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Abstract

In recent years, compressed sensing (CS) has been applied inthe field of synthetic aperture radar

(SAR) imaging and shows great potential. The existing models are, however, based on application of the

sensing matrix acquired by the exact observation functions. As a result, the corresponding reconstruction

algorithms are much more time consuming than traditional matched filter (MF) based focusing methods,

especially in high resolution and wide swath systems. In this paper, we formulate a new CS-SAR imaging

model based on the use of the approximated SAR observation deducted from the inverse of focusing

procedures. We incorporate CS and MF within an sparse regularization framework that is then solved

by a fast iterative thresholding algorithm. The proposed model forms a new CS-SAR imaging method

that can be applied to high-quality and high-resolution imaging under sub-Nyquist rate sampling, while

saving the computational cost substantially both in time and memory. Simulations and real SAR data

applications support that the proposed method can perform SAR imaging effectively and efficiently

under Nyquist rate, especially for large scale applications.

Index Terms

Synthetic Aperture Radar; Compressed Sensing; Matched Filtering; Approximated Observation.

I. INTRODUCTION

Synthetic aperture radar (SAR) is an active microwave radarwhich can achieve high-resolution

images in all time of day and weather [1]. In a SAR system, the radar emits a sequence of pulses

along its path and receives the echoes (raw data) scattered from the targets. The reconstruction

of the scene is traditionally achieved by matched filter (MF)based focusing algorithms which
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are efficient but need Nyquist rate samples of the echoes. TheSAR imaging with increasing

resolution and swath requires more and more measurements, storage and downlink bandwidth.

The current system hardware, however, frequently hampers such high-dimensional application.

The recent development of compressed sensing (CS) brings possibility of reconstructing sparse

or compressible signals with fewer measurements than that Nyquist requires [2]–[4]. Several

applications on radar system appear in recent years, which primarily concern how the data

acquisition way can be simplified by using CS [5] [6] and what the potential applications will

renovate radar imaging with CS technique [7] [8]. Further, in the study of CS-SAR, much

attention has been paid to the effective use of the specific SAR geography and signal form, say,

in [9], a SAR raw data compression framework based on CS was suggested by sampling the data

in frequency domain. An extension of this work was given in [10] by using the fact that very

bright objects are always sparse, resulting in a hybrid sparse model. These works, however, do not

apply to the CS-SAR system practically where sampling is expected in time-domain. In [11], CS

was applied on azimuth after the range compression. By combining range MF, the method was

much more efficient, while, the redundant information in range has not been effectively utilized.

More general CS-SAR model were reported in [12] [13] by discretizing the SAR observation

function exactly into an observation matrix, while solvingby CS straightforwardly.

All those works strongly demonstrated that some exclusive advantages of CS-SAR do exist as

compared to the traditional SAR imaging methodologies, say, relaxation of required measure-

ments, reduction of side lobe and a further suppression of noise [14]. However, in all applications,

a serious drawback has been observed: as compared to the traditional MF based methods, the

computational complexity and memory cost of the CS-SAR models are much higher, so that it

is very inefficient to be applied to high-dimensional applications.

In this paper, we formulate a new CS-SAR framework within which the computational com-

plexity of the CS-SAR imaging can be significantly reduced. Our main idea is to replace the

exact observation function in the CS-SAR framework with approximated observations derived

from the inverse of traditional MF based procedures. Such inversion has ever been applied to

yield raw signals (the echoes) in a more economical way [15] [16], but requires high accuracy

of the adopted method. In this paper, we take a further step byincorporating it into the CS

framework, which demands only a well focusing ability to ensure CS reconstruction. We propose

to implement the CS-SAR imaging through the sparse regularization scheme which is then solved
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by an iterative thresholding algorithm (ITA). Accordingly, the fast speed and high efficiency of

the new method are guaranteed respectively from the use of the approximated observation and

from thes CS reconstruction procedure. We show that the new CS-SAR imaging method can not

only acquire high-quality and high-resolution images withsignificantly reduced measurements,

but also reduces the memory cost toO(n) and computational complexity of one-step iteration

to O(n log n), achieving the same order with the traditional SAR imaging methods.

The reminder of the paper is organized as follows. In Section2, we introduce the background

knowledge on the stripmap mode SAR system and the classical CS-SAR model. In section 3,

we present the approximated observation by calculating theinverse of MF imaging procedure. In

Section 4, we formulate the new CS-SAR imaging method through hybridizing the approximated

observation and sparse regularization. In Section 5, we show the simulation and application results

of the suggested method. Conclusions are then presented in Section 6 with some useful remarks.

Notation: We will use the subsequent notations throughout the paper: Column vectors, matrices

and operators will be denoted respectively by bold lower case,x, bold upper case,A, and roman

upper case,C. AT,A∗,AH denotes the transpose, conjugate and Hermitian transpose of A,

respectively.

II. CS-SAR MODELS BASED ON EXACT OBSERVATION

In this section, some preliminary knowledge of CS-SAR imaging is summarized. We focus on

the general formalization of CS-SAR model, with a more detailed introduction of the iterative

thresholding procedures for solution of the CS-SAR models.

A. Stripmap Mode SAR Model

In the stripmap mode SAR, the antenna is pointed to a fixed direction and the platform flights

with constant velocityv. Then, a complex basebandpc(τ), usually chirp, is modulated to real

pulse p(τ) = cos(2πf0τ + φ(τ))(− ts
2

≤ τ ≤ ts
2
) (f0 is the carrier frequency,τ is the range

time, Wr is the elevation weight andts is the pulse duration) and transmitted at a constant

pulse repetition frequency (PRF). The received backscattered energy can then be modeled as a

convolution of the pulse waveform with the ground reflectivity function, given by [17]

s(η, τ) = Wτ (τ)σ(η, τ)⊗ h(η, τ) + n0(η, τ) (1)
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whereη, τ are respectively the azimuth and range time,n0 denotes the additive noise,h(η, τ) is

the time-variant convolution kernel which can be composed as:

h(η, τ) = h1(η, τ)⊗ h2(η, τ) (2)

In (2), h1(η, τ) is the two-dimensional azimuth modulation which is responsible for the along-

track observation whileh2(η, τ) is range convolution kernel that is identical to the transmitted

pulses.

