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Multitemporal fusion for the detection of static
spatial patterns in multispectral satellite images
— with application to archaeological survey
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Technische Universitat Minchen, Munich, Germany
2 Department of Anthropology, Harvard University, Cambridge MA, USA

Abstract—We evaluate and further develop a multitemporal fusion
strategy that we use to detect the location of ancient settlement sites in
the Near East and to map their distribution, a spatial pattern that remains
static over time. For each ASTER images that has been acquired in
our survey area in north-eastern Syria, we use a pattern classification
strategy to map locations with a multispectral signal similar to the
one from (few) known archaeological sites nearby. We obtain maps
indicating the presence of anthrosol — soils that formed in the location
of ancient settlements and that have a distinct spectral pattern under
certain environmental conditions — and find that pooling the probability
maps from all available time points reduces the variance of the spatial
anthrosol pattern significantly. Removing biased classification maps —
i.e. those that rank last when comparing the probability maps with the
(limited) ground truth we have — reduces the overall prediction error
even further, and we estimate optimal weights for each image using
a non-negative least squares regression strategy. The ranking and
pooling strategy approach we propose in this study shows a significant
improvement over the plain averaging of anthrosol probability maps that
we used in an earlier attempt to map archaeological sites in a 20 000
km? area in northern Mesopotamia, and we expect it to work well in
other surveying tasks that aim at mapping static surface patterns with
limited ground truth in long series of multispectral images.

Index Terms—Archaeological remote sensing, anthrosols, random for-
est, ensemble classification

1 INTRODUCTION

The analysis of spatio-temporal surface patterns is cen-
tral to many applications in satellite remote sensing. In
land use monitoring, for example, algorithms deal with
the detection of specific changes of the land cover or
the accurate quantification of urban growth [1]. Other
algorithms measure, for example, growth of wild fires or
shrinkage or ice sheets [2]. In all those cases the relevant
information is the change of the image signal itself.

In the present paper we deal with the opposite case for
an application in archaeological survey: we are interested
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in mapping surface patterns that remain static over time
and want to tone down the effect of short-term variation
which is — literally — covering the multispectral signal
of the underlying soils. We also address the problem
of what image to choose for the depth analysis of an
archaeological landscape — a prominent issue in archae-
ological remote sensing where images from past satellite
missions may show the structure of interest better than
recently acquired imagery — and further develop a multi-
temporal fusion strategy which avoids this problem by
jointly analysing all relevant multispectral images that
are available for an area under study [3].

While our primary motivation to further develop our
multitemporal fusion strategy from [3] is to improve
settlement survey in the Near East, it may also be rele-
vant for other detection tasks when some partial ground
truth for training image-specific classifiers is available.
These may be other archaeological applications [4], [5],
[6], [7], [8] when the structures of interest are directly
visible in multispectral images — and their reflectance
or radiance differs from their natural surrounding — or
when structures have at least an indirect imprint on
the spectral signal — and the archaeological structures
in the ground or underneath plant cover impact posi-
tively or negatively on the vegetation on top. Beyond
archaeology, our approach may also be of interest for
other detection task where the spatial distributions of
the structures of interest are, over the observational
period, essentially static and where eliminating spurious
variability — such as seasonal changes in crop-cover,
time of overflight and solar altitude, impact of short-
term meteorological events like rain or snow-cover — will
improve the underlying signal. This may be relevant,
for example, in geological prospection when mapping
mineral deposits [9], [10] or in environmental research
when characterizing the surface cover for wildfire [11],
[12] or resource management [13].
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1.1 Prior work

