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I.  INTRODUCTION 

 
ATA acquired by the Geoscience Laser Altimeter System 

(GLAS)   on  board  the  Ice,  Cloud,  and  Land  Eleva- 

tion Satellite (ICESat) between 2003 and 2009 have been 

successfully  used  to  estimate  tree  heights  and  aboveground 

forest biomass (e.g., [1]–[13]). GLAS 1064-nm waveforms 

correspond  to backscatter  energy as a function  of time. They 

are digitized  in 544 or 1000 bins with a bin size of 1 ns for 

land  (15  cm  vertical  resolution),  corresponding  to  81.6  and 

150 m height ranges, respectively.  The GLAS laser footprints 

have  a near circular  shape  of about  60 m in diameter  and a 

footprint  spacing  of about  170 m along  the track.  For forest 

applications,  the data used consist of the GLA01 and GLA14 

products. These products provide the full received waveforms 

and the land surface elevation data, respectively [14]. The 

horizontal  geolocation  error of the ground footprints  is lower 

than 5 m on average for all ICESat missions,  and lower than 

5 m in standard deviation, except for the L2C, L2D L2E, and 

L2F  missions,  where  the  standard  deviation  is  between  7.4 

and 15.6 m for L2D and L2F missions, respectively  [14]. The 

vertical geolocation accuracy ranges between 0 and 3.2 cm on 

average with a standard deviation under 3.3 cm for all missions 

except for the L2C, L2D, L2E, and L2F missions (between 5.1 

and 10.9 cm) [14]. 

The accuracy obtained on the forest height estimates in 

numerous studies using the GLAS data has varied between 2 

and 10 m according to the forest type and the characteristics 

of the study site (mainly the topography of the terrain) (e.g., 

[3]–[5], [7], [8], [10], [11], and [13]). GLAS data are often 

used together with auxiliary datasets to estimate aboveground 

biomass. The auxiliary data is mainly composed of airborne 

laser data, a digital elevation model, and optical and radar 

images. The recent paper by Saatchi et al. [12] provides the 

spatial distribution of aboveground forest biomass in tropical 

regions over three continents (Latin America, sub-Saharan 

Africa, and Southeast Asia) using GLAS, MODIS, QSCAT 

(spaceborne scatterometers at 12 GHz), the SRTM digital 

elevation model, and ground data with an overall accuracy of 

23.8%. Using only the forest height estimated from GLAS 

data, Lefsky et al. [6] obtained a biomass estimate accuracy of 

58.3 Mg/ha for biomass values lower than 350 Mg/ha. Nelson 

et al. [9] estimated Siberian timber volume using MODIS and 

GLAS data with a biomass standard error of 36 Mg/ha.



 
 

 

However, three main limitations have been pointed out by re- 

searchers: 1) the low density of the GLAS footprint count and 

the lack of data over wide areas of the world; 2) the high sensi- 

tivity of GLAS returns to terrain topography  due to the large 

footprint  size of GLAS  impacts  on forest  height  estimations 

[10]; 3) for denser and higher canopies, laser penetration is re- 

duced and, consequently,  the ground return needed to estimate 

canopy height is not detectable or has a low intensity. 

The objective of this paper was to test the best known models 

used for estimating canopy height using full waveform LiDAR 

data. Studies to estimate forest heights from LiDAR data have 

highlighted that the fitting coefficients of developed models are 

strongly  dependent  on environmental  factors,  such as the re- 

gion of the study site, terrain topography,  and forest type. In 

this paper, we evaluate the main models developed  to predict 

canopy height using a combination of parameters extracted from 

GLAS waveforms (GLA14 and GLA01 products) and a digital 

elevation model, in order to explore which combination  of pa- 

rameters yields the best forest height estimates. In addition, a 

model to estimate aboveground biomass from dominant height 

was calibrated.  Canopy height and aboveground  biomass esti- 

mates derived from GLAS data were compared with inventory 

measurements. 

A  description  of  the  dataset  used  in  this  study  is  given 

in  Section  II,  followed  by  the  presentation  of  methods  for 

forest height and aboveground biomass estimations using 

ICESat/GLAS  in Section  III. The results  are shown  and dis- 

cussed in Section IV, and finally Section V presents the main 

conclusions. 
 

 
Fig. 1.  GLAS/ICESat tracks over our study site.