Further, we can sample the continuous-time analog echos(η, τ) and discrete the reflectivity

map σ(η, τ), into two-dimensional arraysY ∈ C
n
′

η×n
′

τ andX ∈ C
nη×nτ . And then we obtain

the following observation model for the strip mode SAR:

y = Hx + n0 (3)

wherey = vec(Y) ∈ Cl×1, l = n
′

η ×n
′

τ , x = vec(X) ∈ Cn×1, n = nη ×nτ , H is the observation

matrix acquired from the discrete weight of (1) (more detailed information and construction of

the observation model can be seen in [17] [18]), andn0 is the noise.

B. Formulation of CS-SAR models

In a CS-SAR model, the datay is sampled and compressed with a proper sampling matrix

Θ ∈ Rm×l, m ≪ n, resulting in

ys = ΘHx+ ns (4)

Whenx is a sparse signal, say, most of the entries ofx are zeros, the theory of CS tells when

and how it can be recovered from the above undetermined linear system with fewer measurements

than Nyquist criterion requires [2] [4]. Generally, considering an ill-posed linear systemys = Ax

(A = ΘH) wherex is sparse enough, if the sensing matrixA satisfies some conditions like RIP

[19], x can be exactly recovered fromys with theLq (quasi-norm) (0 ≤ q ≤ 1) optimization:

min
x

‖x‖q s.t. ys = Ax (5)

To solve (5), we usually use an equivalent regularization scheme with the following optimization

problem

min
x

{‖ys − Ax‖22 + λ‖x‖qq} (6)
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whereλ is a regularization parameter. The optimization can be efficiently solved by iterative

thresholding algorithm (ITA) [20]–[22]. In detail, an ITA generates a sequence of approximates

according to:

x(i+1) = Eq,λµ(x
(i) + µAH(ys − Ax(i))) (7)

whereµ is a normalized parameter which controlls the convergence of the iteration. In (7),Eq,σ

(σ = λµ) is a so-called thresholding operator which is componentwisely defined by

Eq,σ(x) = (eq,σ(x1), eq,σ(x2), ...eq,σ(xn))
T (8)

where eq,σ can be analytically specified whenq = 0, 1
2
, 2
3
, 1. For example, the widely used

soft-thresholding, which corresponds toq = 1, is

e1,σ(x) =











sgn(x)(|x| − σ), if |x| ≥ σ

0, otherwise
(9)

The iteration (7) with (8) is the fundamental procedure we suggest to use for the CS-SAR

imaging.

It can be seen that the main computation load in implementation of (7) comes from the

calculation of time domain correlationAHAx. From the viewpoint of SAR signal processing,

this corresponds to the backscattered projection procedure, which is known to be inefficiency

for reconstruction, even implemented by convolution as in (1). On the other hand, we notice

that there exists efficient focusing methods using MF in traditional SAR signal processing. This

type of processing is in the frequency domain, which is much faster. Moreover, unlike the

MF based method which is usually decoupled, the sensing matrix H in (7), owns intrinsically

two-dimensional structure that has to be collected and stored before imaging. Although some

compression can be incorporated according to the structureof the matrix, it still consumes a

huge memory. All these difficulties then hamper effective applications of the known CS-SAR

imaging.

The aim of the present research is to suggest a new CS-SAR imaging method, which replaces

the use of the exact observation model by an well-defined approximation, and then makes it

possible to reconstruct the sparse scenex via a sequence of 1-D operations. Thus, the very high

cost of calculation and memory of the existing CS-SAR imaging methods can be significantly

reduced.
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III. A PPROXIMATED OBSERVATION

In this section, we first explain why an approximated observation is needed and feasible, and

then, we provide an example to show how an approximated observation operator can be explicitly

constructed by virtue of a concrete example from the inverseof Range-Doppler Algorithm

(RDA). A relation between the constructed approximation and the corresponding focus method

is analyzed, which then serves as the basis of the development of new method in the next section.

A. Why approximation needed

It is known that MF is fast withO(n log n) complexity, which is, among the others, mainly

due to frequency domain operations. More precisely, if we denoteM the imaging procedure by

MF, like RDA, the SAR raw data can be well focused in some conditions by

x̃ = My (10)

whereM is the traditional MF imaging procedure that can be calculated through decoupling it

into a series of 1-D operators in the frequency domain. This normally leads to anO(n log n)

complexity when fast fourier transformation (FFT) type operations are employed.

Observing these advantages, the purpose of this paper is to accelerate the known CS-SAR

imaging procedures, so as to achieve a comparable (at the same order) complexity with the

traditional MF based methods.

A natural consideration is then to look for the possibility of integrating CS and MF. However,

a direct application on the decoupling ofH is impossible, becauseH intrinsically possesses 2-D

structure. Nevertheless, it is known from (10) thatx̃ always approximatesx, say,MH ≈ I, and

hence,M−1, whenever exists, approximates the observationH. In viewing thatM is decoupled,

it can then naturally be expected thatM−1 is decoupled, too. Thus, we can expect that under

certain conditions, some types of approximations ofH can be decoupled, so as to bring an

O(n logn) complexity.

This is why we would like to approximate the observation, andin the following, we will

introduce the details on how to construct and what constraints an appropriate approximation

observation.

February 14, 2013 DRAFT
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Fig. 1. The relations between exact observation and approximated observation.

