data of matrix consists of uncorrelated noise which
increases with the component rank. Thus, the well-knownMNF
[19] is modified by applying different noise estimation method.
Assuming that noise is white, rotation of a signal structure

[i.e., in (10)] does not change the noise distribution [18]. Con-
sequently, noise remains spherically distributed about the mean
value and lies in a hypersphere of radius . It is reasonable

that noise estimation comprises an error, which is justified in
term of fluctuations. Therefore, it cannot be expected that stan-
dard deviations of noise components are exactly equal to
but it should be expected to be close to zero mean value as the
minimum standard deviation of a component corresponds to the
maximum noise fraction [19]. Conversely, standard deviation

of signal , where , is larger than and de-
creases as component’s rank increases.
The third step of ODM includes outlier detection using quar-

tile range. Outlier detection is widely used to detect and/or re-
move anomalous observations from the data. It is a primary step
in many data-mining applications [12]. There are many defini-
tions given for outliers. The one that fits on the particular ap-
proach is given by Hawkins [21] who defines an outlier as an
observation that deviates so much from other observations as to
arouse suspicion that it was generated by a different mechanism.
The sample mean and the sample variance give good esti-

mation for data location and data shape, but they are affected
by outliers. IQR-based method [12], [22] is one of the most
common methods for outlier detection as IQR is a robust
statistic compared to total range and standard deviation. The
method can be used when data distribution is unknown. As-
sume that observed values are placed in ascending order. The
lower quartile is the observation at the 25th percentile,
the second quartile is defined the observation at the 50th
percentile, and the third quartile is the observation at the
75th percentile. The quantity is called the inter
quartile range (IQR) and it provides a means to indicate the
boundary beyond which the data will be labelled as outliers.
More precisely, if an observation is below or
above , it is viewed as being too far from the
central values to be reasonable.
In most real applications, signal subspace, and consequently

signal vectors are unknown and even if they are known they
are very few in order to be statistically analyzed. Noise sub-
space consists always of some hundreds of components which
are much more than the signal components in the transformed
hyperspectral space. Assuming that standard deviations of all
the principal components correspond to noise, it is expected that
the whole data lies in a hypersphere of radius . Thus, signal
components can be considered as outliers of noise hypersphere.
As was mentioned in the previous section, the radius of

noise hypersphere is much smaller than the radius of the signal
hyperellipsoid and since search is focused on detecting noise
hypersphere outliers, only the upper bound is of interest in this
particular procedure. Let us assume that
is a vector which consists of the standard deviations of
each transformed component. The transformed components
are ranked according to the SNR, which implies that are in
descending order and thus, the first values of correspond
to signal vectors. Taking the as
the vector which consists of the standard deviations
in reverse order, meaning in ascending order, the first

values of correspond to noise vectors. As is
unknown, we suppose that all of the values of correspond
to noise. Euclidean distance (ED) of adjacent values of ,

reflects possible divergences which are considered reasonable
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when corresponds to noise, but outliers when corresponds
to signal.

Proposed Algorithm (ODM)

Data: The matrix , where are the observed
spectral vectors and the spectral bands
Result: Estimation of the number of endmembers
Step 1: Noise estimation

for to , all the pixels of band i

the pixels of all the
bands except i

express band i as linear combination
of L-1 bands

calculation of coefficient b
noise estimation for band i

end for
OUTPUT
Step 2: White noise data transformation
Estimation of the noise covariance matrix
Orthogonal decomposition of :

,
are the transformed pixels in band

for to , estimation of (standard deviation of noise)

end for
Estimation of the covariance matrix of
Orthogonal decomposition of :
Transformation of whitened data
OUTPUT: Transformed whitened data
Step 3: Outlier detection
Estimation of standard deviation of :
Normalization of
Put in descending order
Calculation of Euclidean distance for of adjacent bands

Retrieval of quartiles from EDs:

for to 4

end for

Definition of the number p of endmembers

for to

if is greater than
p++

Fig. 2. Overlapping scattergrams of pairs of adjacent principal components.
Only two axes are used (i, j). Each component (B) is kept on the same axis for
the pairs in which is encountered.