 
 

A.  Study Area 

II.  DATASET DESCRIPTION

The study area was located in Brazil, ranging from 47  31’ 

to 47  38  longitude  West and from 21  29  to 21  39  latitude 

South (Fig. 1). The area was mainly  covered  with industrial, 

fast-growing Eucalyptus plantations managed for pulpwood by 

the Internationnal  Paper do Brasil company [15]. Seedlings or 

clones of E. grandis (W. Hill ex Maiden) x E. urophylla (S. T. 

Blake)  hybrids  were planted  in rows at a density  of approx- 

imately  1300 trees/ha  and were being  harvested  every six to 

seven years, with very little tree mortality (under 7%). The an- 

nual productivity of the plantations depended on the growth 

stage, soil type, fertilization, climate, etc., but was generally 

above 30 m /ha/year, sometimes reaching values as high as 

60 m /ha/year. At harvest time, the stand volume was there- 

fore about 250–300 m /ha, and the dominant height was about 

20–30 m. These plantations were managed locally by stand units 

of variable area (   50 ha on average for the studied stands). 

Management practices were uniform within each stand (e.g., 

harvesting and weeding dates, genetic material, soil prepara- 

tion, and fertilization).  Chemical  weeding  was carried  out in 

the first year after planting, resulting in a very sparse under- 

story and herbaceous strata in these plantations. A few Euca- 

lyptus trees were dominated from the early growth stages and 

remained small throughout the whole rotation, but their leaf area 

and biomass were very low compared with regular trees (see 

[16, Fig. 1]). The stands were therefore rather simply structured 

with a crown layer of 3 to 10 m in width above a “trunk layer” 

of 0 (in the first months) to 20 m in height (Fig. 2) with very few 

 
 
 
 
 
 
 
 
 
 
Fig. 2.  Eucalyptus stand during harvest illustrating the clearly separated crown 
and trunk strata (dominant height of    30 m). 

 
understories. In the study area, the stands were established in a 

low to moderate topographic relief (slope under 7 ). 
 

B.  In Situ Measurements 

A total of 114 Eucalyptus stands were selected, corre- 

sponding to the stands where GLAS footprints were totally 

included, with an additional 10-m buffer strip from the stand 

borders  to account  for any footprint  geolocation  errors.  This 

selection was also intended to avoid mixing effects within 

a  GLAS footprint. In  these 114 Eucalyptus stands, two to 

eight  permanent  inventory  plots  were  measured  regularly 

by  the  company between November 2002  and  May  2009. 

During a rotation, three inventories were generally carried out: 

around the age of two years, four years, and before harvesting 

(approximately  six years).  Permanent  inventory  plots had an 

area of approximately  400 to 600 m   and were systematically



 
 

 
TABLE I 

THE  NUMBER   OF  EXPLOITABLE   ICESAT  FOOTPRINTS   FOR  EACH  YEAR. OF  THE  1387 FOOTPRINTS 

ACQUIRED  OVER OUR STUDY  SITE, THE NUMBER  OF USABLE  SHOTS WAS 800 
 

 
 

 
 

 
Fig. 3.  Dominant height             calculated on the ICESat footprint acquisi- 
tion date using neighboring data (linear interpolation of           measured on 
inventory plots in the stand including ICESat footprint). 

 

 
distributed throughout the stand with a density of one plot per 

12 ha. They  included  30 to 100  trees  (average  of 58 trees). 

During a field inventory,  the diameter  at breast height (DBH, 

1.3 m above the ground) of each tree in the inventory plot, the 

height  of a central  subsample  of 10 trees,  and the height  of 

the 10% of largest DBH (dominant trees) were measured. The 

mean height of the 10% of the largest trees defined the domi- 

nant height of the plot               , while the mean height of the 

10 central trees defined the average height of the plot                . 

The           , basal area, and age on the inventory date were then 

used in a company-calibrated volume equation, specific to the 

genetic material,  to estimate the plot stem volume (wood and 

bark of the merchantable  part of the stem that has a diameter 

of more than 2 cm). Trunk biomass  was then estimated  from 

the trunk volume using age-dependent estimates of wood 

biomass density (see [17] for more details). Plot-scale 

and biomass were then averaged on a stand scale, for each 

inventory date. 

As the dates of the ground measurements were different from 

the GLAS acquisition dates, plantation dominant height and 

stem biomass for the GLAS acquisition dates were estimated 

using linear interpolations of the inventory plot measurements 

between the two dates either side of each GLAS acquisition date 

(Fig. 3). This simple linear interpolation gave fairly good esti- 
mates since forest inventories were regularly carried out. 

