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Fast Compressed Sensing SAR Imaging based

on Approximated Observation

Jian Fang, Zongben Xu, Bingchen Zhang, Wen Hong, Yirong Wu

Abstract

In recent years, compressed sensing (CS) has been applied field of synthetic aperture radar
(SAR) imaging and shows great potential. The existing modeg, however, based on application of the
sensing matrix acquired by the exact observation functides result, the corresponding reconstruction
algorithms are much more time consuming than traditionathea filter (MF) based focusing methods,
especially in high resolution and wide swath systems. Impliper, we formulate a new CS-SAR imaging
model based on the use of the approximated SAR observatidncthdl from the inverse of focusing
procedures. We incorporate CS and MF within an sparse negatian framework that is then solved
by a fast iterative thresholding algorithm. The proposediehdorms a new CS-SAR imaging method
that can be applied to high-quality and high-resolutionging under sub-Nyquist rate sampling, while
saving the computational cost substantially both in timd ememory. Simulations and real SAR data
applications support that the proposed method can perfokiR Bnaging effectively and efficiently

under Nyquist rate, especially for large scale application

Index Terms

Synthetic Aperture Radar; Compressed Sensing; MatchéetiRg; Approximated Observation.

I. INTRODUCTION

Synthetic aperture radar (SAR) is an active microwave radéch can achieve high-resolution
images in all time of day and weather [1]. In a SAR system, #uar emits a sequence of pulses
along its path and receives the echoes (raw data) scattenedtiie targets. The reconstruction

of the scene is traditionally achieved by matched filter (MMBpsed focusing algorithms which
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are efficient but need Nyquist rate samples of the echoes.SR#i imaging with increasing
resolution and swath requires more and more measuremémtage and downlink bandwidth.
The current system hardware, however, frequently hampes kigh-dimensional application.

The recent development of compressed sensing (CS) brirsgshildy of reconstructing sparse
or compressible signals with fewer measurements than tlyguilst requires[[2]-[4]. Several
applications on radar system appear in recent years, whichaply concern how the data
acquisition way can be simplified by using CS [5] [6] and wHa potential applications will
renovate radar imaging with CS technique [7] [8]. Furtherthe study of CS-SAR, much
attention has been paid to the effective use of the specifit §&ography and signal form, say,
in [9], a SAR raw data compression framework based on CS wggested by sampling the data
in frequency domain. An extension of this work was givenlif][by using the fact that very
bright objects are always sparse, resulting in a hybridssgparodel. These works, however, do not
apply to the CS-SAR system practically where sampling isetgd in time-domain. In [11], CS
was applied on azimuth after the range compression. By aumibrange MF, the method was
much more efficient, while, the redundant information ingatas not been effectively utilized.
More general CS-SAR model were reported(in! [12]![13] by diizing the SAR observation
function exactly into an observation matrix, while solving CS straightforwardly.

All those works strongly demonstrated that some exclusiv@atages of CS-SAR do exist as
compared to the traditional SAR imaging methodologies, salgxation of required measure-
ments, reduction of side lobe and a further suppressionisénd4]. However, in all applications,
a serious drawback has been observed: as compared to thi®ot@dVF based methods, the
computational complexity and memory cost of the CS-SAR nwdee much higher, so that it
is very inefficient to be applied to high-dimensional apations.

In this paper, we formulate a new CS-SAR framework within ethihe computational com-
plexity of the CS-SAR imaging can be significantly reducedyr @ain idea is to replace the
exact observation function in the CS-SAR framework with ragpnated observations derived
from the inverse of traditional MF based procedures. Sugbrgion has ever been applied to
yield raw signals (the echoes) in a more economical way [1E],[but requires high accuracy
of the adopted method. In this paper, we take a further stemdxyrporating it into the CS
framework, which demands only a well focusing ability to @m®sCS reconstruction. We propose

to implement the CS-SAR imaging through the sparse regaltoin scheme which is then solved

February 14, 2013 DRAFT



by an iterative thresholding algorithm (ITA). Accordinglhe fast speed and high efficiency of
the new method are guaranteed respectively from the usesddgproximated observation and
from thes CS reconstruction procedure. We show that the fev8&R imaging method can not

only acquire high-quality and high-resolution images wstgnificantly reduced measurements,
but also reduces the memory cost@jn) and computational complexity of one-step iteration
to O(nlogn), achieving the same order with the traditional SAR imaginethnods.

The reminder of the paper is organized as follows. In Seione introduce the background
knowledge on the stripmap mode SAR system and the classB&AR model. In section 3,
we present the approximated observation by calculatingnthese of MF imaging procedure. In
Section 4, we formulate the new CS-SAR imaging method thndugpridizing the approximated
observation and sparse regularization. In Section 5, we g simulation and application results
of the suggested method. Conclusions are then presentegtimis 6 with some useful remarks.

Notation: We will use the subsequent notations throughout the pamdungh vectors, matrices
and operators will be denoted respectively by bold loweegcasbold upper caséd, and roman
upper caseC. AT A* A® denotes the transpose, conjugate and Hermitian transgoge o

respectively.

II. CS-SARMODELS BASED ON EXACT OBSERVATION

In this section, some preliminary knowledge of CS-SAR imggs summarized. We focus on
the general formalization of CS-SAR model, with a more dethintroduction of the iterative

thresholding procedures for solution of the CS-SAR models.