The past years have seen a raised interest for using
spectral images in archaeological survey that have a res-
olution of decimeters to meters and dozens to hundreds
of spectral channels [14], [15]. When trading spatial
against spectral resolution, however, most detection and
mapping tasks in archaeological remote sensing still opt
for high spatial detail and a low number of spectral
bands. Many structures of archaeological interest are in
the sub-meter range which is at the expensive end of
highly resolved multi- and hyper-spectral sensors [4],
[5], [6]. At the same time, it is often difficult to know
in advance whether the archaeological matrix of interest
will have a multispectral signal that is distinct from its
surrounding, i.e., not before images have been acquired,
processed, and analysed [4], [5], [16], [17], [8]. Here,
the use of satellite images with high spatial resolution
and wide coverage (but very few spectral channels) is
less risky. Such image may be accessed for free on the
internet [18] or can be bought at rather low costs from
standard commercial satellite imaging services. Unfortu-
nately, they come with the problem that environmental
conditions — such as vegetational period, crop cover, soil
moisture — may affect the visibility of the desired struc-
tures and, ideally, images from multiple acquisition time
points should be studied. To address this problem we
proposed in [3] to gather and process all relevant images
from research satellite missions that are available for a
certain area of interest, using — for example — Landsat or
ASTER data that have a long observation record. Fusing
the probabilistic maps generated from ASTER images of
multiple time points showed to significantly improve the
detection results in our survey task.

Multitemporal image fusion is by itself a longstand-
ing topic in satellite remote sensing. Information from
multiple images covering the same scene can be fused
at the feature level, but calibrating intensities of images
acquired at different time points is difficult [19], [20],
as different noise processes overlap [21]. It is com-
putationally expensive [22], [23] and requires, ideally,
some knowledge about the sensor [20]. Thus, a typical
approach is to extract the information of interest in a
first step, for example following a pattern classification
approach, and then to fuse the information across ob-
servations in a second step, for example, by averaging
the probabilistic maps or by assigning the vote of the
majority of the observations [24], [25], [26], [27], [28].
This post-classification is more robust as every image
can be processed with its individually adapted classifier,
and variation between images might be removed at the
classifier level [3], [29]. As not every image necessarily
contributes the same information, it may desirable to
rate the quality of the images, for example by learning
weights that are assigned to the individual observation
when averaging all votes. This replaces the basic voting,
or averaging, by another level of (linear) pattern classifi-
cation. Such hierarchical models can use arbitrary fusion

schemes at the second level, for example, learning neural
networks, linear models, or even non-linear classifiers
[30], [1], [26], [31]. These approaches, however, require
that for every pixel the same set of image observations
are available: they are not applicable in situations where
different parts of the regions of interest are covered by
different numbers of satellite images. As a consequence,
they cannot be applied to large areas with irregular
coverage. Here, a simple voting scheme that can use an
arbitrary number of image observations as input remains
the preferable fusion approach.

1.2 Contribution of this paper

In this paper we further develop multitemporal fusion
schemes that can deal with arbitrary numbers of multi-
spectral images when limited ground control is available.
We will address the task of mapping anthropogenic soils
in fluvial landscapes of the Near East, using limited
ground truth from archaeological survey and the visual
interpretation of mono-chrome high resolution satellite
images. In this we build on prior work from [3], im-
proving fusion statistics and introducing a sampling
approach to identify locally optimal subsets for fusion.

In the following we describe in image and survey
data, detection task, and the specific application in ar-
chaeological remote sensing (Sec. 2.1), recalling some
results from [3], and propose new fusion strategies.
Then, we will perform three experiments: 1) to identify
the optimal fusion statistic for multiple observation in
the given classification task (Sec. 3.1), 2) analyze bias and
variance of the multi-temporal fusion process in order
to to understand how pooling affects the quality of the
fused data product (Sec. 3.2), and 3) we will provide an
approach to choose optimal image subsets for pooling
(Sec. 3.3), before we discuss properties of optimal fusion
approaches and implications for archaeological remote
sensing (Sec. 4).

2 DATA AND METHODS

An overview of the general processing pipeline with
data set generation, image classification, and fusion of
the probabilistic maps is given in Table 1.