B. How to construct an admissible approximated observation

Fig. 1 draws the main relations between CS-SAR observation and MF reconstructions. It can

be seen that whenever the imaging procedureM is accurate enough,M−1 can be viewed as an

admissible substitute ofH. This provides a general principle of how the observationH can be

remodeled and approximated by any high precision imaging (or reconstruction) procedure. We

formalize this principle further as

G = M−1 ≈ H (11)

whereG is any generalized right inverse ofM, andM is any a high precision imaging procedure.

We callG henceforth an approximated observation.

However, since there are many well known imaging proceduresthat provided various tradeoffs

on imaging accuracy and complexity. We need therefore further to define the extent of accuracy

and identify the constraints under the CS-SAR framework. Tosee this, let us compare the exact

observation model and the approximated observation model

ys = ΘHx = ΘGx̃ (12)

It can be seen that by using approximated observation, otherthan reconstructx, we actually

reconstructx̃ instead, which is assumed to be an approximation ofx, when it obeys to the

following relation

x̃ = pǫ ◦ x+ sǫ (13)
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where◦ denotes the Hadamard product,pǫ denote the phase error whilesǫ is the error for side

lobe, or more severely, the artifacts from unfocusing. Formally, when (13) holds, there exists an

acceptable solution with the approximated observation model. However, to find it under CS, we

should further emphasis on a better focusing ability ofM.

As we know, a key parameter in CS-SAR, different from traditional SAR, is the sampling rate

which measures how a SAR system benefits from CS. The least amount of samples to ensure

the reconstruction is incoherently determined by the sparsity of scenex, usually irrelevant of

the distribution and phases of targets in the scene. Thus, the difference of the sparsity between

x and x̃ determines when and how much the additional measurements does the approximated

observation based CS-SAR methods need. It can be immediately seen from (13) that the dif-

ference is uniquely characterized viasǫ. That is to say, whenever the side lobes reconstructed

from M is low enough,sǫ can be ignored, thenx and x̃ can keep the same sparsity. In this

situation, the required least sampling rate of the approximated observation model equals to the

original model. In turn, to prevent the approximated observation based CS-SAR method from

demanding more samples, the side lobe should be as low as possible, or equivalently to say, a

well focusing capacity should be a criterion to determine whether a specific focusing method

can be used to construct the approximated observation.

The above discussions tell a fact that the construction of the approximated observation is quite

reflexible, which can be acquired straightforwardly based on well established algorithms with

additional requirement on the focusing ability. In the nextsubsection, we present a concrete

example using Range-Doppler-algorithm (RDA) [23] to show how an admissible approximated

observationG can be simply constructed based on this principle.

C. A concrete example

RDA is a very popular procedure for stripmap mode SAR imagingthat is simple both in

comprehension and in implementation. The procedure (underthe low squint case) consists of

three main steps (operations): the range compression, RCMCand azimuth compression. In a

compact form, the imaging procedureM, operated on 2-D array, can then be expressed in the

following

X̃ = M(Y) = FH
η {Pη ◦ C〈Fη[Pτ ◦ (YFτ )]F

H
τ 〉} (14)

February 14, 2013 DRAFT
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where X̃ (x̃ = vec(X̃)) is the reconstructed 2D SAR image,F,FH respectively are the DFT

matrix and inverse DFT matrix (in practice, they are implemented by FFT) to perform, the

subscriptη, τ denotes the direction of azimuth and range where the FFT performs along,Pη and

Pτ are the frequency domain matched filter operations along azimuth and range, which can be

always defined respectively by

Pη(fη; τ) = exp[−jπ/Kaf
2
η ] Pτ (fτ ; η) = exp[−jπ/Krf

2
τ ] (15)

In (15), fη, fτ are the frequency along Doppler and range,Ka and Kr are the azimuth FM

rate and the pulse FM rate. In (14),C is the RCMC interpolation operator which is essentially

a space-variant shift, and always approximated by the truncated sinc-kernel interpolation with

U = C(V) as

U(fη, τ) =
∑

τ̃

V(f̃η, τ̃)sinc(τ̃ − (τ +∆r(fη, τ)) (16)

where∆r is the migration (measurement in time) to be corrected, andU,V are the signals before

and after RCMC, respectively.

With the so specific operations in RDA procedure, we now can derive the inverse ofM quite

simply by taking the inverse of every sub-procedures. The details are as follows:

i) The inverse of Fourier transformationsF,FH are known as the inverse transformations,

which are given byFH,F. It is important to keep the throwaway consistent between the pairs.

ii) It is known that phase multiplication is a unitary transformation, so that the inverse is

the multiplication of the conjugate phase,P∗

η,P
∗

τ , and the Hadamard multiplication can still be

applied in order.

iii) The inverse ofC is difficult to achieve directly. In fact,C is approximated from the

accurate RCMC defined in continuous range time domain. Because the trajectories of targets

with different range gates are disjoint, this shift is a one-to-one mapping and the inverse of the

origin RCMC exists. We can also approximate through interpolation V = D(U) that

V(f̃η, τ̃) =
∑

τ

U(fη, τ)sinc(τ̃ − (τ +∆r(fη, τ))) (17)

Based on the above exposition, the approximated observation G deduced from RDA can then

be explicitly expressed by:

G(X) = {P∗

τ ◦ 〈F
H
η D[P∗

η ◦ (FηX)]Fτ 〉}F
H
τ (18)

February 14, 2013 DRAFT
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We show that the so constructed approximated observationG has an interesting property: It

is still a linear operator and its conjugate transposition equals toM1.

Theorem 1. G is a linear operator with the propertyGH = M.