Note that these estimates of           and biomass gave a large 

and unique dataset for testing methods of height estimations 

from GLAS data since the measurements of these variables is 

precise compared to natural forests: uniform stands with rela- 

tively low dispersion of tree sizes around the average values, 

accurate allometric equations, large number of inventory plots 

within  a stand,  short intervals  (       years)  between  inventory 

dates,  a relatively  gentle  slope,  and  a simple  canopy  with  a 

Fig. 4.  Typical GLAS waveform acquired over a forest stand, on relatively flat 
terrain, and the associated main metrics (1          15 cm). 
 

 
clearly  separated  crown layer and the very sparse understory 

and herbaceous strata. 

 
C.  GLAS/ICESat  Data 
 

A dataset of LiDAR data acquired by the Geoscience  Laser 

Altimeter  System  (GLAS)  was used. In total, 1387  recorded 

signals (waveforms) were acquired over our study site between 

February 2003 and March 2009 (Table I, Fig. 1). Fig. 4 shows 

a typical waveform over a forest stand on relatively flat terrain. 

For our forest stands, the GLAS waveforms were generally bi- 

modal distributions resulting from scattering within the canopy 

and the ground surface. Of the 15 ICESat data products, only 

products  GLA01  and GLA14  in release  33 were used in this 

research.  For each ICESat  footprint,  these products  provided 

a raw waveform,  an acquisition  date and time, the precise ge- 

olocation of the footprint center, waveform parameters derived 

from the Gaussian decomposition, the estimated noise level, i.e., 

the mean and standard deviation of background noise values in 

the waveform, etc. Each received waveform was decomposed 

into a maximum of six Gaussian functions corresponding to re- 

turns from different layers between the top of the forest and 

the ground. Over flat terrain, the first Gaussian corresponds to 

a reflection from the top of the canopy while the last Gaussian 

mostly refers to the lowest point in the footprint, i.e., the ground 

surface. 

In order to use only the reliable ICESat data, several filters 

were applied to the waveforms to remove ICESat data contam- 

inated by the clouds and other atmospheric artefacts (e.g., [2], 

[4], [18]): 1) waveforms with ICESat centroid elevations signifi- 

cantly higher than the corresponding Shuttle Radar Topography 

Mission (SRTM) elevation (resolution of 90 m    90 m) were 

excluded ( ICESat-SRTM       100 m; 2) waveforms with low 

signal-to-noise ratios (SNR) were also removed  SNR           ; 3) 

saturated waveforms were removed (GLAS detector saturation 

index                      ); and 4) only the cloud-free waveforms were



 
 

kept   cloud detection flag                                      . FRir_qaFlag 

and satNdx are both indices recorded in the GLA14 product. 

The application of different filters on the ICESat dataset 

showed  that  among  the  1387  waveforms  acquired  over  our 

study site, the number of usable waveforms respecting the filter 

condition  was 800 (57.7%  of waveforms),  of which 306 had 

corresponding  ground measurements. 

For comparison  between  ICESat,  SRTM DEM, and in situ 

data,  datasets  needed  to be available  in the same  coordinate 

system. The ICESat ellipsoidal heights (TOPEX/Poseidon 

ellipsoid)  were  first transformed  to the  WGS84  ellipsoid  by 

subtracting 70 cm, then orthometric heights from ICESat were 

derived with respect to the WGS84  reference  system and the 

EGM96 geoid model. 
 

 
III.  MATERIALS AND METHODS 

 
A.  Forest Height Estimation 

 

1) Direct Method:  The most commonly used method to esti- 

mate the maximum canopy height               from a GLAS wave- 

form over forest stands with a gently sloping terrain uses the 

difference between the signal begin           and the ground peak 

[19]: 

(1) 

The signal begin and the signal end correspond respectively 

to the highest and lowest detected surfaces within the laser foot- 

print. They are defined by the first and last bins at which the 

waveform intensity exceeds a certain threshold above the mean 

background  noise. Different thresholds have been used in pre- 

vious studies. Their levels correspond to the mean background 

noise plus 3 to 4.5 times the standard deviation (3 times in Sun 

et al. [20]; 3.5 times in Hilbert and Schmullius [4]; 4 times in 

Lefsky et al. [6] and Xing et al. [13]; 4.5 times in Lefsky et al. 