A. Sripmap Mode SAR Model

In the stripmap mode SAR, the antenna is pointed to a fixecdtre and the platform flights
with constant velocityw. Then, a complex basebapd(7), usually chirp, is modulated to real
pulsep(r) = cos(2mfor + ¢(7))(=% < 7 < &) (fo is the carrier frequency; is the range
time, W, is the elevation weight and, is the pulse duration) and transmitted at a constant
pulse repetition frequency (PRF). The received backgeattenergy can then be modeled as a

convolution of the pulse waveform with the ground reflet¢yivfunction, given by [[17]

S<T77 T) = WT(T>U(U7 T) ® h(n7 T) + "0(777 T) (1)
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wheren, T are respectively the azimuth and range timgdenotes the additive noisk(n, 7) is

the time-variant convolution kernel which can be composed a

h(nv 7_) =M (777 7-) ® hZ(nv 7_) (2

In (@), hi(n, ) is the two-dimensional azimuth modulation which is resfaesfor the along-
track observation whiléi»(n, 7) is range convolution kernel that is identical to the trarisedi
pulses.

Further, we can sample the continuous-time analog e¢hor) and discrete the reflectivity
map o(n, 7), into two-dimensional array¥ € Cm*m- and X € C™*". And then we obtain

the following observation model for the strip mode SAR:
y = Hx + ny 3)

wherey = vec(Y) € C*1 | = n; xn,, x = vec(X) € C™*! n = n, x n,, H is the observation
matrix acquired from the discrete weight 0f (1) (more dethiinformation and construction of

the observation model can be seenlin [17] [18]), agds the noise.

B. Formulation of CS-SAR models

In a CS-SAR model, the data is sampled and compressed with a proper sampling matrix
O € R™! m < n, resulting in
ys = OHx + n, (4)

Whenx is a sparse signal, say, most of the entriex afre zeros, the theory of CS tells when
and how it can be recovered from the above undetermined lgystéem with fewer measurements
than Nyquist criterion requires|[2][4]. Generally, coresighg an ill-posed linear system = Ax
(A = OH) wherex is sparse enough, if the sensing mattxsatisfies some conditions like RIP

[19], x can be exactly recovered from with the L, (quasi-norm) § < ¢ < 1) optimization:
min |[|x[|, s.t. ys = Ax (5)

To solve [(5), we usually use an equivalent regularizatidveste with the following optimization
problem
min {|ly, — Ax|3 + Allx]|7} (6)
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where \ is a regularization parameter. The optimization can beieffity solved by iterative
thresholding algorithm (ITA)[[20]+-[22]. In detail, an ITAegerates a sequence of approximates
according to:

XY = By (x? + AT (y, — Ax)) (7)

wherey is a normalized parameter which controlls the convergeficheoiteration. In[(¥) E, ,

(o = A\p) is a so-called thresholding operator which is componesdlyidefined by

Ego(x) = (eg0(x1), €g.0(x2), ---6q,a(xn))T (8)

wheree,, can be analytically specified when = 0,%,%,1. For example, the widely used

soft-thresholding, which corresponds ¢o-= 1, is
sgn(z)(|z| — o), iflz] =20

e10(z) = %)

0, otherwise

The iteration [(¥) with [(B) is the fundamental procedure wggast to use for the CS-SAR
imaging.

It can be seen that the main computation load in implemeamtatif (4) comes from the
calculation of time domain correlatioA™ Ax. From the viewpoint of SAR signal processing,
this corresponds to the backscattered projection proeedunich is known to be inefficiency
for reconstruction, even implemented by convolution aslip On the other hand, we notice
that there exists efficient focusing methods using MF initiaaal SAR signal processing. This
type of processing is in the frequency domain, which is muastefr. Moreover, unlike the
MF based method which is usually decoupled, the sensingxmHirin (7), owns intrinsically
two-dimensional structure that has to be collected andedttefore imaging. Although some
compression can be incorporated according to the structutee matrix, it still consumes a
huge memory. All these difficulties then hamper effectivplaations of the known CS-SAR
imaging.

The aim of the present research is to suggest a new CS-SARnigatethod, which replaces
the use of the exact observation model by an well-definedosppation, and then makes it
possible to reconstruct the sparse scenga a sequence of 1-D operations. Thus, the very high
cost of calculation and memory of the existing CS-SAR imggimethods can be significantly

reduced.
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IIl. APPROXIMATED OBSERVATION

In this section, we first explain why an approximated obsewas needed and feasible, and
then, we provide an example to show how an approximated wéntg@m operator can be explicitly
constructed by virtue of a concrete example from the inverls&®ange-Doppler Algorithm
(RDA). A relation between the constructed approximatiod #re corresponding focus method

is analyzed, which then serves as the basis of the develdmheaw method in the next section.

A. Why approximation needed

It is known that MF is fast withO(nlogn) complexity, which is, among the others, mainly
due to frequency domain operations. More precisely, if weotieM the imaging procedure by
MF, like RDA, the SAR raw data can be well focused in some cioms by

% = My (10)

whereM is the traditional MF imaging procedure that can be caledahrough decoupling it
into a series of 1-D operators in the frequency domain. Tobisnally leads to arO(nlogn)
complexity when fast fourier transformation (FFT) type gimns are employed.

Observing these advantages, the purpose of this paper isctdesate the known CS-SAR
imaging procedures, so as to achieve a comparable (at the eamher) complexity with the
traditional MF based methods.