2.1 Classification task and data sets

Detecting anthrosols: Our pattern classification task is
the identification of “anthrosols” within the in-situ soils
of an alluvial plain in Northern Mesopotamia that are
visible in multi-spectral imagery [33], [16], [3]. These
anthrosols are anthopogenic soils that developed over
millennia from the eroding debris of human settlements,
the remains of mud-brick based architecture. The spatial
distribution of these sites provides insights into 9000
years of settlement history [34]. Limited information
about the presence of ancient settlements is available
for most regions in which anthrosols might be expected:
Major sites are known from archaeological survey, larger
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Fig. 1. Region under study. The Upper Khabur basin is situated
in northern Mesopotamia, in the northeastern part of Syria (left
image). Two areas in the central and the eastern parts of the
Khabur plain served as testing grounds for the development of
the fusion algorithms (right image). Ground truth was available
from the analysis of declassified CORONA imagery (rectangular
area, west; archaeological sites indicated yellow), and from an
archaeological ground survey (circular area, east).

settlement “mounds” can even be localized in digital
elevation models [35], and low-mounded sites can be
identified from their lighter soils in an inspection of high
resolution images (CORONA, Ikonos) [32], [36].

As a consequence, the primary objective for the map-
ping of anthrosols is the extrapolation of information from
small ground-truthed area over the whole of a region
of interest, or the interpolation of similar information
using recordings of few clearly visible mounds from
the top of the settlement hierarchy in order to locate
smaller sites in between. We can address the detection
task by transforming it into to a binary pattern classifi-
cation task — anthrosol against all other surface classes
(Sec. 2.2). However, both “anthrosols” and non-anthrosol
“background” locations may regularly be covered by
vegetation and crops during the course of the year, and
agricultural field work and soil moisture may lead to

TABLE 1
Overview over the processing pipeline as proposed in [3] and in
the present study, and as described in Section 2.

1. Generate “partial ground truth”. Interpret CORONA
images as in [32] and do:

o register CORONA images with SPOT base map us-
ing landmarks,

o localize likely settlement sites in CORONA images,
include information from previous surveys or other
image sources where available.

2. Generate anthrosol probability maps. For each ASTER
image do:

o register ASTER image with SPOT base map using
landmarks (Sec. 2.1),

o learn a classifiers individually for each ASTER im-
age, as follows (Sec. 2.2):

- extract spectral features,

- extract training samples for foreground (“settle-
ment sites”) and background class (everything
else) from the partial ground truth that is within
the field of view of the ASTER image,

— apply the classifier in a leave-one-out cross-
validation that iterates over spatial blocks of about
6km*6km to obtain test errors for the anthrosol
probability map.

3. Fuse anthrosol probability maps. For each region of
interest, or each spatial block in the SPOT image, e.g.
of size 5km*5km, do (Sec. 2.3):

o identify anthrosol probability maps with (partial)
overlap,

» measure how well foreground and background are
separated in each map from the partial ground truth
and calculate, for example, the AUC ROC as quality
score,

o determine the weights that are associated with the
different quality scores (Fig. 10),

» sum over the weighted anthrosol probability maps.

significant changes in the spectral reflectance of both
classes [3]. As multispectral images for sensors such
as ASTER and Landsat have become available for long
observational periods, this leads to the additional task
of finding those images that have been acquired under
favourable environmental conditions.

Multi-temporal data sets: We use data from two differ-
ent areas in the Khabur plain in northeastern Syrian
(Fig. 1). For the first western region (about 60*60 km?
in area), a total of 243 ancient settlement sites (Fig. 3)
were recognized from high-resolution CORONA satel-
lite imagery [37], [36]'. One may expect that ground
survey would recover additional sites in this area. A
total of 71 multispectral ASTER images from the time
of 2002-2007, acquired during all seasons of the year,
have partial overlap with this region (Fig. 3), with 32
to 47 observations for each of the 243 archaeological
sites. The second region, situated some 150 km east
of the first one, is significantly smaller in area — 125
km? — and has 60 known settlement sites [37]. For this

1. Available from http://hdlL.handle.net/1902.1/14011.
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-, covered by > 20 pixels. We register all ASTER images to
a common SPOT base image with 10m*10m resolution
that was previously also used for co-registering the
. CORONA images [32] (Fig. 2). We did this by manually
. identifying landmarks that appeared in both the SPOT
image and in the red channel of the ASTER image -
typically using road crossings or boundaries between
crop fields, occasionally surface features, such as clearly
visible settlement mounds or wadis. We determined 10-
20 such points for each ASTER image and used a cubic
transformation model to estimate a dense displacement
field. We interpolated all channels of the ASTER image
to the resolution of the base image using a nearest-
neighbour approach. This overall procedure led to a
- registration error between ASTER images that was below
. four pixels, i.e., 40m.