[7]). Chen [2] examined several thresholds between 0.5 and 5 

times the standard deviation. He demonstrated  that the optimal 

threshold depends on the study site (between 3 and 4.5 times the 

standard deviation).  The background  noise statistics are avail- 

able in the GLA01 product. 

The ground peak is assumed to be either the last peak (e.g., 

[3], [13], [20]) or one of the last two Gaussian peaks with the 

greatest amplitude (e.g., [4] and [11]). Harding and Carabajal 

[19] specify that, in the case of a low amplitude final peak, the 

better representation of the ground surface is probably the peak 

close to the last one with a relatively high amplitude. Chen [2] 

found for his conifer sites that the ground elevation corre- 

sponded better to the stronger peak of the last two, whereas for 

his woodland site the strongest peak of the last five matched 

best with the ground elevation. 

2) Regression Models:  Over sloping terrain, the ground peak 

becomes wider, and the returns from ground and vegetation can 

be mixed in the case of large footprints, making the identifica- 

tion of ground peak returns difficult and the estimation of forest 

height inaccurate [6], [19]. To remove or minimize the terrain 

slope effect on the waveforms, statistical approaches have been 
developed and used in several studies to predict canopy height 

waveform metrics or on both waveform metrics and terrain in- 

formation derived from DEMs. 

The main  waveform  metrics  used  in these  models  are the 

waveform  extent defined as the height difference  between the 

signal begin and the signal end of a waveform (        , in meters), 

the leading edge extent (             , in meters) calculated  as the 

elevation difference  between the elevation of the signal begin 

and the first elevation that is at half maximum intensity above 

the background noise value (highest detectable return), and the 

trailing edge extent (             , in meters) determined as the dif- 

ference between the signal end and the lowest bin at which the 

waveform is half of the maximum intensity (lowest detectable 

return) [7] (Fig. 4). 

The terrain information used in the regression models is the 

terrain index (    , in meters) derived from a DEM (from SRTM 

or airborne  sensors).        is defined as the difference  between 

maximum  and minimum terrain elevations in a given window 

centered on each GLAS footprint. The size of the window which 

depends on the spatial resolution of the DEM is generally 7    7 

for a 10-m resolution DEM (airborne) and 3    3 for a 90-m res- 

olution DEM (SRTM) (e.g., [6], [7], and [11]). 

The first statistical model was developed by Lefsky et al. [6] 

to estimate the maximum  canopy height                from GLAS 

waveforms: 

(2) 
 

This model is based on the waveform extent and terrain index 

calculated  from a high quality DEM. The coefficients     and 

are fitted using least squares regression              given by ground 

measurements or estimated from airborne LiDAR data,           is 

derived from the GLAS waveform, and      is calculated from the 

DEM). For our data set,      values were calculated from SRTM 

DEM range from 0 and 40 m. The incorporation  by Lefsky et 

al. [6] of the waveform leading edge extent in the (2) shows a 

slight improvement in canopy height estimation: 

(3) 

Xing et al. [13] observed a logarithmic behavior between the 

canopy height and the waveform extent. Thus, they proposed an 

adapted version of Lefsky’s model: 

(4) 

Lefsky et al. [7] and Pang et al. [10] proposed regression 

models with metrics derived only from waveforms. Lefsky et 

al. [7] observed that on sloping terrain, the waveform extent is 

insufficient for estimating canopy height. Hence, a new model 

based on the waveform extent, leading edge extent, and trailing 

edge extent was proposed. However, Pang et al. [10] observed 

inaccurate estimates of canopy heights with this new Lefsky 
model,  especially  for small  waveform  extents,  and thus pro- 

posed a simpler model to estimate canopy height using the fol- 

lowing equation: 

(5) 

Chen [2] proposed a linear model from Pang’s nonlinear 
model (5):

from GLAS data (e.g., [2], [6], [7], [10], [11], and [13]). These                      

approaches  proposed  regression  models  based  either  on only 
 
(6)



 
 

 
 

Fig. 5.  Leading edge and trailing edge compared to modified leading edge and 
modified trailing edge according to Hilbert and Schmullius (2012). 

 

 
Lefsky [8] proposed a modification of Lefsky’s 2007 model 

for a better estimation when the leading and trailing edges are 

small: 
 

(7) 

 
where  and                correspond  to the tenth percentile 

of waveform energy. 

The fitting coefficients                    of each of these different 

statistical models (they differ from one model to another) are de- 

pendent on vegetation type and terrain topographic conditions, 

and it is therefore necessary to recalibrate them ([2], [7], [10]). 