Proof: The linearity ofG andM is obvious because all the sub-operations are linear. Let

x denote the vector form ofX, namely,x = vec(X). Then, by definition, the linear operators

G andM can be written as matrices, and we then have

vec(G(X)) = Gx = F̂H
τ P̂

∗

τ F̂
H
η F̂τD̂P̂∗

ηF̂ηx (19)

vec(M(Y)) = My = F̂H
τ P̂ηĈF̂ηF̂

H
τ P̂τ F̂τx (20)

where

F̂η = Inτ ⊗ Fη, F̂τ = FT
τ ⊗ Inη (21)

P̂η = diag(vec(Pη)), P̂τ = diag(vec(Pτ )) (22)

Ĉ andD̂ are real matrices defined by










Ĉ(i, j) = sinc( j−i

nη
+∆r(i)/fs)

D̂(i, j) = sinc( i−j

nη
+∆r(j)/fs)

if (i− j) mod nη ≡ 0 (23)

In (23), ∆r = vec(∆R), ∆R is the discretion of∆r. Observing from (23) andfs is the pulse

sampling interval, it is easy to check thatD̂ = ĈT. Consequently, comparing (20) and (19), we

conclude thatG = MH.

Theorem 1 shows that we have actually taken the conjugate transposition ofM as an approx-

imated observation ofH. Such coincidence plays an important role in the new method to be

suggested in the next section.

D. Generalization

The approach we have applied to define the approximated observation by the inverse of RDA

procedure can be generalized in the following two folds:

1) For high squint cases, we can incorporate secondary compression in RDA or derive

an approximated observation from the inverse of other focusing methods like Chirp-Scaling

1It is to sayG is nearly unitary, since only a minor approximation on calculation of the inverse is included

February 14, 2013 DRAFT
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Algorithm (CSA), ω − k algorithms, so as to enhance the focusing ability. With similar sub-

operations, like FFT, phase multiplication and interpolation, the acquisition of the inverse is just

as same as RDA.

This principle can be applied to yield more general algorithms, however, we will not enumerate

all possible extensions but remind that the decoupled structure of MF makes the inverse always

achievable. This is the reason why MF is fast and why we propose to apply the approximated

observation instead of the exact observation in the CS-SAR imaging system.

2) In the above derivation, we have assumed that the transmitted signal form is standard chirp

andM focus both the azimuth and range direction. In fact, the azimuth modulation is the exclu-

sive property and main difficult of SAR signal processing while the range convolution, which

possesses a simple 1-D structure, can be modeled directly. So, we can apply the approximated

observation to non-chirp cases, by replacingP∗

τ with the transmitted pulse, which is always

recorded in modern SAR systems. This extension is also of specifical necessity in CS-SAR

because the design of the pulse form is also a very important issue.

IV. CS-SAR IMAGING BASED ON APPROXIMATED OBSERVATION

In this section, we formulate the new CS-SAR imaging method based on the use of ap-

proximated observation. AnLq regularization model together with the fast iterative thresholding

algorithm will be suggested.

A. The new CS-SAR method

By replacing the exact observationH using the approximated observationG in (18), we can

acquire the following CS-SAR model:

min
X

{‖Ys −ΘηG(X)Θτ‖
2
F + λ‖X‖qq} (24)

where‖·‖F is the Frobenius norm of a matrix,Θη andΘτ are the sampling operators in azimuth

and range directions, which corresponds to the general sampling operatorΘ in (4). It is well

defined because the azimuth signal is of discrete form and therange signal is of continuous form,

and thus the sampling procedure of the two types of signals are usually physically separated2.

2Although the sampling scheme on range may vary pulse-by-pulse, we still use this expression which is easily understood
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Then, due to the linearity ofG, the model (24) can still be very fast solved by ITA, which

reads in this case that

X(i+1) = E1,λµ(X(i) + µM(ΘT
η (Ys −ΘηG(X(i))Θτ )Θ

T
τ )) (25)

In this paper, we simply selectq = 1 while parametersµ, λ will be preset according to the next

subsection.

Fig. 2 below shows the flow chart of algorithm (25), which tells that ITA provides an intuitive

explanation in terms of SAR signal processing. It is seen that at each iteration, the ITA can be

decomposed into mainly three procedures: the compressed data simulation, the matched filter on

the residual and the thresholding for new estimation. Physically, this means that in every iteration

of the ITA, the useful information in the residue (not the rawdata) is first extracted by MF and

then added to the current estimate to yield a new update, finally the thresholding procedure

enforces the sparsity through regularizing the noise and ambiguity from under-sampling.

Current 

Estimate X
(i)

Estimated 

Raw Data

Compressed 

Raw Data Y

Residue

Raw Update

MF

ShrinkageSimulator

Update 

Direction

New 

Estimate 

X
(i+1)

-

+

Fig. 2. An explanation of the proposed algorithm in one-stepiteration. The compressed data is alternatively processedby MF

and thresholding.

The algorithm stops when converges or achieves the maximum number of iterations. For

convenience of use, we list pseudo-code of ITA (25) as Algorithm 1 below. We further show

how the parameters in (25) can be set adaptively.

B. Parameter Setting

There are two parametersµ andλ in (25) that need to be set. First,µ controls convergence

of the ITA that the inverse should obeys.

0 < µ−1 < ‖A‖22 (26)

February 14, 2013 DRAFT



13

Algorithm 1 : Iterative thresholding algorithm for approximate observation based CS-SAR

imaging
Require: SAR raw echoesYs, approximated observation operatorG andM, sampling operatorΘη,Θτ

Ensure: The recovery imageX∗

Initial: X(0) = 0,λ, µ and max iterationImax

1: for i = 0 to Imax do

2: Residue:R̃
(i)

= Ys −ΘηG(X(i))Θτ

3: MF on residue:∆X(i) = M(ΘT
η R(i)

Θ
T
τ )

4: Thresholding:X(i+1) = E1,λµ(X(i) + µ∆X(i))

5: end for

However, it is difficult to calculate‖ΘηGΘτ‖
2
2 directly, where operatorG is included. As an

alternative, we adopt the adaptive step selection strategyin [24] as:

µi = ‖ΘηG(∆X
(i)
k )Θτ‖

2
F/‖∆X

(i)
k ‖2F . (27)

where∆X
(i)
k equals to∆X(i) at the support ofX(i−1), and equal to zero elsewhere. It is easy

to demonstrate thatµi satisfies (27), and as reported in [24], such choice has an additional

advantage of accelerating the algorithm.

