Abstract:
This paper shows the main outcomes of the Puyehue volcano (Chile) eruption monitoring by means of multisensor remote sensing instruments working from thermal infrared (TI...Show MoreMetadata
Abstract:
This paper shows the main outcomes of the Puyehue volcano (Chile) eruption monitoring by means of multisensor remote sensing instruments working from thermal infrared (TIR) to microwave (MW) spectral range. Thanks to the use of Synthetic Aperture Radar (SAR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), the eruption evolution was observed, capturing the deformations of volcano edifice, the lava extension, as well as the information on ash and gas emitted. On the one hand, SAR Interferometry applied to ENVISAT-ASAR data allowed the estimation of the deformation occurred just before the beginning of the eruption and the subsequent deflation, with monthly sampling. On the other hand, with the combined use of the very high-resolution (VHR) images taken by COSMO-SkyMed X-band SAR, and ENVISAT-ASAR ones, we were able to follow the lava deposition during the most intense phase of the eruption. Additionally, the joined exploitation of SAR and optical MODIS images allowed ash detection, also in cloudy sky conditions. Finally, the information gathered by both types of sensors allowed to highlight some volcanological features of the eruption and the relationship between surface deformation and the amount of ash and gases emitted by the volcano.
Published in: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing ( Volume: 7, Issue: 7, July 2014)