Hilbert and Schmullius [4] proposed a modified leading edge 

and trailing edge. The first new metric is defined as the ele- 

vation difference between signal begin and the canopy peak’s 

center, and the second metric as the difference between signal 

end and the ground peak’s center (Fig. 4). These modified met- 

rics more effectively represent the characteristics of the top of 

the canopy and the ground surface, especially for waveforms 

with a large difference in the intensity between the canopy and 

ground peaks. The results show that in the case of a low in- 

tensity return from the ground peak and a high intensity return 
from the canopy  peak, an overestimation  of the trailing  edge 

might be observed using Lefsky’s metrics. For a low-intensity 

return from the canopy peak and a high-intensity return from 

the ground peak, an overestimation of the leading edge might 

be observed using Lefsky’s metrics (Fig. 5). In this study, the 

modified leading and trailing edges were used. 

The different regression models defined in equations (2)–(7) 

to estimate  forest height were evaluated  in this work, except 

for (7) where                and                were replaced by 

and   , respectively.  In fact, Lefsky [8]  proposed  using 

and instead of, and in order to obtain, a more 

stable  regression  model  between  the  canopy  height  and  the 

waveform  metrics.  The  use  in this  study  of,  and  as defined 

by, Hilbert and Schmullius  [4] makes the use of                and 

unjustified  (Hilbert  and  Schmullius  [4]  metrics  are 

more stable than those defined in Lefsky [8]). 

In  addition,  to  quantify  the  contribution  of                  and 

in the  height  estimation  models,  four  other  models 

were  analyzed:  model  3  by  replacing                  by               , 

and models 5, 6, and 7 by removing                 (Table II). The 

best regression  model  was selected  from the set of these ten 

models using the Akaike information criterion (AIC), the mean 

difference  between  the  forest  height  predicted  from  GLAS 

and DEM metrics  and the measured  forest height  (Bias),  the 

coefficient  of determination          , and  the  root  mean-square 

error (RMSE).  The Akaike information  criterion  proposed  by 

Akaike  [21] is a measurement  of the relative  goodness  of fit 

of a statistical model to the truth. By calculating AIC values 

for  each  model,  the  acceptable  regression  models  based  on 

lowest AIC values were identified. Indeed, the best model is the 

one that minimizes the Kullback–Leibler  distance between the 

model and the truth. In this analysis, a tenfold cross validation 

with  ten  replications  was  used.  Lower  AIC  values  indicate 

model parsimony,  i.e., a balance between  model performance 

(explained variability) and coefficient number in the model. 
 

B.  Aboveground  Biomass Estimation 

Several studies have shown that forest canopy metrics cal- 

culated from GLAS waveforms can be used to estimate above- 

ground biomass [1], [6], [12]. Lefsky et al. [6] proposed a linear 

relationship  between the aboveground  biomass (    in Mg/Ha) 

and the forest maximum height squared (height            is in me- 

ters): 

(8) 

Boudreau et al. [1] developed a model to estimate      for the 

entire forested region of the Province of Quebec, based on wave- 

form extent (in meters), terrain index (in meters), and the slope 

between signal begin and the first Gaussian canopy peak (   in 

radians): 

(9) 

The slope    depends on the canopy density and the vertical 
variability of the upper canopy. For a given study site with only 
a few variations in      and   , the biomass in Boudreau’s model 

follows a second-order polynomial relationship with the forest 

height because the waveform extent is expressed in Fig. 6(a) as 

proportional to       . 

Saatchi et al. [12] used a power law relationship between the 

aboveground  biomass and Lorey’s height, calibrated on in situ 

forest plots and GLAS data collected over Latin America, sub- 

Saharan Africa and Southeast Asia: 
 

(10) 
 
where        is Lorey’s height, which weights the contribution of 

trees (all trees    10 cm in diameter) to the stand height by their 

basal area. The mean exponent    of the combined relation from



 
 

 
TABLE II 

REGRESSION  MODEL  FITTING  STATISTICS  CALCULATED   WITH  TEN-FOLD  CROSS  VALIDATION  FOR  ESTIMATING  FOREST  HEIGHT. 
ROOT  MEAN-SQUARE   ERROR, 

AKAIKE  INFORMATION CRITERION,           CROSS  VALIDATION 

 

 
 

the three continents is near 2.02 (with                    ) [12]. In this 

study, the relationship  defined in (10) was used by replacing 

Lorey’s  height with the dominant  height                            . In- 

deed, in these Eucalyptus plantations, Lorey’s height was very 

close to dominant height (       was lower than            by a max- 

imum of 0.9 m at the end of the rotation of the Eucalyptus plan- 

tation). To illustrate this, Fig. 7 shows the evolution of the dif- 

ferent stand height metrics on an experimental  stand during a 

full rotation (height data of the Eucalyptus  monoculture  treat- 

ment described in [22]). Note also that the crown area weighted 

version of Lorey’s height gives values very close to        [10]. 