A natural consideration is then to look for the possibilifyirtegrating CS and MF. However,
a direct application on the decoupling Hf is impossible, becaudd intrinsically possesses 2-D
structure. Nevertheless, it is known from 10) tRaalways approximates, say, MH = I, and
hence M !, whenever exists, approximates the observakornn viewing thatM is decoupled,
it can then naturally be expected tHst~! is decoupled, too. Thus, we can expect that under
certain conditions, some types of approximationstbfcan be decoupled, so as to bring an
O(nlogn) complexity.

This is why we would like to approximate the observation, amdhe following, we will
introduce the details on how to construct and what condtraan appropriate approximation

observation.
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Fig. 1. The relations between exact observation and appaird observation.

B. How to construct an admissible approximated observation

Fig.[1 draws the main relations between CS-SAR observationMF reconstructions. It can
be seen that whenever the imaging procedués accurate enoughyI—! can be viewed as an
admissible substitute dfl. This provides a general principle of how the observalibrtan be
remodeled and approximated by any high precision imaginggeconstruction) procedure. We
formalize this principle further as

G=M'~H (11)

whereG is any generalized right inverse M, andM is any a high precision imaging procedure.
We call G henceforth an approximated observation.

However, since there are many well known imaging procedilnasprovided various tradeoffs
on imaging accuracy and complexity. We need therefore éurth define the extent of accuracy
and identify the constraints under the CS-SAR frameworksée this, let us compare the exact

observation model and the approximated observation model
y. = OHx = OGx (12)

It can be seen that by using approximated observation, dkizer reconstruck, we actually
reconstructx instead, which is assumed to be an approximatiorx,0fvhen it obeys to the
following relation

i:peox_‘_se (13)
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whereo denotes the Hadamard produpt, denote the phase error whide is the error for side
lobe, or more severely, the artifacts from unfocusing. Fdlynwhen [18) holds, there exists an
acceptable solution with the approximated observationghddowever, to find it under CS, we
should further emphasis on a better focusing abilityMbf

As we know, a key parameter in CS-SAR, different from tradhitil SAR, is the sampling rate
which measures how a SAR system benefits from CS. The leastrdrob samples to ensure
the reconstruction is incoherently determined by the s$iyacs scenex, usually irrelevant of
the distribution and phases of targets in the scene. Thagjifference of the sparsity between
x and x determines when and how much the additional measuremeets ttle approximated
observation based CS-SAR methods need. It can be immedigeh from [(1B) that the dif-
ference is uniquely characterized \da That is to say, whenever the side lobes reconstructed
from M is low enough,s. can be ignored, thes and x can keep the same sparsity. In this
situation, the required least sampling rate of the apprai@ch observation model equals to the
original model. In turn, to prevent the approximated obaton based CS-SAR method from
demanding more samples, the side lobe should be as low ablposs equivalently to say, a
well focusing capacity should be a criterion to determineethier a specific focusing method
can be used to construct the approximated observation.

The above discussions tell a fact that the constructionegfiproximated observation is quite
reflexible, which can be acquired straightforwardly basaedwell established algorithms with
additional requirement on the focusing ability. In the nexbsection, we present a concrete
example using Range-Doppler-algorithm (RDA)[23] to shaswhan admissible approximated

observationG can be simply constructed based on this principle.

C. A concrete example

RDA is a very popular procedure for stripmap mode SAR imagdimaf is simple both in
comprehension and in implementation. The procedure (utigetow squint case) consists of
three main steps (operations): the range compression, R@wCazimuth compression. In a
compact form, the imaging proceduké, operated on 2-D array, can then be expressed in the
following

X = M(Y) = F}{P, o C(F,[P, o (YF,)|F!")} (14)
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where X (x = Vec()~()) is the reconstructed 2D SAR imagE, F! respectively are the DFT
matrix and inverse DFT matrix (in practice, they are impleted by FFT) to perform, the
subscripty, 7 denotes the direction of azimuth and range where the FFDipesfalongP,, and

P, are the frequency domain matched filter operations alonguthi and range, which can be

always defined respectively by

Pn(fn;T) = eXp[_jﬂ-/Kafi] PT(fT;n) = eXp[_jﬂ-/Krfg] (15)

In (I5), £, - are the frequency along Doppler and rangé, and K, are the azimuth FM
rate and the pulse FM rate. In_(14),is the RCMC interpolation operator which is essentially
a space-variant shift, and always approximated by the atenlcsinc-kernel interpolation with
U=C(V) as

U(f,7) = Y V(fy, P)sine( — (7 + Ar(f,,7)) (16)

whereAr is the migration (measurement in time) to be corrected,land are the signals before
and after RCMC, respectively.

With the so specific operations in RDA procedure, we now caivel¢he inverse oM quite
simply by taking the inverse of every sub-procedures. Thaildeare as follows:

i) The inverse of Fourier transformatiods F!! are known as the inverse transformations,
which are given byF! F. It is important to keep the throwaway consistent betweenpthirs.

ii) It is known that phase multiplication is a unitary transfation, so that the inverse is
the multiplication of the conjugate phade;, Pz, and the Hadamard multiplication can still be
applied in order.

iii) The inverse ofC is difficult to achieve directly. In factC is approximated from the
accurate RCMC defined in continuous range time domain. Bec#lee trajectories of targets
with different range gates are disjoint, this shift is a éo@ne mapping and the inverse of the
origin RCMC exists. We can also approximate through intian V = D(U) that

V(£ 7) = _U(f,, T)sinc(7 — (1 + Ar(f,, 7)) (17)

Based on the above exposition, the approximated obsem@tideduced from RDA can then

be explicitly expressed by:

