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Abstract—The Potts model is frequently used to describe the
behavior of image classes, since it allows to incorporate contextual
information linking neighboring pixels in a simple way. Its isotropic
version has only one real parameter ¯, known as smoothness
parameter or inverse temperature, which regulates the classes map
homogeneity. The classes are unavailable and estimating them is
central in important image processing procedures as, for instance,
image classification. Methods for estimating the classes which stem
from a Bayesian approach under the Potts model require to ade-
quately specify a value for ¯. The estimation of such parameter can
be efficiently made solving the pseudo maximum-likelihood (PML)
equations in two different schemes, using the prior or the posterior
model. Having only radiometric data available, the first scheme
needs the computation of an initial segmentation, whereas the
second uses both the segmentation and the radiometric data to
make the estimation. In this paper, we compare these two PML
estimators by computing the mean-square error (MSE), bias, and
sensitivity to deviations from the hypothesis of the model. We
conclude that the use of extra data does not improve the accuracy
of the PML; moreover, under gross deviations from the model, this
extra information introduces unpredictable distortions and bias.

Index Terms—Potts model, pseudo-likelihood, segmentation.

I. INTRODUCTION

G EMAN and Geman [1] consolidated the use of Gibbs
laws as prior evidence in the processing and analysis of

images. Such distributions are able to capture the spatial structure
of the visual information in a tractable manner. Among them, the
Potts model has become a commonplace for describing classes.
In its simplest isotropic version, the amount of spatial association
is controlled by the smoothness parameter ,which is a real value
also known as smoothness parameter or inverse temperature.
Within the Bayesian framework, assuming the Potts model as
the prior distribution for the classes, the posterior distribution of
the class map given the radiometric data is also a Potts model, in

which the likelihood of the observed data appears as an external
field. Moreover, the contextual information is also described
by the same , albeit the particular form of the law is not the
same [2].

Many estimators of the true (unobserved)map of classes given
the observations can be proposed in this context. Among them,
MAP (Maximum A Posteriori), MPM (Maximum Posterior
Marginals), and ICM (Iterated Conditional Modes) stem as
natural procedures. Computing any of the two first is an NP
problem, so approximate procedures have been proposed, e.g.,
simulated annealing [1] and incomplete estimators [3], whereas
the ICM [4] is an attractive estimator which leads to an iterative
classification procedure. All these techniques require to ade-
quately specify a value for . In the literature, for the ICM
estimator, the specification of has been diverse: fixing by
trial-and-error [5], [6]; estimating once and keeping this
value until convergence [7]–[9]; or updating the value for each
iteration [10], [11].

Classical statistical estimators of the smoothness parameter
require computing or estimating the normalizing constant of
the Potts model, which is generally quite difficult. Exact recur-
sive expressions have been proposed to compute it analytically
[12]. However, to our knowledge, these recursive methods have
only been successfully applied to small problems. General
Monte Carlo Markov Chain methods can not be applied to
estimate , but some specific MCMC algorithms have been
designed in [13] and [14], among others.

Another popular estimation method applies the expectation
maximization (EM) algorithm to approximate maximum-
likelihood estimators. This procedure iterates between the com-
putation of the expectation of the joint log-likelihood of the data
and the labels, given (step E) and the update of as the
argument that maximizes the expectation (step M). Several EM
optimizations may be found on [15] and references therein.

In all these previous methods, the partition function or an
estimate of it is needed, whereas other methods work indepen-
dently of . In [16], the first three terms of the Taylor series
around of the log-likelihood are found, and is computed
as the argument that maximizes that formula. In [17], the
estimation of was included within an MCMC method
using an approximative Bayesian computation-likelihood-free
Metropolis-Hastings algorithm, in which was replaced by a
simulation-rejection scheme.

All these methods are inaccurate or computationally expen-
sive, with exception of the PML estimators [18]. These last
estimators circumvent the use of , replacing the likelihood
function by a product of conditional densities, which may come
from the prior or posterior model.
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The pseudo-likelihood estimator based on the prior model is a
classical estimator, which has been often applied in contextual
image segmentation methods, see [10], [19]–[21] for details. In
[22], a new PML estimator was introduced, which is based on the
posterior model. The estimation in both methods is performed
over an observed segmentation, since it estimates the smoothness
of the class configuration. In principle, the advantage of using the
posterior distribution is that the radiometric data are also includ-
ed in the estimation process.