The coefficients    and   were fitted using the in situ measure- 

ments of dominant height and aboveground biomass. The fitted 

coefficients (   and   ) were used to estimate the biomass, based 

on the dominant height predicted from GLAS footprints by the 

direct method (model 1). 

 
IV.  RESULTS AND DISCUSSIONS 

 

A.  Forest Height Estimation 

First, both the optimum threshold levels above the mean 

background noise and the most relevant location of the ground 

peak that gave the best estimates of canopy heights were 

determined. The two thresholds of 3.5 and 4.5 times the noise 

standard deviation were evaluated, and the ground peak was 

derived from the Gaussian with the higher amplitude of the 
last two. The difference  between the canopy height estimated 

from GLAS waveforms using the direct method and in situ 

measurements showed better results with a noise threshold of 

4.5 and when choosing the Gaussian with the greater amplitude 

of the last two as the ground peak. The bias and standard devi- 

ation of the difference between dominant height estimates and 

measurements  decreased  from 2 to 1.5 m when the Gaussian 

with the higher amplitude of the last two was used as the ground 

return  instead  of the  last  one  (Fig.  8).  However,  the  results 

were similar  with thresholds  of 3.5 and 4.5 (similar  standard 

deviation but bias lower by 0.5 m with a threshold of 4.5). With 

the optimum  configuration  (threshold  of 4.5 and  the highest 

Gaussian), the mean difference between height estimates using 

the  direct  method  (model  1)  and  in  situ  measurements  was 

0.33 m with a standard deviation of 2.2 m. 

The regression  models  fitting the statistics  calculated  with 

tenfold  cross  validation  for  estimating  forest  height  showed 

that  the  models  using  the  trailing  edge  extent  (models  5 to 

7a,  Table  II)  provided  a  good  estimation  of  canopy  height. 

For  these  models,  RMSE cv  (cross-validation   RMSE)  was 

between  1.89  m and  2.16  m, AIC cv (cross-validation  AIC) 

was  between  1138  and  1211,  and                 (cross-validation 

) was  between  0.89  and  0.92.  The  best  fitting results  for 

estimating  forest  height  were obtained  with model  7 (lowest 

AIC cv and RMSE cv and highest            values, 1138, 1.89 m, 

and 0.92, respectively). Fig. 9 compares the canopy height 

estimates obtained with model 7 in comparison to measured 

canopy heights (field measurements). The results also showed 

that the contribution of the leading edge extent in the regression 

models was weak for height estimation accuracy. Indeed, the 

fitting statistics obtained with models 5, 6, and 7 (including the 

leading edge extent) showed a slight improvement over those 

obtained with models 5a, 6a, and 7a (Table II). For example, 

RMSE cv was better than 15 cm at best when the leading edge 

extent was used. Hence, using the leading edge extent in the 

regression models was not necessarily justified. 

Moreover, use of information in the model calibration cal- 

culated from an insufficiently accurate DEM (terrain index) 

led to poor estimation of the canopy height (models 2, 3, and 

4) except for model 3a where the use of                instead of 

led to good model fitting statistics (for model 3a, 

AIC cv  and  RMSE cv  were  1198  and  2.10  m,  respectively, 

instead of 1421 and 3.16 m for model 3). Models 2, 3, and 4 

provided  a lower                 (between  0.63 and 0.76),  a higher



 
 

 

 
 

Fig. 6.  Behavior of canopy height according to waveform extent, leading edge 
extent, trailing edge extent, and terrain index. 

 
RMSE cv (between  3.16  and  3.97  m),  and  a higher  AIC cv 

(between 1421 and 1546). The results also showed that the 

nonlinear form of model 5 did not appear to be justified because 

 

 

 
 
Fig. 7.  Comparison of three stand level height metrics in a Eucalyptus plan- 
tation experimental stand during a full rotation. Mean height is the arithmetic 
mean of all tree heights, dominant height is the height of the trees that have the 
highest basal area (8% biggest trees), and Lorey’s height is a basal area weighted 
average height. 
 