Further, the regularization parameterλ, which functions to compromise the reconstruction

precision and the sparsity of the solutions obtained, has a substantial impact on the imaging

result. Fortunately, as a part of theLq regularization theory, the optimallyλ has been resolved in

[21], whenever the problem’s sparsity is known. More precisely, assume the considered problem

has sparsityk (i.e. a k-sparsity problem), then the optimal setting problem of parameterλ∗ is

shown to satisfy

λ∗ ∈
[

|bµ(x
∗)|

k+1 /µ, |bµ(x
∗|

k
)/µ

]

(28)

wherebµ(x) = x+ µ∆x, |bµ(x∗)|
k

is its k-th largest component in magnitude.

Therefore, we suggest the setting that in thenth iterationλi =
∣

∣bµ(x
(i))

∣

∣

k+1
/µi ( λiµi is

independent ofµi). The sparsityk, which determinesλi, can be much flexible to be set, say,

based on a prior upper estimation on sparsity of the target scene.
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C. Computation Cost

Let us compare the computational complexity and the memory occupation of the suggested

CS-SAR imaging method (24), as compared with the known CS-SAR model (6). The purpose

is to see how much reduction of computational cost of the new model has been brought. In the

calculation, we have used some standard notations which are: the number of required iterationI,

the sampling rates, the number of range gatesnη, the number of range linesnτ (n = nτ × nη),

the number of samples of sent pulseuτ , the number of samples of the synthetic aperture time

uη (they equal to the time bandwidth product (TBP) in each direction), and the TBP of radar

signalu = uη × uτ .

With these notations, we can calculate the computational complexity of the approximate

observation based CS-SAR,Ca, and the computational complexity of the exact observation

based CS-SAR,Ce as follows. ForCa, it includes calculations of an inverse MF procedure and

a MF procedure, which has commonly the computational complexity of O(n log2 n), together

with a decoupled thresholding operator with complexityO(n) in a single step. Thus, the total

cost is at the orderCa = O(In log2 n). ForCe, it includes calculations of a single iteration, two

matrix multiplications and the thresholding procedure. Since there are only few non-zero entries

in H, say, nearlyus in every column, when coding it using two-dimensional convolution, it

needs at least2uns complex multiplication. Thus, we find that the total cost isCe = O(Iuns).

Then, the ratio betweenCe andCo is given byrC :

rC = O(us/ log2 n) (29)

It is seen from (29) that the ratiorC depends linearly on the TBP of radar signalu. In SAR

applications, theu is always designed very large (thousands even millions) to improve the

reconstruction signal to noise ratio (SNR), which will bring very high computational cost of the

time domain reconstruction method.

The memory loads of the approximate observation based CS-SAR, Ma, and the memory loads

of the exact observation based CS-SAR,Me can be estimated in the subsequent way. ForMa, it

contains only the storage of input, output and several parameter matrices (i.e., azimuth matched

filter, range matched filter and the amount of migration in RDA), which is summed up toO(n)

bytes memory occupation. ForMe, although no filters are stored, it needs additionally to store

a sensing matrix, with the number of non-zero entries ofuns. But, because the Doppler history
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with same range cell share the identical patterns, we only need to store an intact holistic pattern

(the convolution kernel) for each range gate to achieve a compression, resulting in an additional

memory occupation of16unτ bytes (a complex number occupies 16 bytes memory), as compared

with Ma. This additional cost can be very large in spaceborne SAR systems. For example, when

u = 106 andnτ = 104, it requires more than 100 GB memory to store the array. But the memory

cost of RDA is only a few hundreds MB in the same condition. This will further hamper the

application of time domain methods into practice.

Finally, the required number of iteration steps is difficultto compare analytically, but in

practice, no obvious difference is observed.

D. A Summary

From the analysis in the previous subsections, we can see that the suggested new model

(24) and method (25) have constituted a more efficient CS based SAR imaging method. While

preserving CS features, the new method has the following exclusive advantages:

• Lower computational cost: Due to the use of approximated observation, the method only

involves 1-D operations which makes the imaging process extremely efficient. It has reduced the

computational complexity of the existing exact observation based method significantly, as shown

in (29). Meanwhile, taking full advantages of the decoupledstructure after approximating the

observation, the proposed method can save the memory cost with a remarkable amount, which

is sometimes of more significances.

• Higher Compatibility: As compared with the traditional MF based SAR imaging procedure,

the new method uses the same or similar operations, except anadditional thresholding operation

that yields the sparsity of solution. In particular, the newprocedure can be seen as a successive

iterative refinement of the well known MF based method, whichmakes the new method more

consistent. As a result, the proposed model requires littlemodification of the existing SAR

imaging algorithms, which makes the combination of MF and CSmuch simpler.

All these features make the suggested new CS-SAR imaging method more useful and efficient,

and particularly possible to be applied in high dimensionalSAR applications. We will provide

simulations and applications in the next section to furthersupport such benefit.
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V. SIMULATIONS AND APPLICATIONS

In this section, several simulations and applications are provided to demonstrate the effective-

ness and efficiency of the proposed CS-SAR imaging method. For abbreviations, we denote by

CSRDA the CS-SAR imaging method (24) with the approximated observationG acquired from

the inverse of RDA, and by CSEO the CS-SAR method (6) with the exact observationH.

We first conduct a series of simulations to compare the performance of the CSRDA method, the

CSEO method and the traditional RDA method in terms of reconstruction ability, reconstruction

quality and reconstruction cost. Then, we apply the CSRDA tosome real SAR imaging tasks from

RADARSAT-1, which then further demonstrates the outperformance of the suggested method.