end for
OUTPUT: Number of endmembers p

A. Geometrical Concept

For illustration purposes, the following experiment on sim-
ulated hyperspectral data is implemented. The simulated data
generated according to the linear mixing scattering mechanism
using seven random spectral signatures from the U.S. Geo-
logical Survey (USGS) digital spectral library and consist of

and 423 spectral bands. The abundance fractions
follow a Dirichlet distribution according to [11] enforcing pos-
itivity and full additivity constraints. Gaussian colored noise
was added to the data resulting in an SNR of 20 dB. The pro-
cedure described previously containing noise estimation using
multiple regression theory, noise whitening and transformation
into a new principal component space and outlier detection is
implemented.
Fig. 2 shows the distribution of the transformed data through

overlapping scattergrams of pairs of adjacent components. Only
two axes are used (i, j). Each component is kept on the same
axis for the two pairs in which is encountered. The extent of
each scattergram in i and j directions implies the magnitude of
the standard deviation of Ci and Cj component, respectively.
As it is observed, standard deviations of the first six principal
components are relatively high and as band rank increases, stan-
dard deviations increase.More precisely, suppose denotes the
standard deviation of band i. As shown in the overlapping scat-
tergram, the following relation exists:

. Furthermore, it is remarkable that
noise circle (in this case, it is not hypersphere since scattergrams
are shown in two dimensions) can be detected from the C7–C8
pair (orange circle) and after. This means that, in the hyperspec-
tral space, the radius of the noise hypersphere is associated with
the standard deviation of the seventh component which is right
after the component. It should be noted that, since simu-
lated data are generated according to a linear mixing model, the
dimension of the signal subspace is . The scattergram of
the 401st and 402nd components was randomly selected to tes-
tify the equality of the noise standard deviation in all of the
directions (Fig. 2). The difference between the radius of the or-
ange circle (Components 7–8) compared with the radius of the
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Fig. 3. Diagram of the standard deviations of each principal component
. A logarithmic scale is used on the -axis.

Fig. 4. Box plot indicating the existence of outliers (on the right side of the
green line). A logarithmic scale is used on y-axis.

yellow circle (Components 401–402) can be considered without
loss of generality as a result of fluctuations.
Another approach for studying the standard deviations of the

principal components is by plotting them on a diagram. Fig. 3
shows the standard deviations of each principal component re-
sulted from the above experiment. By observing the diagram,
it is easy to perceive that standard deviations of the noise (in
black) are almost similar while standard deviations of signal (in
blue) differ greatly from each other. The optimum threshold by
which signals are discerned from noise is estimated by using the
IQR-based method.
A graphical display on which outliers can be indicated is a

Box plot [12]. Fig. 4 shows the Box plot created by using the
EDs between the standard deviation values. The majority of the
EDs are close to one and reside on the left side of the green
line, which indicates the upper bound. Black points represent
the outliers. As can be observed, the differences in EDs between
the three quartiles are negligible compared to the values of the
six outliers.

VI. EXPERIMENTS

A. Simulated Data Experiments

The ODM algorithm was applied on simulated data
and compared with the state-of-the-art signal subspace

methods, the HySime method and the NWHFC eigen-based
Neyman-Pearson detector. The simulated data were generated
by a random set of 15 spectral signatures with 423 spectral
bands from the U.S. Geological Survey (USGS) digital spectral
library. The abundance fractions follow a Dirichlet distribution
according to [11] enforcing positivity and full additivity con-
straints. Experiments were conducted with respect to: 1) the
size of the image ; 2) the number of endmembers ; 3) the
SNR values; 4) the type of noise (white noise and Gaussian
shaped noise)1; and 5) the existence of outliers.
The reason that different image sizes are introduced is

twofold. First, due to sampling error, estimation of the noise
covariance matrix and estimation of standard deviation
are both affected by the sample size, and they should be

examined and evaluated using a smaller image size, as well.
Second, recent developed endmember extraction methods tend
to integrate spatial information into the endmember extraction
process [23]. Towards this direction, these methods search for
local endmembers in subsets of image data. Therefore, effec-
tiveness of the ODM is examined for such a scenario. Thus,
two sets of simulated hyperspectral images were created which
differ in size, containing 2500 and 10 pixels, respectively.
Furthermore, evaluation of the proposed method regarding var-
ious numbers of endmembers should also be tested. According
to [14], the number of endmembers that may be practically
identified typically ranges from three to seven, depending
on the number of bands and the spectral variability of the
scene components. In the case of high spectral resolution, the
hyperspectral datasets may comprise even more, i.e., AVIRIS
Cuprite image consists of at least 18 distinct spectral signatures
according to the USGS. Therefore, the number of endmembers
was determined to be 3, 7, and 15. Two different types of