Gimenez et al. [22] showed that adding radiometric data into
the PML equation produces highly accurate estimates, i.e., with
negligible mean-square error (MSE). Also, working with real
Landsat data, estimation using the posterior model seemed to
improve the ICM segmentation output. Nevertheless, when
studying more closely the behavior of the estimate under a
contaminated model, i.e., when the smoothness of the initial
segmentation does not agree with a Potts model, great instability
was discovered in outputs of the estimator based on the posterior
distribution that where not shared by the classical estimate based
only in the prior distribution.

To the best of our knowledge, there is no discussion in the
literature about the stability of PML estimators of the Pott’s
smoothness parameter under data contamination. This finding
gives more relevance to the version of the ICM algorithm
discussed in [11], which estimates the smoothness parameter
each time the configuration is updated, since the initial class
configuration (obtained from noisy data) may introduce great
bias in the smoothness estimate, resulting in severe underesti-
mation of the influence of the context on the final result.

This paper is organized as follows: in Section II a general
review of the Potts model, general pseudo-likelihood estimation,
and simulation techniques for such model is made. In Section III,
the two PML estimators are compared using data simulated
under the Potts model, analyzing MSE, bias, and variance. In
Section IV, the influence of the smoothness of the initial seg-
mentation is studied, considering contextual ICM and maxi-
mum-likelihood classificationwithGaussian observation in each
class. Conclusions are drawn in Section V.

II. DEFINITIONS

A. Model

Without loss of generality, a finite image is a function defined
on a grid of lines and columns. A Bayesian model
stipulates that at each position , there is an element from
the set of possible classes L , where . The
random field which describes all the classes is denoted by

, and its distribution is called the prior distribution.
Assuming that the observations, given the classes, are indepen-
dent random variables, the observed image can be described in
conditional terms by a probability law which depends
only on the observed class at . The conditional laws

L are the distribution of the data given the
classes . The Bayesian classification problem consists of
estimating provided .

The Potts model is one of the most widely used prior dis-
tributions in Bayesian image analysis. The basic idea is that the

distribution of conditioned on the rest of the field only
depends of the class configuration on a (usually small with
respect to and ) set of neighbors . All neighbors form
the neighborhood of the field have the following properties:
1) ; 2) ; and 3) .

In the isotropic and without external field version of this
model, the probability of observing class L in any coordinate
given the classes in its neighborhood is given by

where is the number of neighbors of with label
L. These conditional probabilities uniquely specify the joint

distribution of

where is the number of pairs of neighboring pixels with the
same label in the class map .

We are interested in the case > which promotes spatial
smoothness, a desirable property for the prior distribution in
classification procedures, but the forthcoming discussion is
analogous for the case < .

Assuming that the observations, given the classes, are inde-
pendent random variables, applying the Bayes rule one obtains
the distribution of the classes given the observations

This is the Potts model subjected to the external field
.

B. Inference

The joint distribution of the Potts model, either for the classes
only or for the posterior distribution, involves an unknown
normalization constant termed “partition function” in the
literature. Since this constant depends on the smoothness
parameter, iterative algorithms for computing a maximum-
likelihood estimator of require evaluating this function a
number of times, which is unfeasible in practical situations.
Pseudo-likelihood estimators are an interesting alternative to
solve this problem. Instead of finding the parameter which
maximizes the joint distribution, they are defined as the argument
which maximizes the product of conditional distributions.

Given , an observation of the model characterized by (2), a
classical proposal consists in solving the maximum
pseudo-likelihood equation

After a series of algebraical steps, this is given by

where

L

L
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If consists of the eight closest neighbors (discarding sites by
the edges and corners of ), (4) reduces to the nonlinear equation
in with only 23 terms given in (6) as shown at the bottom of the
page, where the coefficients count the number of patcheswith
certain configurations; see [23] for details.

Equation (4) involves an observed map of classes , that the
model should follow in order to allow adequate parameter
estimation, i.e., the map of classes should be a realization of a
Potts model. Nevertheless, in practice, only the radiometric
image data are available, thus the map of classes must be first
estimated from the image by a classification method, and then
parameter estimation can be pursued. As observed in [10], the
initial map of classes is usually obtained by maximum-likeli-
hood classification from the image data, assuming no spatial
structure for the classes, i.e., . The radiometric data have,
therefore, influence on the estimation process, and such infor-
mation should not be discarded before checking the degree of
influence in the accuracy of the estimation. In [22], following this
approach, a new estimator was proposed, incorporating the
observed radiometric data into the estimation itself by consider-
ing the posterior conditional distributions. Thus, the estimator
was defined as the solution of the following equation:

Such equation can be transformed into

where

L

L

If is a map for which there are two pixels such that

>
L

<
L

then (4) and (7) have a unique solution, since the functions (5)
and (8) are strictly decreasing (see Proposition 1) continuous and
they verify

L
>

and

L
<

The conditions given in (9) are usually verified except in rare
cases like the maps shown in Fig. 1 for second-order
neighborhoods.