G(X) = {P} o (FID[P; o (F,X)[F)}F" (18)
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We show that the so constructed approximated observ&lidras an interesting property: It
is still a linear operator and its conjugate transpositiqnats toMH.
Theorem 1. G is a linear operator with the proper! = M.
Proof: The linearity of G and M is obvious because all the sub-operations are linear. Let
x denote the vector form oK, namely,x = vec(X). Then, by definition, the linear operators

G andM can be written as matrices, and we then have

vee(G(X)) = Gx = Fff’jf‘nHFTf)f’;]?‘nx (19)
vec(M(Y)) =My = Fff’néf‘nf‘ff’Tf‘Tx (20)
where

F,=1,. ®@F, F, =F' o1, (21)
Pn = diag(vec(P,)), P. = diag(vec(P,)) (22)

C andD are real matrices defined by

C(i. ) = sinc(i=: + Ax(i)/,)

if (i —j)modn, =0 (23)

D(i, j) = sinc(5L + Ar(j)/ 1)
In (23), Ar = vec(AR), AR is the discretion ofAr. Observing from[(23) and; is the pulse
sampling interval, it is easy to check tHat= CT. Consequently, comparing {20) aid](19), we
conclude thatG = M*. |
Theorem 1 shows that we have actually taken the conjugatsposition ofM as an approx-
imated observation oH. Such coincidence plays an important role in the new metlobet
suggested in the next section.

D. Generalization

The approach we have applied to define the approximated\atiger by the inverse of RDA
procedure can be generalized in the following two folds:
1) For high squint cases, we can incorporate secondary @&ssipn in RDA or derive

an approximated observation from the inverse of other fogusnethods like Chirp-Scaling

It is to sayG is nearly unitary, since only a minor approximation on ckition of the inverse is included
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Algorithm (CSA), w — k algorithms, so as to enhance the focusing ability. With lsimsub-
operations, like FFT, phase multiplication and interpgolatthe acquisition of the inverse is just
as same as RDA.

This principle can be applied to yield more general algonghhowever, we will not enumerate
all possible extensions but remind that the decoupled tstre@f MF makes the inverse always
achievable. This is the reason why MF is fast and why we pm@posapply the approximated
observation instead of the exact observation in the CS-SA&ying system.

2) In the above derivation, we have assumed that the trateshsignal form is standard chirp
andM focus both the azimuth and range direction. In fact, the aginmodulation is the exclu-
sive property and main difficult of SAR signal processing l@tthe range convolution, which
possesses a simple 1-D structure, can be modeled direotlyvé can apply the approximated
observation to non-chirp cases, by replacig with the transmitted pulse, which is always
recorded in modern SAR systems. This extension is also dfifsg@ necessity in CS-SAR

because the design of the pulse form is also a very imporsanei

IV. CS-SARIMAGING BASED ON APPROXIMATED OBSERVATION

In this section, we formulate the new CS-SAR imaging methaded on the use of ap-
proximated observation. Ah, regularization model together with the fast iterative sading

algorithm will be suggested.

A. The new CS-SAR method

By replacing the exact observatidii using the approximated observatiénin (18), we can

acquire the following CS-SAR model:
min{||Y. — ©,G(X)O[[ + AlIX]|7} (24)

where||-|| » is the Frobenius norm of a matri, and®, are the sampling operators in azimuth
and range directions, which corresponds to the general Isagngperator® in (4). It is well
defined because the azimuth signal is of discrete form andhtige signal is of continuous form,

and thus the sampling procedure of the two types of signalsianally physically separa%d

2pAlthough the sampling scheme on range may vary pulse-bsepute still use this expression which is easily understood
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Then, due to the linearity ofx, the model[(24) can still be very fast solved by ITA, which

reads in this case that
X = By 3, (XD + pM(O] (Y, — ©,G(X)0,)0T)) (25)

In this paper, we simply selegt= 1 while parameterg:;, A will be preset according to the next
subsection.

Fig.[2 below shows the flow chart of algorithin [25), whichgdhat ITA provides an intuitive
explanation in terms of SAR signal processing. It is seeh dh&ach iteration, the ITA can be
decomposed into mainly three procedures: the compressadidaulation, the matched filter on
the residual and the thresholding for new estimation. Riajlyi this means that in every iteration
of the ITA, the useful information in the residue (not the rdata) is first extracted by MF and
then added to the current estimate to yield a new update)yfitia® thresholding procedure

enforces the sparsity through regularizing the noise anbiguity from under-sampling.

Compressed
Raw Data Y

- MF Updat
| Residue > 'p a.e
Direction
: i New
current | Simulator| ggtimated + Shrinkage
3 A »| Raw Updat »  Estimat
Estimate X" ”| Raw Data »| Raw Upcate 4 s)::l‘ﬁ €

Fig. 2. An explanation of the proposed algorithm in one-stegation. The compressed data is alternatively procebgedF

and thresholding.

The algorithm stops when converges or achieves the maximumbaer of iterations. For
convenience of use, we list pseudo-code of ITAl (25) as Atgoril below. We further show

how the parameters i (P5) can be set adaptively.

B. Parameter Setting

There are two parametefsand ) in (25) that need to be set. Firgt, controls convergence

of the ITA that the inverse should obeys.