The sampling scheme used in the simulations are specified as follows. In the azimuth direction,

we employed random downsampling, realized by selecting random rows from the raw dataY,

with sampling ratesa. In the range direction, we picked up random samples independently on

each sampled echoes in azimuth, with sampling ratesr. And we keep the ratio betweensa and

sr as1 : 53.

Table 2 lists the primary SAR parameters used in both simulations and applications. All the

experiments were conducted on a work station of 8-core 2.4GHz CPU with 32G memory. The

CSRDA was implemented in MATLAB 2012a while the CSEO using optimized convolution was

implemented in C++ with parallel codes and careful array operations.

A. Simulations

In the simulations, the scene was taken as180 × 180 while the scattered coefficients were

chosen with unit amplitude and uniform random phases. The raw data were first generated in

time-domain by exact slant range and then sampled with different rate, to yield the compressed

measurements. The sparsity parameterk was kept the same for CSRDA and CSEO and the

maximum iteration steps was set to 100 for both methods. The aims of simulations is then

to compare the reconstruction ability (RA), reconstruction quality (RQ) and reconstruction cost

(RC), of each competitive SAR imaging methods. These are measured respectively by the lowest

3The suggested sampling strategy was designed to comprehensively compare the reconstruction algorithms. The proposed

model itself is adaptively to more complicated sampling schemes, for example, jitter sampling in the azimuth direction[12] and

random demodulation [25] in the range direction.
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TABLE I

PRIMARY PARAMETER OF SAR SYSTEM AND GEOMETRY

Parameter Symbol Simulation RadarSat-1

Slant range of scene center(km) Rc 20 1016.7

Effective radar velocity(m/s) V 350 7062

Beam squint angle(rad) θ 0 0.06

Radar center frequency(MHz) f0 5000 5300

Pulse repetition frequency(Hz) Fa 175 1256.98

Range FM rate(MHz/µs) Kr 37.5 0.72135

Pulse duration(µs) Tr 2 41.75

Sampling rate(MHz) Fr 75 32.317

amount of measurements a method can successfully reconstruct an image, the side lobe and

resolution of reconstructed point target, and the computation time cost by a method to recover

the image.

1) RA comparison: A set of simulations was made where 9 targets were located at the center

with intervals of 6 samples. We varied the sampling rate ranged from 100% to 0.6% and added

gaussian noise with level of 20 dB. We applied RDA, CSRDA and CSEO to this experiment

with sparsity parameterk = 18. Some of the simulation results are shown in Fig. 3 and 4.

It is seen from the top row of Fig. 3 that with full samples (namely, with 100% sampling rate),

all the methods RDA, CSEO and CSRDA can successfully recoverthe scene, say, the amplitude

of the target is maintained and no false target is observed. But the reconstruction of RDA is

with serious side lobes, which is not observed in CSRDA and CSEO. This shows the exclusive

advantage of the sparse regularization based CS-SAR imaging methodologies, as reported in

[14]. When we reduce the sampling rate, say, 10% samples, as seen in the bottom of Fig. 3

RDA fails to recover the scene, while CSEO and CSRDA both can not only perfectly reconstruct

the scene but with significantly reduced side lobes. In this case, no visible difference can be

observed for CSEO and CSRDA. Nevertheless, when the sampling rate continues reducing as

in Fig. 4, we found that both CSRDA and CSEO can reconstruct the image with only 0.65% of

the samples. However, CSRDA fails with 0.55% samples while CSEO fails until the sampling
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The reconstruction results of 9 point targets simulations with different sampling rate. From left to right are the

reconstruction results of RDA, CSRDA and CSEO, respectively. And the top row is with full samples while the bottom with

10% samples

rate takes 0.45%.

All the results consistently show that benefited from sparseregularization, the approximate

observation based CS-SAR method can reconstruct sparse scenes with far less samples than

Nyquist rate requires. However, caused by approximation, it requires a little more samples to

reconstruct the scene.

2) RQ comparison: Sparse regularization was demonstrated in SAR and CS-SAR imaging

the ability of reducing the side lobe and simultaneously improving the resolving ability [14].

Hence, we are interested in whether the enhancement is kept when approximated observation is

included, especially when the effect of the accuracy of the observation is excluded. To illustrate

it, we compare the reconstruction quality of RDA and CSRDA interms of side lobe and spatial

resolution, when successful reconstruction is achieved. The side lobe is evaluated via the peak

side lobe ratio (PSLR), defined as the ratio of the peak intensity of the most prominent side lobe

to the peak intensity of the main lobe, say, the smaller the PSLR, the better an algorithm. The

spatial resolution is measured by the impulse response width (IRW), defined as the width of the

main lobe of the impulse response, measured by 3 dB below the peak value, or the minimum

February 14, 2013 DRAFT



19

(a) (b) (c)

(d) (e) (f)

Fig. 4. The detailed comparison on needed least samples to reconstruct the image. The top row is the results from CSRDA,

and the bottom row is from CSEO. From left to right are the results corresponding to 0.65%, 0.55%, 0.45% sampling rate,

respectively.

distance an algorithm can separate two targets, which should be also as smaller as better. We

have perform a one point simulation with the upsampled factor 16 while the target is analyzed

by a 16× 16 chip centered on the peak, to yield a more detailed analysis on both the main lobe

and the side lobe. The sampling rate is fixed (10% for CSRDA while 100% for RDA) to ensure

a successful reconstruction, and the sparsity parameterk is set 600. Some of the simulation

results are given in Fig. 5.