noise were added in the simulated images; white noise and
Gaussian shaped noise with variance equal to 0.02, leading
to SNR values of 50, 30, 20, and 10 dB. A noise estimation step
is required in order to transform noise to zero mean i.i.d.. In
the case of simulated images with white noise, the last is spher-
ically symmetric in all directions and lies on the surface of a
hypersphere with a constant radius Therefore, noise estimation
can be omitted.
Figs. 5 and 6 show the standard deviation values for each

transformed component of images with , with equal
to 3, 7 and 15 and white and colored noise respectively. It is
observed that standard deviation values minimize and stabilize
when the number of the transformed components is equal to the
number of the endmembers. For clarity purposes, it was chosen
to present a subset of the transformed components of all the sim-
ulated images in a stacked plot, and therefore the scale of the
values in Fig. 5 and Fig. 6 has changed. Table I shows the re-
sults of the applied methods for images with white noise. As it is
concluded from the results, regarding the images of 2500 pixels,
the ODM yielded quite satisfactory results outperforming the
HySime and NWHFC algorithms when SNR values were very
low (30 dB-10 dB). For the images of , all the ap-
pliedmethods yielded the same high performance for the images
which contain 3 endmembers, regardless the amount of noise.

1The algorithm which was used for the generation of the simulated data is
available at http://www.lx.it.pt/~bioucas/code.htm.
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Fig. 5. Stacked plots of standard deviation values for each PC band for the
images with and white noise.

Fig. 6. Stacked plots of standard deviation values for each PC band for the
images with and Gaussian shaped noise.

When the space dimension increased, with , the proposed
method outperformed the NWHFC method and it had the same
high performance with HySime, except for the image with SNR
of 10 dB for which the proposed method performed better. For
the images with 15 endmembers, the proposed method yielded
systematically better results than both HySime and NWHFC.
Table II shows the results of the applied methods for im-

ages with Gaussian shaped noise. Two different methods for
noise estimation were implemented. As it was expected, NND
noise estimation led to the worst results. This is reasonable be-
cause NND needs to calculate the shift difference in homoge-
neous area while pixels in simulated data were created randomly
without homogeneous areas. The most satisfactory results were
given by ODM for both image sizes when multiple regression
theory based method was used for noise estimation. Especially
in case of low SNR, results are much more satisfactory com-
pared to the results fromHySime, while both methods presented
similar results for high SNR. The NWHFC method, as imple-
mented in [24], [25], presented the worst results.
In order to test the method’s resistance to outliers, simulated

images containing 7 endmembers and Gaussian shaped noise
with SNR values of 30 dB and 50 dB were used. Outliers were
added to the images by randomly sampling three outlying points
from a uniform distribution, according to [26]. Table III reports

the results. Estimations of the proposed method are satisfactory
and testify its resistance to outliers.

B. Real Data Experiments

The proposed algorithm was applied on two real hyper-
spectral remote sensing images in order to be evaluated in
case of unequally distributed noise. The first image was
acquired in June, 1992 by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor over an agricultural
area of north-western Indiana (Indian Pines) (Fig. 7). It
consists of 145 145 pixels with 220 spectral bands cov-
ering a spectral range from 400 to 2500 nm. The number of
bands was reduced to 186 after removing 34 bands due to
water absorption and low SNR. According to the associate
ground based observations,2 16 land cover classes exist in the
image; alfalfa, corn-notill, corn-mintill, corn, grass-pasture,
grass-trees, grass-pasture-mowed, hay-windrowed, oats, soy-
bean-notill, soybean-mintill, soybean-clean, wheat, woods,
buildings-grass-trees-drives and stone-steel-towers. It should
be noted that the aforementioned classes do not represent the
entire scene and some of them are not associated with pure
materials. Consequently, the number of the endmembers is ex-
pected to be higher than 16. Fig. 8 shows the standard deviation
values for each transformed component of the AVIRIS image
and Table IV shows the estimated number of endmembers from
the applied methods.
As it is listed in Table IV, the ODM using NDD and multiple