0<u' <3 (26)
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Algorithm 1 : Iterative thresholding algorithm for approximate obsgion based CS-SAR

imaging
Require: SAR raw echoe¥ ,, approximated observation operatérand M, sampling operato®,,, ©

Ensure: The recovery imag&™
Initial: X© = 0,)\, x and max iteration,,
1: for ¢ = 0 t0 [, dO
2. ResidueR"” =Y, - ©,G(X")0,
3 MF on residueAX” = M(©TR"OT)
4:  ThresholdingX ) = E; ,,(X® + pAX®)

5: end for

However, it is difficult to calculatd|®,G®O.|3 directly, where operatof: is included. As an

alternative, we adopt the adaptive step selection stratef®4] as:
= ©,G(AX) O |1 /11AX |7 27)
Hi " )97l K IF

where AX!” equals toAX( at the support oX(~, and equal to zero elsewhere. It is easy
to demonstrate that; satisfies [(27), and as reported [n/[24], such choice has aitiadd
advantage of accelerating the algorithm.

Further, the regularization parametgr which functions to compromise the reconstruction
precision and the sparsity of the solutions obtained, hasbatantial impact on the imaging
result. Fortunately, as a part of tihg regularization theory, the optimally has been resolved in
[21], whenever the problem’s sparsity is known. More prelgisassume the considered problem
has sparsityt (i.e. ak-sparsity problem), then the optimal setting problem ofapaster\* is

shown to satisfy
A" € [|bu(X*)|k+1 /1, |bu(X*|k)/:u] (28)

whereb, (x) = x + pAx, |b,(x*)|, is its k-th largest component in magnitude.
Therefore, we suggest the setting that in thta iteration \; = [b,(x")|, | /i ( i is
independent ofu;). The sparsityk, which determines\;, can be much flexible to be set, say,

based on a prior upper estimation on sparsity of the targatesc
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C. Computation Cost

Let us compare the computational complexity and the memocymation of the suggested
CS-SAR imaging method_(24), as compared with the known C8-8#odel [6). The purpose
is to see how much reduction of computational cost of the nesehhas been brought. In the
calculation, we have used some standard notations whichher@umber of required iteratiah
the sampling rate, the number of range gates, the number of range lines. (n = n, x n,),
the number of samples of sent pulsg the number of samples of the synthetic aperture time
u, (they equal to the time bandwidth product (TBP) in each dioeg, and the TBP of radar
signalu = u,) X u,.

With these notations, we can calculate the computationaipbexity of the approximate
observation based CS-SAKj,, and the computational complexity of the exact observation
based CS-SAR(, as follows. ForC,, it includes calculations of an inverse MF procedure and
a MF procedure, which has commonly the computational coxitglef O(nlog,n), together
with a decoupled thresholding operator with complexityn) in a single step. Thus, the total
cost is at the ordef’, = O(Inlog, n). For C,, it includes calculations of a single iteration, two
matrix multiplications and the thresholding procedurac8ithere are only few non-zero entries
in H, say, nearlyus in every column, when coding it using two-dimensional cduation, it
needs at leastuns complex multiplication. Thus, we find that the total costUis= O(Iuns).

Then, the ratio betwee@', and C, is given byrc:
ro = O(us/ logyn) (29)

It is seen from[(20) that the ratia. depends linearly on the TBP of radar signalin SAR
applications, theu is always designed very large (thousands even millions)ntprove the
reconstruction signal to noise ratio (SNR), which will lirimery high computational cost of the
time domain reconstruction method.

The memory loads of the approximate observation based 0S§-8A, and the memory loads
of the exact observation based CS-SAR, can be estimated in the subsequent way. Hgr it
contains only the storage of input, output and several per@nmatrices (i.e., azimuth matched
filter, range matched filter and the amount of migration in RD&hich is summed up t®(n)
bytes memory occupation. Fadr., although no filters are stored, it needs additionally toesto

a sensing matrix, with the number of non-zero entriesof. But, because the Doppler history
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with same range cell share the identical patterns, we ordygl n@ store an intact holistic pattern
(the convolution kernel) for each range gate to achieve gpcession, resulting in an additional
memory occupation of6un, bytes (a complex number occupies 16 bytes memory), as ceahpar
with M,. This additional cost can be very large in spaceborne SARBYs For example, when
u = 10% andn, = 10%, it requires more than 100 GB memory to store the array. Baintemory
cost of RDA is only a few hundreds MB in the same condition.sTwill further hamper the
application of time domain methods into practice.

Finally, the required number of iteration steps is diffictdt compare analytically, but in

practice, no obvious difference is observed.

D. A Summary

From the analysis in the previous subsections, we can seethtbasuggested new model
(24) and method (25) have constituted a more efficient CScb8#dR imaging method. While
preserving CS features, the new method has the followintuexe advantages:

e Lower computational cost: Due to the use of approximated observation, the method only
involves 1-D operations which makes the imaging procesemdly efficient. It has reduced the
computational complexity of the existing exact observatbased method significantly, as shown
in (29). Meanwhile, taking full advantages of the decoupdédicture after approximating the
observation, the proposed method can save the memory ctbsawemarkable amount, which
is sometimes of more significances.

e Higher Compatibility: As compared with the traditional MF based SAR imaging pdoce,
the new method uses the same or similar operations, excegditional thresholding operation
that yields the sparsity of solution. In particular, the newwcedure can be seen as a successive
iterative refinement of the well known MF based method, whitdikes the new method more
consistent. As a result, the proposed model requires ltitelification of the existing SAR
imaging algorithms, which makes the combination of MF andr@&h simpler.