Fig. 5 show the contours of the reconstruction results, withcontour lines of -3 dB (the boundary

of main lobe) and -13 dB (the PSLR of traditional MF output). The comparison intuitively

shows that both the area of the main lobe and the PSLR in the side lobe reconstructed from

CSRDA is much smaller than those reconstructed from RDA. Further in the table, details on the

reconstruction quality are presented in azimuth and range directions. It is seen that the width of

main lobe reconstructed from RDA is 15 samples both in range and azimuth, but for CSRDA,

the width is only 8 samples in the two directions. For the sidelobe, the PSLR reconstructed

from RDA is -13.32 dB in range and azimuth direction, which isvery obvious. But the CSRDA

reduces the PSLR to -21.3 dB and -22.7 dB in azimuth and range,respectively.
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Method PSLR(R) PSLR(A) IRW(R) IRW(A)

RDA -13.32 dB -13.32 dB 15 samples 15 samples

CSRDA -22.71 dB -21.32 dB 8 samples 8 samples

Fig. 5. Contours of magnitude. The red, yellow, light blue, blue contour lines are corresponding to the value of -3 dB,-13

dB,-23 dB and -33 dB. (a) Contours from RDA. (b) Contours fromCSRDA. (c) Contours from CSEO.

We further demonstrate the enhancement of resolution by CSRDA in another way. We add

two point targets in the above simulation, with respectively azimuth and range interval of 12

samples from the center. We then test whether the three targets can be separated from CSRDA.

It is seen from the simulation result (Fig. 6(a)) that the reconstructed result of traditional RDA

exhibits an overlapping of the main lobe, thus the targets are inseparable. By using CSRDA in

Fig. 6(b), one can clearly distinguish the locations of the three points, demonstrating an obvious

enhancement of the resolution.

All of the simulations in this subsection demonstrate that by combining MF with sparse

regularization, we can reduce the side lobe and improve the resolution simultaneously to a great

extent. Note that, these two goals have been regarded as trade-offs traditionally, if only MF is

employed.

3) RC comparison: Finally, we compare the CPU time takes by CSRDA and CSEO. According

to the analysis in section IV, the computational complexityof CSRDA and CSEO depends on

the scene sizen and TBP of radar signalu. So we generated 10 examples for each set of fixed

scene sizen and TBP of radar signalu in simulation, with a constant sampling rates 10%.

The average computational time in a single iteration of the two methods was then recorded. The
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(a) (b)

Fig. 6. Superresolution ability of the proposed method. (a)Result of RDA. (b) Result of CSRDA.

comparison results are shown in Fig. 7.
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Fig. 7. The CPU time of CSRDA and CSEO, where (a)u is fixed as105. (b) p is fixed as106.

As we can observe from Fig. 7, whenu is fixed as105, the CSRDA scales very well to very

high dimensional problems, since even withp = 107, it only takes several second to finish an

iteration. The CSEO is also insensitive to dimension whenu is fixed. However, the CPU time of

CSEO is consistently higher than that of CSRDA, with a ratio around 100. On the other hand,

it is seen from Fig. 7(a) that whenn is fixed to107, the CPU time of CSRDA is constantly 3s,

but, the CPU time of CSEO depends linear onu, which becomes more and more costly asu

increases.

This RC comparison shows that the approximate observation based CSRDA is much faster
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than the time domain method CSEO, benefited from theO(n log2 n) computational cost of MF.

And the computational complexity of CSEO depends linearly on both the TBP of radar pulse

and the scene size. So when theu is large, i.e.106 which is commonly in spaceborne cases,

CSRDA is expected to accelerate the CS-SAR reconstruction more than thousands of times. This

acceleration of computational time together with the shownmemory saving capacity demonstrate

the superiority of the proposed method.

All the above simulations support that the suggested approximated observation based CS-

SAR method, CSRDA, is capable of high quality imaging under Nyquist rates and with a

comparable complexity as the traditional MF based imaging method. Especially, as compared

with the exact observation based CS-SAR imaging, CSRDA preserves the features of imaging

under Nyquist rate and reconstruction with feature enhancement, while reducing the imaging

complexity dramatically. Such significant complexity reduction property makes the new method

applicable to large scale imagery application (as will be demonstrated in the next subsection).

This is, however, at the sacrifice of reconstruction qualityor, equivalently, must be compensated

with additional measurements. Thus, the new method provides a satisfying trade-off between the

reconstruction complexity and quality.

B. Application

We have applied the new method, CSRDA, along with RDA and CSEO, to some real SAR

imaging tasks. RADARSAT-1 is a famous satellite SAR launched at 1995, and the data used

in this application were collected on June 16, 2002 with FineBeam 2 about Vancouver region.

The related key parameters of SAR system are as in Table. 1.

We first applied the 3 methods to reconstruction of the regionof English Bay, in which

6 vessels are sparsely distributed, a very typical sparse scene. The scene was digitalized as

1024× 512 image with azimuth resolution 9 m and range resolution 6 m. Wethen reconstruct

the image by the 3 imaging methods with sparsityK = 10000, and with varied sampling rates

from 100% to 5%. Some typical results of reconstructions areshown in Fig. 8. As expected,

the application shows a completely similar performance as that in the simulations. For example,

Fig. 8(a) exhibits that RDA can only reconstruct the image when samples are fully adopted, but

strong side lobe is observed. When sampling rate is 20%, RDA fails with obvious ambiguities,

but CSRDA and CSEO both can perfectly recover the image, withmuch reduced side lobe. Fig.
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(a) RDA(100%) (b) CSRDA(20%) (c) CSEO(20%)

(d) RDA(20%) (e) CSRDA(5%) (f) CSEO(5%)

Fig. 8. Application on RADARSAT-1 (region of English Bay). (a) RDA with full samples. (b) CSEO with 20% samples. (c)

CSRDA with 20% samples. (d) RDA with 20% samples. (e) CSRDA with 5% samples. (f) CSEO with 5% samples.