Thus, we have presented two PML estimators of , one that
needs only the map of classes and other that uses the map and the
observed image.

In this paper, we will show that, for the Potts model, the
intuitive claims that more information implies better estimation
does not hold. The use of the extra information contained in the
posterior model (3) does not improve the estimations under the
model given in (2); moreover, it makes estimationmore sensitive
to deviations from the Potts model. This means that the observed
(or estimated) map of classes is sufficient to obtain accurate
smoothness parameter estimations under the true model, and it

Fig. 1. Class maps for which condition (9) do not hold for second order
neighborhoods.
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maintains the accuracy under common deviations of the model,
which are usual in practice.

C. Simulation

We study the behavior of the two PML estimators under the
pure model (class maps and radiometric data are simulated) and
under contaminated model (estimated classifications instead of
the simulated class maps).

There are many well-known algorithms for simulating reali-
zations of the second-order Potts model. We have implemented
our version of the Swendsen–Wang algorithm [24] onMATLAB;
the computational details are in the Appendix.We generated 100
realizations of the Potts model of size for each
combination of parameters and number of classes in the
sets ; 0.2; 0.3; 0.4; 0.45; 0.5; 0.6; 0.7; 0.8; 0.9; , and

. For each simulated class map, Gaussian radiomet-
ric data were also simulated with the same variance per class, but
means separated by , 2, 3, and 4 standard deviations. Each
Gaussian image was classified with (Gaussian) maximum likeli-
hoodwith the true emission parameters, and this (noncontextual)
classification was then used to initialize the iterated conditional
modes algorithm with set as the parameter that generated the
simulated map of classes.

Fig. 2 shows an example with , , and ;
Fig. 2(a) a realization of the Potts model, whereas Fig. 2(b)
presents the Gaussian observed data with standard deviation 15
andmeans 70 and 100, respectively (separated by standard
deviations). Fig. 2(c) shows the histogram of the emission model
of each class and of the mixture of classes. Fig. 2(d) shows the
Gaussian ML classification of the observed data, and Fig. 2(e)
presents their ICM segmentation using Fig. 2(d) and as
initial map.

The PML estimators are the roots of the functions and
.We will use simulated data to plot these functions since the

analysis of such curves is important to explain the numerical
instabilities that are introduced by common, simple deviations
from the model. In Fig. 3(a), we show an example of the curves
corresponding to ; ; and . The axis and the
true value of the parameter corresponding to the model are
marked by a vertical and horizontal solid line, respectively.
Thus, the estimation is good if the curve passeswhere the vertical
and horizontal lines intersect. In the example of Fig. 3(a), both
estimators are accurate.We should note that the plot of the curves

and are very smooth, albeit their complex algebraic
expressions.

III. STATISTICAL ACCURACY: MSE, BIAS, AND VARIANCE

We analyze the MSE, the bias, and the variance of the
estimators, computed on the simulated data under the true Potts
model described in Section II. This information is presented in
Table I. Both accuracy and precision are good in both estimators,
since there is no noticeable bias, nor large variance. We also
analyze these results plotting the 100 curves and , for
each choice of parameters. Fig. 3(b) presents such bundles of
curves for , , and . We conclude that under
the model, both estimators are consistent and statistically
indistinguishable.

Fig. 2. Simulated data base example for ; ; and . (a) Potts
model realization; (b) Gaussian data; (c) Histogramof (b) for each class according
to (a) and the corresponding to the full image (b); (d)ML of (b); and (e) ICMwith

fixed and initial clasification (d).