All these features make the suggested new CS-SAR imagingat@bore useful and efficient,
and particularly possible to be applied in high dimensid®@R applications. We will provide
simulations and applications in the next section to furthgvport such benefit.
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V. SIMULATIONS AND APPLICATIONS

In this section, several simulations and applications aogiged to demonstrate the effective-
ness and efficiency of the proposed CS-SAR imaging methadaBloreviations, we denote by
CSRDA the CS-SAR imaging method {24) with the approximateseovationG acquired from
the inverse of RDA, and by CSEO the CS-SAR metHdd (6) with ttecieobservatiorH.

We first conduct a series of simulations to compare the padace of the CSRDA method, the
CSEO method and the traditional RDA method in terms of reitanson ability, reconstruction
guality and reconstruction cost. Then, we apply the CSRDgotae real SAR imaging tasks from
RADARSAT-1, which then further demonstrates the outpeniance of the suggested method.

The sampling scheme used in the simulations are specifiedlas$. In the azimuth direction,
we employed random downsampling, realized by selectingawamrows from the raw daty’,
with sampling rates,. In the range direction, we picked up random samples indigrgty on
each sampled echoes in azimuth, with sampling sateAnd we keep the ratio betweesy and
s, asl: SQ)

Table 2 lists the primary SAR parameters used in both sinomatand applications. All the
experiments were conducted on a work station of 8-core 221GRU with 32G memory. The
CSRDA was implemented in MATLAB 2012a while the CSEO usingroed convolution was
implemented in C++ with parallel codes and careful arrayrajens.

A. Smulations

In the simulations, the scene was taken188 x 180 while the scattered coefficients were
chosen with unit amplitude and uniform random phases. Thedata were first generated in
time-domain by exact slant range and then sampled withrdifterate, to yield the compressed
measurements. The sparsity paramdtevas kept the same for CSRDA and CSEO and the
maximum iteration steps was set to 100 for both methods. Tims af simulations is then
to compare the reconstruction ability (RA), reconstruttiuality (RQ) and reconstruction cost

(RC), of each competitive SAR imaging methods. These aresumed respectively by the lowest

3The suggested sampling strategy was designed to compietignsompare the reconstruction algorithms. The proposed
model itself is adaptively to more complicated samplingesebs, for example, jitter sampling in the azimuth direc{?] and

random demodulation_[25] in the range direction.
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PRIMARY PARAMETER OF SAR SYSTEM AND GEOMETRY

Parameter Symbol || Simulation || RadarSat-1|

Slant range of scene centen{) R, 20 1016.7
Effective radar velocityf/s) 1% 350 7062
Beam squint anglegd) 0 0 0.06
Radar center frequendy{Hz) fo 5000 5300

Pulse repetition frequendyt) F, 175 1256.98

Range FM raté(IHz/us) K, 375 0.72135
Pulse durationgs) T 2 41.75

Sampling rate{IHz) F, 75 32.317

amount of measurements a method can successfully reconamuimage, the side lobe and
resolution of reconstructed point target, and the computaitme cost by a method to recover
the image.

1) RA comparison: A set of simulations was made where 9 targets were locatdtkatenter
with intervals of 6 samples. We varied the sampling rate edrnigom 100% to 0.6% and added
gaussian noise with level of 20 dB. We applied RDA, CSRDA ar®EO to this experiment
with sparsity parameter = 18. Some of the simulation results are shown in Eig. 3 [@nd 4.

It is seen from the top row of Figl 3 that with full samples (reynwith 100% sampling rate),
all the methods RDA, CSEO and CSRDA can successfully redinescene, say, the amplitude
of the target is maintained and no false target is observedl.ti® reconstruction of RDA is
with serious side lobes, which is not observed in CSRDA an&8@SThis shows the exclusive
advantage of the sparse regularization based CS-SAR igpagethodologies, as reported in
[14]. When we reduce the sampling rate, say, 10% samplesees ia the bottom of Fid.]3
RDA fails to recover the scene, while CSEO and CSRDA both edronly perfectly reconstruct
the scene but with significantly reduced side lobes. In thsec no visible difference can be
observed for CSEO and CSRDA. Nevertheless, when the sagnm@ie continues reducing as
in Fig.[4, we found that both CSRDA and CSEO can reconstrugirttage with only 0.65% of
the samples. However, CSRDA fails with 0.55% samples whiB=O fails until the sampling
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@ (b) ©

@ ©) 0]

Fig. 3. The reconstruction results of 9 point targets sitofs with different sampling rate. From left to right areeth
reconstruction results of RDA, CSRDA and CSEO, respegctivehd the top row is with full samples while the bottom with

10% samples

rate takes 0.45%.

All the results consistently show that benefited from spaegpilarization, the approximate
observation based CS-SAR method can reconstruct sparsesseeth far less samples than
Nyquist rate requires. However, caused by approximatiorequires a little more samples to
reconstruct the scene.