8(c)(f) then show that when sampling rate is reduced to 5%, the reconstruction of CSEO is with

slightly higher precision than that of CSRDA, though both can still recover the targets. On the

other hand, as listed in Fig. 7, CSRDA exhibits its dominant advantage in computational cost as

compared with CSEO. For example, the computation time of reconstruction, when 20% samples
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(a) (b)

Fig. 9. Application results on RADARSAT-1. (a) RDA with fullsamples. (b) CSRDA with full samples.

(a) (b)

Fig. 10. Detailed comparison on the selected area with enlarged scale. (a) RDA. (b) CSRDA.

are used, by CSRDA is 1 minutes, while by CSEO is about 9 hours.Also, CSEO needs to store

the sensing matrix which occupies about 16Gb memory, while only 100Mb for CSRDA. We

further applied the CSRDA to the large scale imaging problemtogether with RDA. However, the

CSEO is not compared in this experiment because the memory cost is beyond the computational

ability of our computer. The scene has a size2048 × 2500 samples, which is of large scale

but not so sparse. CSRDA can be applied in principle because sparse regularization, which is
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adopted in CS-SAR, can be used as a feature enhanced imaging method (with suppressed side

lobe and improved resolution), as demonstrated in the simulations. The reconstruction results

by RDA and CSRDA (with 100% sampling rate) are shown in Fig. 9.It is seen from Fig. 9

that CSRDA has resulted the reconstruction with improved resolution and reduced side lobes,

as demonstrated in the zoomed Fig. 10.

The applications above support that the suggested approximated observation based CS-SAR

imaging is effective and efficient, especially applicable to high dimensional SAR imaging appli-

cations. Such benefit clearly improves on the currently usedexact observation based CS-SAR

imaging methods.

VI. CONCLUSION

Compressed sensing (CS) has been applied to yield novel SAR imaging methodologies under

Nyquist sampling in recent years. The resultant CS-SAR models are time domain based and using

the exact observation, which then makes it of very high computational cost, and is difficult to

be applied in high dimensional applications. In this paper,we have proposed an approximated

observation and frequency domain based CS-SAR imaging method, with which the computational

complexity can be dramatically reduced.

The main contributions of the present work are as follows.

i) Instead of the exact observation matrix, an operator, called the approximated observation

is constructed to generate SAR raw data by means of inverse ofany traditional MF based

imaging procedure (like RDA). Such generic construction makes the SAR imaging approximately

decoupled, very fast in processing, while naturally connecting the existing MF based SAR

imaging algorithms.

ii) Incorporating the approximated observation into CS-SAR framework, an efficient sparse

regularization based CS-SAR model is formulated. The new model combines naturally CS and

MF and is compatible with most existing SAR imaging methods,which needs a little modification

of the current SAR imaging technologies.

iii) With the use of approximated observation, an iterativethresholding algorithm is suggested

for fast solution of the new CS-SAR model, which forms a low complexity, CS featured, new

SAR imaging method.
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We have tested and applied the new suggested CS-SAR method with a series of simulations

and applications. The experiments consistently support that the new method is capable of recon-

structing sparse scenes with far fewer measurements than Nyquist requires, yielding always a

feature enhanced high quality imaging and bringing a speed up of reconstruction hundreds times

as compared with the exact observation based CS-SAR methods. Due to the fast and feature

enhancement features, the new CS-SAR method can be acceptedas an efficient CS type SAR

imaging technique, especially for high dimensional imaging applications.

It is worthwhile, however, to remark that although significant complexity reduction (speed-

up of reconstruction) can be brought, the use of the approximated observation requires more

samples to reconstruct a scene. Thus, how and what extent does the approximation affect the

reconstruction deserves a further study. Moreover, since there are many possibilities of concrete

realizations of the approximated observation, the criterion on how to select an appropriate one

deserved study. All those problems are under our current research.

ACKNOWLEDGMENT

This work was supported by the State Key Development Programfor Basic Research of China

(973 Program) (Grant No.2010CB731905), Key Program of National Natural Science Foundation

of China (Grant No. 11131006), and the National Natural Science Foundations of China (Grants

No. 61075054, 60975036, 11171272)

REFERENCES

[1] I. G. Cumming, F. H. Wong, U. of British Columbia, and M. D.Dettwiler, Digital Signal Processing of Synthetic Aperture

Radar Data: Algorithms and Implementation. Artech House, 2004.

[2] E. J. Candès, “Compressive sampling,” inProceedings on the International Congress of Mathematicians, 2006, pp. 1433–

1452.

[3] R. G. Baraniuk, “Compressive sensing,”IEEE Signal Processing Magazine,, vol. 24, no. 4, pp. 118–121, 2007.

[4] D. L. Donoho, “Compressed sensing,”IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[5] A. C. Gurbuz, J. H. McClellan, and W. R. Scott Jr, “Compressive sensing for subsurface imaging using ground penetrating

radar,” Signal Processing, vol. 89, no. 10, pp. 1959–1972, 2009.

[6] M. A. Herman and T. Strohmer, “High-resolution radar viacompressed sensing,”IEEE Transactions on Signal Processing,

vol. 57, no. 6, pp. 2275–2284, 2009.

[7] J. H. G. Ender, “On compressive sensing applied to radar,” Signal Processing, vol. 90, no. 5, pp. 1402–1414, 2010.

[8] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing in radar imaging,”Proceedings of the

IEEE, vol. 98, no. 6, pp. 1006–1020, 2010.

February 14, 2013 DRAFT



27

[9] S. Bhattacharya, T. Blumensath, B. Mulgrew, and M. Davies, “Fast encoding of synthetic aperture radar raw data using

compressed sensing,” inIEEE/SP 14th Workshop on Statistical Signal Processing, 2007, pp. 448–452.

[10] G. Rilling, M. Davies, B. Mulgrewet al., “Compressed sensing based compression of SAR raw data,” 2009.
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