Fig. 3. Functions whose roots are the PML estimators ( and ), along
with their bundles for the case ; ; and . (a) and and
(b) Curve Bundles for and .
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IV. SENSITIVITY TO MODEL DEVIATIONS

In Section III, we evaluated common accuracymeasures when
the estimation was produced over images generated by the true
model. This is never the case in practice. Even if the radiometric
data are emitted after a realization of the Potts model, such map
remains unobserved. As in all HiddenMarkovmodels, one of the
main goals is to predict the most probable state label that could
have emitted the observations. Maximum-likelihood classifica-
tion generates an initial map and ICM predicts the state map
under the Potts prior. Nevertheless, an estimation of is needed,
and it has to be computed from the initial classification ML or
from a cycle of ICM made with an initial arbitrary .

In this section, we explore the performance of the estimators in
the setting where the map of classes is not an accurate estimation
of a true Potts model realization. Our study will involve the
influence of the parameters of the emission in the curves
and and in our estimations.

A. Maximum-Likelihood Classification as State Map for
Estimation

From the standard definition of numerical analysis, we will
say that a system of two linear equations with two unknowns
is ill-conditioned, if the slopes of the equations are similar.

Ill-conditioning makes that any small numerical error that dis-
places slightly the line changes greatly the point of intersection of
the two lines. Then, if a curve has a derivativewith small absolute
value, any displacement (even the smallest) moves the roots by a
considerable amount.

In our context, the accuracy of the estimators as positions of
the roots will be extremely dependent of the absolute value of the
derivative of the and . We compute such values in the
following proposition.

Proposition 1: The derivatives of the functions defined in (5)
and (8) are

where the variances are computed respect to the conditional
distribution and , respectively.

The derivatives from both curves coincide when both the
classes emit observations under the same distribution. As the
means grow apart, the absolute value of the slope of
decreases, intersecting the axis at smaller angles, which in
turn makes the estimation more sensitive to numerical errors. In
the case of the curve, the distance between themeans has no
influence on the root positions. To differentiate this curves from
the curves generated by using ML data, we define the following
functions:

L

L

and

L

L

where and is the state
value in the pixel in the ML classification of .

In each of the plots of Fig. 4, the sensibility of the estimators
is illustrated for different lags (differences between means),

and . The plots present in red and cyan represent
the curves corresponding to the prior and posterior model,
respectively. This curves appear in full lines, if they pertain
to the pure model ( and ), and in dashed lines, if they
pertain to the contaminated model with the ML segmentations
( and ).

The curves of the prior statistic under the pure model are very
similar in all the plots, since does not affect . In the other
hand, curves of the posterior statistic under the pure model show
the incidence of , i.e., as the lag increases, the curve tends to an

TABLE I
MSE, STANDARD DEVIATION, AND MEAN OF ESTIMATORS COMPUTED OVER

100 REALIZATIONS OF A POTTS MODEL FOR SEVERAL VALUES OF , GAUSSIAN

DATA WITH , AND
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horizontal line. Nevertheless, under the pure model, both statis-
tics present good and indistinguishable estimations.

The curves of the prior statistic under the contaminated model
are almost parallel to the curves corresponding to the puremodel,
but their roots are smaller than the true . The larger the lags, the
better the segmentation produced by ML, i.e., closest to the true
Potts model realization and the better the estimation producing by
the curve root. Despite the displacement in the curves being
the same for both estimators, the estimator based on the posterior
model is more influenced, having a curve with smaller slope.

From this, two complementary concepts arise when the lags
increase: parallel curves of the same color are closer and estima-
tions with larger negative bias produced by the reduction in the
slope of the curves. This two concepts are mixed in the posterior
estimator leading to no improvement when the lags increase. For
the prior estimator, separation between the class conditional
distributions improves the estimation.

We should note that and . This
follows form the fact that the expressions are regulated by their
first term. Such term is larger in the puremodel since themaps are
more homogeneous than the ones estimated byML. This implies
the estimations being smaller, thus biased to the left.

Fig. 5 shows, as well than Fig. 3(b), the bundles of curves of
both estimators under the contaminated model, for the case

, , and .
Fig. 6 shows the bias of both estimators as a function of , for

several and , when the model is contaminated with the
estimated map. Clearly, both estimators show a marked bias to
the left, reduced only in the case of the prior estimator when
increases and has values smaller than 0.5.

B. Iterated Conditional Mode as Class Map for Estimation

In a similar way, we define the functions and , using
the ICM output segmentation instead of , setting as

the parameter used in the simulation of the Potts model. Fig. 7
shows the plots of the functions , , and in red and

the functions , , and in cyan, for different . The

curves corresponding to the pure model are full lines, and the
dashed lines and dotted lines are the curves corresponding to the
contaminated model, when usingML and ICM as observed class
map, and , respectively.