2) RQ comparison: Sparse regularization was demonstrated in SAR and CS-SAdRginmg
the ability of reducing the side lobe and simultaneouslyrionpg the resolving ability[[14].
Hence, we are interested in whether the enhancement is kept approximated observation is
included, especially when the effect of the accuracy of theeovation is excluded. To illustrate
it, we compare the reconstruction quality of RDA and CSRDAemms of side lobe and spatial
resolution, when successful reconstruction is achievée. dide lobe is evaluated via the peak
side lobe ratio (PSLR), defined as the ratio of the peak iittenfthe most prominent side lobe
to the peak intensity of the main lobe, say, the smaller theRP$he better an algorithm. The
spatial resolution is measured by the impulse responsénigiV), defined as the width of the

main lobe of the impulse response, measured by 3 dB belowdhk palue, or the minimum
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Fig. 4. The detailed comparison on needed least samplesonseuct the image. The top row is the results from CSRDA,
and the bottom row is from CSEO. From left to right are the ltescorresponding to 0.65%, 0.55%, 0.45% sampling rate,

respectively.

distance an algorithm can separate two targets, which dhmilalso as smaller as better. We
have perform a one point simulation with the upsampled fatéwhile the target is analyzed
by a16 x 16 chip centered on the peak, to yield a more detailed analysisoth the main lobe
and the side lobe. The sampling rate is fixed (10% for CSRDAentD0% for RDA) to ensure
a successful reconstruction, and the sparsity paranietsrset 600. Some of the simulation
results are given in Fid.l 5.

Fig.[8 show the contours of the reconstruction results, agtfitour lines of -3 dB (the boundary
of main lobe) and -13 dB (the PSLR of traditional MF outputheTcomparison intuitively
shows that both the area of the main lobe and the PSLR in tleelsize reconstructed from
CSRDA is much smaller than those reconstructed from RDAtheurin the table, details on the
reconstruction quality are presented in azimuth and ramgettns. It is seen that the width of
main lobe reconstructed from RDA is 15 samples both in ramgeazimuth, but for CSRDA,
the width is only 8 samples in the two directions. For the dae, the PSLR reconstructed
from RDA is -13.32 dB in range and azimuth direction, whiclvésy obvious. But the CSRDA
reduces the PSLR to -21.3 dB and -22.7 dB in azimuth and raegpectively.
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7 O @ O 70: ®)
QQLC ) DO 0 (O 0
1O @ O i ~
(@) (b)
Method || PSLR(R) | PSLR(A) || IRW(R) IRW(A)

RDA -13.32 dB|| -13.32 dB|| 15 samplesg| 15 samples
CSRDA || -22.71 dB|| -21.32 dB|| 8 samples|| 8 samples

Fig. 5. Contours of magnitude. The red, yellow, light blu&jebcontour lines are corresponding to the value of -3 dB,-13
dB,-23 dB and -33 dB. (a) Contours from RDA. (b) Contours fr@8RDA. (c) Contours from CSEO.

We further demonstrate the enhancement of resolution byDB&SiR another way. We add
two point targets in the above simulation, with respecyiv@imuth and range interval of 12
samples from the center. We then test whether the threetdarga be separated from CSRDA.
It is seen from the simulation result (Fig. 6(a)) that theorestructed result of traditional RDA
exhibits an overlapping of the main lobe, thus the targetsimseparable. By using CSRDA in
Fig.[8(b), one can clearly distinguish the locations of ¢ points, demonstrating an obvious
enhancement of the resolution.

All of the simulations in this subsection demonstrate thatcombining MF with sparse
regularization, we can reduce the side lobe and improvedbelution simultaneously to a great
extent. Note that, these two goals have been regarded asdftsdtraditionally, if only MF is
employed.

3) RC comparison: Finally, we compare the CPU time takes by CSRDA and CSEO. wiicg
to the analysis in section IV, the computational complexityCSRDA and CSEO depends on
the scene size and TBP of radar signal. So we generated 10 examples for each set of fixed
scene sizen and TBP of radar signal in simulation, with a constant sampling ratel0%.

The average computational time in a single iteration of e methods was then recorded. The
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Fig. 6. Superresolution ability of the proposed method.Reyult of RDA. (b) Result of CSRDA.

comparison results are shown in Hig. 7.
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Fig. 7. The CPU time of CSRDA and CSEO, where {ais fixed as10°. (b) p is fixed as10°.

As we can observe from Fig] 7, whenis fixed as10°, the CSRDA scales very well to very
high dimensional problems, since even with= 107, it only takes several second to finish an
iteration. The CSEO is also insensitive to dimension whes fixed. However, the CPU time of
CSEO is consistently higher than that of CSRDA, with a ratiouad 100. On the other hand,
it is seen from FiglJ7(a) that whemis fixed to 107, the CPU time of CSRDA is constantly 3s,
but, the CPU time of CSEO depends linear @wnwhich becomes more and more costly:as

increases.

This RC comparison shows that the approximate observatised CSRDA is much faster
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than the time domain method CSEO, benefited fromte log, n) computational cost of MF.
And the computational complexity of CSEO depends linearlyboth the TBP of radar pulse
and the scene size. So when thés large, i.e.10° which is commonly in spaceborne cases,
CSRDA is expected to accelerate the CS-SAR reconstructane than thousands of times. This
acceleration of computational time together with the shavamory saving capacity demonstrate
the superiority of the proposed method.

All the above simulations support that the suggested apmpated observation based CS-
SAR method, CSRDA, is capable of high quality imaging undemqiNst rates and with a
comparable complexity as the traditional MF based imagirghod. Especially, as compared
with the exact observation based CS-SAR imaging, CSRDAepves the features of imaging
under Nyquist rate and reconstruction with feature enhaecg, while reducing the imaging
complexity dramatically. Such significant complexity retdan property makes the new method
applicable to large scale imagery application (as will bendestrated in the next subsection).
This is, however, at the sacrifice of reconstruction qualityequivalently, must be compensated
with additional measurements. Thus, the new method prewadgatisfying trade-off between the

reconstruction complexity and quality.