We then sample locations for both “anthrosol” and
. “background” sites in the first region to build our
+ training data sets (Fig. 3). We sample up to 100 random
locations, or pixels, from each “anthrosol” site of the
first region, and same amount of pixels from the direct
vicinity of the site to represent the “non-anthrosol”

& J s e

map that was used for " . .
registering all ASTER images (top left), together with archago- 0T background” class. Between pixels of both classes
logical sites identified in CORONA images (red) that are usedto  we keep a distance that is somewhat larger than the
re-train the classifier for each ASTER image. All other images  registration error (4 pixels) and the extensions of a TIR
show intensities from the visible red ASTER channel (ASTER pixel (90m, 6 pixels). Overall, this results in 35494 pixels

band 2) that has been used for registering SPOT and ASTER. . .
Image intensities in this channel varying significantly in between (17747/17747) for the 243 + 60 sites of the two regions.

observations, one image has only partial coverage. (The shown These test locations were kept fixed in all evaluations.
segment is 5km*5km in size, its northwestern corner is at
36.9348 latitude, 41.24572 longitude.) About 155 ASTER images have partial overlap with

our test regions. Using the observations from our test

locations, we train a probabilistic model for each image

ot “o and apply it to the full image in a spatially blocked cross

. o : T e oE validation similar to our approach in [3], as described in
X the next section.

2.2 Classification of individual ASTER images

‘ e s . iy Features.: Random forest is able to cope with a high
' o A : . ] number of features. So, we use the original spectral
Fig. 3. The nearly random distribution of the 243 test sites reflectances without fqrther normalization, a total of
in the western test area. Archaeological sites were previously 13 features for each pixel. Reflectances are subject to
identified from high resolution imagery. For each the “_anthrosol” intensity variations depending on surface cover, but also
2 1 1 Sl rer o Sasrou D108 a7 depending on vicwing angle betvcen camers and sun
of leftimage approx. 20*30km, right image 6*6km (compare gray that either add randorp 'Offs.ets to the whole spfectral
box in left image). signal, or random multiplicative factors, or both (Fig. 2).
We try to remove the influence of these global noise
processes — both within an image and in between im-
ages — by calculating “vegetation indices” that represent
differently normalized intensities. Using ASTER band 2
as visible red (red) and band 6 for near infrared (NIR),
we calculate for each pixel the “Difference Vegetation
. . Index” DVI = NIR — Red, the “Ratio Vegetation Index”
For both regions anthrosol sites range between 0.5ha _ u : .
to 100ha in o th t sites being in betw ) RVI = NIR/Red, and the “Normalized Difference
O e g, oSt BHES DEIG T DEWECH 2 Vegetation Index” NDVI = (NIR— Red)/(NIR+ Red).
and 10ha (25% and 75% quantile). The spatial resolution . .
Finally, we correlate reflectances with template spectra

of the 13 spectral channels of the ASTER sensor varies Q0
between 15m (for visible and near-infrared) and 90m from the JPL ASTER SpecLib * that we generate by

(for thermal infrared channels) and individual sites are 2. hitp:/ /speclib.jpl.nasa.gov/

region, however, ground truth was obtained from an
archaeological field survey. A total of 19 ASTER scenes
with 15-17 observations for each of the 60 sites was
available for this eastern region.
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Fig. 4. Temporal and spatial coverage. A total of 155 ASTER
images were available for the years 2001-2008 (top), mostly
acquired during the dry-season. Single areas of the basin were
covered by 4-43 images, with a maximum in the western test
region (bottom, compare Fig. 1). Positions of archaeological
sites (red) had been recorded from the analysis of declassified
CORONA imagery or in archaeological field studies.

subsampling the signals to the 13 spectral bands of the
ASTER sensor and by grouping different multiple signals
of the “manmade”, “minerals”, “rocks”, “soil”, “vegeta-
tion”, and “water” class. This leads to six correlation
coefficients that indicate whether one of the six classes
is dominating the observed spectral pattern. In total, we

obtain 23 features for each pixel (Fig. 5).
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Fig. 5. Feature importance as calculated from the random
forest. Most of the information is in the short-wave infrared
(SWIR) and visible/near IR (VNIR). Long-wave IR (TIR), ASTER
SpeclLib correlation features, and vegetation indices (VI) only
contribute to a lesser extend to the classification.