 
 
Fig. 8.  Comparison between canopy dominant height estimates and in situ 
measurements. The “highest Gauss” estimates use the Gaussian with the higher 
amplitude of the last two as the ground return while the “Last Gauss” estimates 
use the last Gaussian as the ground return. The threshold of 4.5 times the noise 
standard deviation was used. Both correspond to model 1 (direct method). 

 

 
the observed improvements with this model in comparison 

to model 6 (linear form) were weak. Lastly, the logarithmic 

relation between canopy height and waveform extent did not 

appear to be relevant (model 4). 

For our study site where the terrain was flat or slightly sloping 

(slope under 7 ), the results showed that the accuracy of the 

canopy height estimates was similar between the direct method 

and the best statistical models (RMSE about 2 m). Numerous 
studies using GLAS data over natural forest ecosystems  have 

shown that the estimated forest height accuracy varied between 

2 and 10 m (RMSE), depending on the forest type (tropical, 

boreal, temperate deciduous, temperate conifer, etc.) and the 

characteristics of the study site (mainly the terrain slope) (e.g., 

[3]–[5], [7], [8], [10], [11], and [13]). However, no studies using 

GLAS data (larger footprint LiDAR) were found in the literature 

over forests with intra-plot homogeneity  similar to tree planta- 

tions (little variation in tree heights, same species, etc.), and well



 

   
  

 

 

 

 
 

Fig. 9.  Canopy height estimates from model 7 in comparison to measured 
canopy height. Statistics are given in Table II. 

 

 
 

documented (high quality in situ measurements of forest height 

and biomass), and with a gently sloping terrain. 

The  analysis  of  dependency  between  the  in  situ  canopy 

height  and  the  GLAS  waveform  extent  showed  a linear  re- 

lationship  between  the  two  parameters  with  an         of  0.66 

[Fig.  6(a)].  The  coefficient 

decreased with the trailing edge 

extent and leading edge extent (Hilbert Gauss) [Figs. 6(b) and 

(c)]. Linear relationships were found between     and the trailing 

extent, leading extent, and the sum of trailing and leading ex- 

tents [Fig. 6(d)]. This analysis confirmed the great importance 

of the trailing edge extent in the regression models for canopy 

height estimations.  The importance  of the leading extent was 

lower (            44% with leading, 75% with trailing, and 78% 

with both trailing and leading). Fig. 6(e) also shows that     was 

almost constant with the terrain index for the TI values at our 

study site under 40 m. 

 
B.  Aboveground  Biomass Estimation 

 

Aboveground biomass estimation using the models defined 

in (8) and (10) was inferred from the forest height. In model 9, 

the biomass was defined as the forest height squared           with 

the forest height defined as                                                         . 

This equation of forest height was close to that given in model 

2 (Table II). However, in the previous section (Section IV-A), 

the different regression models for estimating forest height from 

waveforms and DEM metrics showed that the models using the 

terrain index (TI) gave the poorest accuracies (models 2, 3, 4). 

This is probably due to the resolution of the SRTM DEM used 

(90 m    90 m), which was not optimal for a study site with 

gentle terrain slopes. For this reason, only models 8 and 10 were 

evaluated for the biomass estimation using the forest height es- 

timated by the direct method. 

The in situ measurements of forest height and aboveground 

biomass were not totally independent since           was used in 

the calculation of tree volumes (Fig. 10, cf. Section II-B). The 

simple model of (10)  (                                     was estimated  by 

the direct method)  gave a fairly good estimate  of stand-scale 

 

 

 
 
Fig. 10.  Allometric relation between aboveground biomass and dominant 
forest height from in situ measurements (stand-scale biomass from stand-scale 

     ). 

 

 

 
 
Fig. 11.  Comparison between estimated and measured biomass. 
 

 
 
biomass from stand-scale             (                  9.57 Mg/ha). The 

mean difference between estimated and measured biomass was 

2.13 Mg/ha with a RMSE of 16.11 Mg/ha (the relative error was 

25.2% of the biomass average) (Fig. 11). 

The obtained exponent     for the planted Eucalyptus  forests 

we studied                        was very close to that found by Saatchi 

et al. [12] and Lefsky et al. [6] over natural forests (               and 

, respectively).  In addition, the coefficients     obtained in this 

study and in Lefsky et al. [6] were very close (                    and 

, respectively). However, a comparison with Saatchi’s 

results ([12]) shows that our coefficient   was 3.5 times smaller 

than    in Saatchi et al. [12] (                    against                    ): 

For the same canopy height, the biomass for Eucalyptus planta- 

tions was 3.5 times smaller than the biomass in tropical forests. 