regression theory based method for noise estimation and the
NWHFC resulted in a reasonable number of the distinct classes
while the HySime underestimated it. The fact that NWHFC esti-
mates were much higher than its competitors is reasonable since
the method searches for signal sources which may include not
only endmembers but also unknown interferences, such as clut-
ters, background signatures and anomalies [5].
The second real hyperspectral dataset which has been used

for evaluation was collected in 1997 by the AVIRIS sensor over
a well-known mining region of Cuprite in Nevada. The image
scene is well understood mineralogically and the ground truth
spectral signatures are available in the USGS digital library.
According to the associated ground based observations and the
mineral map produced in 1995 by USGS,3 18 minerals can be
identified in the image. Besides minerals, there should be other
distinct classes depicted in the image, whose amount is un-
known. Thus, the number of endmembers is expected to be
higher than 18. The original image has 220 spectral bands cov-
ering a spectral range from 0.4 to 2.5 m. The number of bands
was reduced to 188 after removing bad bands due to water ab-
sorption and low SNR. Fig. 9 shows the subimage scene of 351
350 pixels with reflectance values which was selected for

the experiments. Fig. 10 shows the standard deviation values
for each transformed component of the AVIRIS image. Table V
shows the estimated number of endmembers from the applied
methods.

2[Online]. Available: https://engineering.purdue.edu/~biehl/MultiSpec/hy-
perspectral.html.
3[Online]. Available: http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.

gif.
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TABLE I
ESTIMATED NUMBER OF ENDMEMBERS FROM IMAGE WITH WHITE NOISE AS FUNCTION OF SNR, AND

TABLE II
ESTIMATED NUMBER OF ENDMEMBERS FROM IMAGE WITH GAUSSIAN SHAPED NOISE AS FUNCTION OF SNR, AND [1] STANDS FOR MULTIPLE REGRESSION,

[2] STANDS FOR NND

As it is shown in Table V, the ODM using NDD and mul-
tiple regression theory based method for noise estimation and
the NWHFC resulted in number of the distinct classes higher
than 18 while the HySime underestimated it. Particularly, ODM
using NDD significantly overestimates the number of endmem-
bers since the Cuprite image does not include adequate number
of pixels belonging to homogeneous areas.

TABLE III
ESTIMATED NUMBER OF ENDMEMBERS FROM IMAGE WITH THREE OUTLIERS
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Fig. 7. AVIRIS Indian pines hyperspectral dataset.

Fig. 8. Standard deviation values of the transformed bands for AVIRIS Indian
pine image.

TABLE IV
ESTIMATED NUMBER OF ENDMEMBERS FOR THE AVIRIS INDIAN PINES IMAGE

[1] STANDS FOR MULTIPLE REGRESSION, [2] STANDS FOR NND

Fig. 9. AVIRIS Cuprite hyperspectral data.

Fig. 10. Standard deviation values of the transformed bands for AVIRIS
Cuprite image.

TABLE V
ESTIMATED NUMBER OF ENDMEMBERS FOR THE AVIRIS CUPRITE IMAGE [1]

STANDS FOR MULTIPLE REGRESSION, [2] STANDS FOR NND

VII. CONCLUSION

In this paper, a new automatic and nonparametric method
for the estimation of the number of the endmembers in hyper-
spectral imagery was introduced. The proposed method, called
the outlier detection method (ODM) develops a novel approach
considering signal as an outlier of the noise hypersphere. In par-
ticular, after noise estimation and whitening process, the trans-
formed data reside in a principal component space where noise
presents spherically symmetry towards all the directions, having
a constant radius. Conversely, signal radius varies in all of the
directions, and it is much larger than the noise radius in the com-
ponents which include it. Estimation of the number of noise hy-
persphere outliers using a robust IQR-based outlier detection
method results in the estimation of the number of endmem-
bers. The proposed method is characterized by its simplicity
and its significant benefit to refrain from estimation of statis-
tical distributions.
Experiments using simulated data proved the efficiency of the

ODM which outperformed compared with its competitors. The
performance of the proposed method is quite satisfactory in real
data, as well. Through this particular work it is concluded that
a successful estimation of the number of endmembers strongly
depends on how well signal and noise are discerned. Outlier
detection theory could be efficiently used for this goal. Addi-
tional experiments could contribute to a superior performance
of the proposed method. Future research should also focus on
combining the proposed method with endmember extraction
methods which integrate spatial information, taking advantage
of its successful estimation of the number of endmembers in
small-sized images.
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