We see that and . This due to the
smoothing that ICM introduces over its initial map , produc-
ing larger estimates than the ones computed directly over .

Besides, it holds that and , due to
the fact that is a local maximum of (3), and because of that,
it is smoother than a random realization of themodel (3), which is
not necessary a mode of such model.

Like before, we should note that the curves reduce
curvature when increases. In the other hand, while increases,
the curves of the contaminated models get closer to the curves of
the puremodel. This is because the larger is, themore it will cost
to ICM generate connected regions in the map, since in such case
the contextual evidence is weaker than the radiometric evidence.

Fig. 8 shows the bias of both estimators as a function of , for
different values of and .We should notice that both estimators
have a positive bias. Negative bias is only present for large values
of . Also, it is important to notice that has more influence than
on the accuracy of the estimators. When , the number of

classes has little to no influence in the bias of the estimators. In all
analyzed cases, the prior estimator has better accuracy than the
posterior estimator.

Such as we did in Figs. 3(b) and 5, having 100 replications of
each case of number of classes, lags, and , we present curves
that show the bias and variance of the estimators. In Fig. 9, we
show the bundles of curves obtained for two classes, , for
different lags. We observe better estimation and reduced vari-
ance as the lag increases.

V. CONCLUSION

We have analyzed the performance of two PML estimators of
the smoothness parameter of the Potts model under simulation.
We report that under the true model, there is no statistical
difference between the estimations. But when we contaminated
the model, introducing noncontextual observations or smoothed
observations, the estimators showed differences in stability, bias,
and variance.

Fig. 5. Bundles of curves of the functions and for ; ; and
. (a) and (b) .

Fig. 4. Plots of , , , and for ; ; and several values
of . (a) ; (b) ; (c) ; and (d) .
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We have presented a theoretical analysis of such behavior,
which leads us to conclude that despite the reduced range of
sampling of our simulation, our findings hold for other cases,
allowing us to make the following statements regarding quality
of PML estimation in the hidden Potts model case.

1) Radiometric unimodal distributions, regardless the number
of true classes, produce severe bias in the PML estimators,
which is reduced when ICM segmentation is considered as
observed map.

2) Posterior PML estimators are the roots of curves that flatten
as functions of the difference of means in the radiometric
information. This property, combined with distortion pro-
duced by dirty observedmap of classes, introduces a larger
bias than prior PML estimators, which are not influenced
by the radiometric distribution.

3) In the Hidden Potts Model problem, when there is no prior
information about the smoothness of the map of classes,
estimation should be made with the prior PML estimator,
over ICM segmentation.

The effect of adding the observed data into the estimation
procedure does not improve the overall results. In fact, in some
case, the additional data worsens the estimation of the smooth-
ness parameter. This is more critical and noticeable in the bias,
specially when the true value is relatively high.

Users of images with high signal-to-noise ratio should be
specially cautious. As can be seen in Figs. 6 and 8, adding
observed data increases the bias of the estimator of , and this
effect is stronger, the larger the value of is, i.e., the smoother the
input map is.

If the use of additional data is not advisable in general for the
estimation of the smoothness parameter, then this is particularly
important for users of relatively low-resolution optical data and
with separable classes. These data yield: 1) very smooth maps
and using the observed data would lead to highly biased esti-
mates with negative results and 2) situations as the one depicted
for , where the bias of the posterior estimator is
much larger than the observed in the prior one.

We will prove elsewhere that posterior PML have interesting
statistical properties such as consistency, asymptotic normality,
as the prior estimators do. Making use of extra information,
without increasing complexity, appear more intuitive than the
PML estimators based only on prior information. Nevertheless,

Fig. 6. Bias of the estimators produced by using instead of the Potts model realization, for ; ; and several values of .

Fig. 7. Plots of , , , , , and for ; ; and
several values of . (a) ; (b) ; (c) ; and (d) .
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inaccurate extra information produces unacceptable bias and
distortion which should prevent the use of these new estimators
in practical applications.

APPENDIX

A. Computational Information

Simulations were written on MATLAB from scratch and
carried on in a desktop computer with an Intel I5 2500 processor

and 8 GB of RAM memory. A package with the routines is
available for download from A. G. Flesia’s Reproducible
Research repository at the Universidad Nacional de Córdoba,
Argentina.
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