B. Application

We have applied the new method, CSRDA, along with RDA and CSB@ome real SAR
imaging tasks. RADARSAT-1 is a famous satellite SAR launcl¢ 1995, and the data used
in this application were collected on June 16, 2002 with FBe@am 2 about Vancouver region.
The related key parameters of SAR system are as in Table. 1.

We first applied the 3 methods to reconstruction of the regibrEnglish Bay, in which
6 vessels are sparsely distributed, a very typical spareeescThe scene was digitalized as
1024 x 512 image with azimuth resolution 9 m and range resolution 6 m.tNém reconstruct
the image by the 3 imaging methods with spardify= 10000, and with varied sampling rates
from 100% to 5%. Some typical results of reconstructionssimewn in Fig.[ 8. As expected,
the application shows a completely similar performancenasin the simulations. For example,
Fig.[8(a) exhibits that RDA can only reconstruct the imagembkamples are fully adopted, but
strong side lobe is observed. When sampling rate is 20%, RillA With obvious ambiguities,

but CSRDA and CSEO both can perfectly recover the image, mitbh reduced side lobe. Fig.
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(a) RDA(100%) (b) CSRDA(20%) (c) CSEO(20%)

(d) RDA(20%) (e) CSRDA(5%) (f) CSEO(5%)

Fig. 8. Application on RADARSAT-1 (region of English Baygr)(RDA with full samples. (b) CSEO with 20% samples. (c)
CSRDA with 20% samples. (d) RDA with 20% samples. (e) CSRD&AB% samples. (f) CSEO with 5% samples.

[B(c)(f) then show that when sampling rate is reduced to 5%rékaonstruction of CSEO is with

slightly higher precision than that of CSRDA, though botim ill recover the targets. On the
other hand, as listed in Fifl 7, CSRDA exhibits its dominahtasatage in computational cost as
compared with CSEO. For example, the computation time afnsituction, when 20% samples
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(a) (b)

Fig. 9. Application results on RADARSAT-1. (a) RDA with fulamples. (b) CSRDA with full samples.

(@) (b)

Fig. 10. Detailed comparison on the selected area with gathscale. (a) RDA. (b) CSRDA.

are used, by CSRDA is 1 minutes, while by CSEO is about 9 hause, CSEO needs to store
the sensing matrix which occupies about 16Gb memory, whilg @00Mb for CSRDA. We

further applied the CSRDA to the large scale imaging proliegether with RDA. However, the
CSEO is not compared in this experiment because the memstyscbeyond the computational
ability of our computer. The scene has a sES x 2500 samples, which is of large scale

but not so sparse. CSRDA can be applied in principle becam@eses regularization, which is
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adopted in CS-SAR, can be used as a feature enhanced imagithgdn(with suppressed side
lobe and improved resolution), as demonstrated in the sitimms. The reconstruction results
by RDA and CSRDA (with 100% sampling rate) are shown in Eiglt9s seen from Fig[ 0
that CSRDA has resulted the reconstruction with improvesbltgion and reduced side lobes,
as demonstrated in the zoomed Higl 10.

The applications above support that the suggested appatethobservation based CS-SAR
imaging is effective and efficient, especially applicaldéhigh dimensional SAR imaging appli-
cations. Such benefit clearly improves on the currently weseatt observation based CS-SAR

imaging methods.

VI. CONCLUSION

Compressed sensing (CS) has been applied to yield novel 8¥aBimg methodologies under
Nyquist sampling in recent years. The resultant CS-SAR isate time domain based and using
the exact observation, which then makes it of very high cdatmnal cost, and is difficult to
be applied in high dimensional applications. In this papes,have proposed an approximated
observation and frequency domain based CS-SAR imagingadgivith which the computational
complexity can be dramatically reduced.

The main contributions of the present work are as follows.

i) Instead of the exact observation matrix, an operatotedahe approximated observation
is constructed to generate SAR raw data by means of inversyftraditional MF based
imaging procedure (like RDA). Such generic constructiorkesahe SAR imaging approximately
decoupled, very fast in processing, while naturally cotingcthe existing MF based SAR
imaging algorithms.

i) Incorporating the approximated observation into CSRSfkamework, an efficient sparse
regularization based CS-SAR model is formulated. The newehoombines naturally CS and
MF and is compatible with most existing SAR imaging methedsich needs a little modification
of the current SAR imaging technologies.

iii) With the use of approximated observation, an iterativeesholding algorithm is suggested
for fast solution of the new CS-SAR model, which forms a lowngdexity, CS featured, new
SAR imaging method.
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We have tested and applied the new suggested CS-SAR mettioc \series of simulations
and applications. The experiments consistently suppattttte new method is capable of recon-
structing sparse scenes with far fewer measurements thgoidyequires, yielding always a
feature enhanced high quality imaging and bringing a spgeaf veconstruction hundreds times
as compared with the exact observation based CS-SAR metbadsto the fast and feature
enhancement features, the new CS-SAR method can be ac@eptrd efficient CS type SAR
imaging technique, especially for high dimensional imggapplications.

It is worthwhile, however, to remark that although signifit@omplexity reduction (speed-
up of reconstruction) can be brought, the use of the apprabeadchobservation requires more
samples to reconstruct a scene. Thus, how and what extesttdeeapproximation affect the
reconstruction deserves a further study. Moreover, sineeetare many possibilities of concrete
realizations of the approximated observation, the coteon how to select an appropriate one

deserved study. All those problems are under our curreeares.
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