This difference is probably due to 1) the metrics of the forest 

height used in (10), which was the dominant height in this study 

and Lorey’s height in Saatchi et al. [12], and because 2) natural 

tropical forests have higher basal areas than Eucalyptus forests. 

Model 8 (                                                     and                   ) 

and model 10 produced a similar performance, with a mean dif- 

ference between estimated and measured biomass of 2.17 Mg/ha 

and an RMSE of 16.26 Mg/ha (the relative error was 25.5% of 

the biomass average). 

The United Nations REDD Programme on Reducing Emis- 

sions from Deforestation and forest Degradation (REDD) rec- 

ommends biomass errors within 20 Mg/ha or 20% of field esti- 

mates for evaluating forest carbon stocks, but should not exceed 

errors of 50 Mg/ha for a global biomass map at a resolution of 

1 ha [23], [24].



 
 

Zolkos et al. [25] conducted a meta-analysis of reported 

terrestrial  aboveground  biomass accuracy estimates  from sev- 

eral refereed articles using different remote sensing techniques 

(optical, radar, LiDAR). The residual standard error (RSE) 

showed higher values for the radar and optical models (about 

65 Mg/ha) in comparison to the models using the GLAS space- 

borne LiDAR (about 40 Mg/ha). The LiDAR-Biomass  model 

RSE increases with the mean of field-estimated Biomass (RSE 

about 20 Mg/ha  for            50 Mg/ha  and 85 Mg/ha  for 

450 Mg/ha). The LiDAR model errors were also analyzed by 

forest type. The errors were lower for tropical forest (relative 

20.7%) than for temperate deciduous, temperate 

mixed, temperate conifer and boreal forests (higher for boreal 

forests with a relative                34.3%). The RSE of this study 

on Eucalyptus plantations (25.2%) was within the lower range 

of this meta-analysis. 

 

 
V.  CONCLUSION 

 

The objective of this paper was to evaluate the most common 

models for estimating forest heights and aboveground biomass 

from GLAS waveforms. The evaluation of different models was 

based on a large database consisting of GLAS data and ground 

measurements (forest height and aboveground biomass). 

Regression  models were constructed  to estimate  maximum 

forest height and aboveground  biomass from a GLAS dataset. 

For our study site defined by flat and gently  sloping  terrains 

7  ), the direct method estimated canopy height very 

well with an accuracy  of about  2.2 m. The use of statistical 

models based on waveform  metrics and digital elevation  data 

showed an accuracy for forest height estimates similar to that 

obtained by the direct method (1.89 m). A correlation analysis 

between plantation dominant heights measured in the field and 

those estimated by the most common statistical models showed 

that the most relevant metrics for estimating forest heights are 

the waveform extent and the modified trailing edge extent ([4]). 

The  best  statistical  model  for estimating  forest  height  is de- 

fined as a linear regression of waveform extent and trailing edge 

extent. 

Aboveground  biomass was modeled following a power law 

with the canopy height                        . The results showed that 

aboveground biomass could be estimated with an accuracy of 

16.1 Mg/ha (relative              25.2% of the biomass average). 

Our results (tree plantation) showed that the precision rec- 

ommended by the UN-REDD program is achievable with 

spaceborne LiDAR in the case of gently sloping terrains (the 

biomass estimation error was lower than the maximum error 

recommended of 50 Mg/ha). For natural forests with low to 

moderate terrain slopes, the relative error of forest height 

estimations can reach two or three times that obtained in this 
study (e.g., [2], [6], and [10]). As biomass  is proportional  to 

the forest height squared (8), (9), (10), the relative error of the 

estimated biomass is proportional to twice that of the relative 

error of the estimated forest height. Therefore, an increase in 

the relative error of the estimated forest height would greatly 

affect the relative error of the estimated biomass. Research 

perspectives  include  1) improvement  of the processing  tech- 

niques for LiDAR waveforms  in the case of a sloping terrain, 

and 2) the recommendation  to space  agencies  of spaceborne 

LiDAR specifications with higher transmitted energies in order 

to more effectively reach the ground in forested areas, smaller 

footprints to minimize the impact of the terrain slope on forest 

height estimations, and a higher temporal resolution. 
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