Random forest classifier: In first comparisons with lin-
ear classifiers (regularized linear discriminant analysis)
we had observed an advantage of non-linear classifi-
cation methods, and a comparison of the random for-
est classifier with RBF-kernel support vector machines
had indicated a slight advantage of the first [38], [39].

So we model the posterior probability using random
forests, a non-parametric ensemble classifier that relies
on randomized decision trees as base learners. This
classifier averages the decisions of many unbiased but
highly variable decision trees that have been generated
by using different subset of the data during training
(“bootstrapping”) and by randomizing the feature sub-
space when searching for the best split at every node of
the tree (“random subspaces”). In general, the random
forest classifier is capable of dealing with few samples
in high dimensional spaces, a property that makes it
an attractive learning algorithm in the classification of
spectral data [40]. In fact, it was adopted early for
spectral classification tasks also in remote sensing [41]
and in surface classification [42], [43]. The random forest
algorithm generates feature relevance scores that can
be used for visualizing relevant features — we show
the relevance of the features used here in Fig. 5 — or
for feature selection and dimension reduction [44], [31].
A random forest ensemble has few parameters to be
optimized, so it can be trained very fast and, hence,
is well suited for repeated classification of an image
in cross-validation experiments. It takes discrete class
labels as input and returns continuous probabilities,
as the averaged votes of the decision tree ensemble
model the posterior probability of the input classes. We
make use of this property when mapping the anthrosol
probabilities. In the present study we chose random
forests with univariate split functions in the node. Initial
tests with “oblique random forests”® [45] indicate that
using random forests with multivariate split models
have advantages — as these node models are better
capable of dealing with correlation between features, a
property of most spectral data sets [40] — but we leave
the optimization of this aspect open to further studies.
We use Breiman and Cutler’s original Fortran imple-
mentation as available for R*. We grow trees to full
depth and have to set two parameters of the classifier:
the number of trees Ny.. in the ensemble, and the
dimensionality of the random subspaces M;,,. We test
different parameterizations for M;,, on a small subset
of the training data evaluating the out-of-bag test error.
While M, is often the only model parameter param-
eter of the random forest algorithm, we here find that
My, = 3 performs well — a value close to the default
recommendation (that is the square root of the number
of features). In the evaluation of M,,,, we generated
ensembles with 300 trees and find that out-of-bag error
typically converged for 100-150 trees. We keep M;,, = 3
and Ni.. = 300 fixed for all further experiments. As
the number of training samples depends on the number
of sites present in each ASTER image, the number of
samples used for a classification ranged between less
than 1000 and 45000, balanced for both classes. In case of
very few training sites for the anthrosol class, additional

3. cran.r-project.org/package=obliqueRF
4. cran.r-project.org/package=randomForest
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samples were drawn from other ASTER images acquired
on the same day (if possible).

Anthrosol probability maps: The training data may have a
significant number of false labels: Sites identified on the
ground or in high resolution imagery may not always
show the characteristic spectral pattern of soils trans-
formed by anthropogenic activity, they may be geologi-
cal or artificial surface features that are misinterpreted as
settlement mounds or anthrosols. Similarly, sites identi-
fied in images acquired in the 1960s-70s, may have been
destroyed in recent agricultural transformation of the
landscape (“bulldozing” and “deep-plowing”).

The random forest classifier is able to cope with a
small amount of false labels. However, to prevent these
deficiencies in the annotation from being propagated to
the classification results and to have unbiased proba-
bilistic maps as input to the fusion step, we choose a
blocked spatial cross-validation strategy to apply the
classifier [46]. Each ASTER image is separated into a grid
of 36 subregions where each region has a side length
of approx. 6km — well above the average correlation
length of most structures of interest on the ground. Then,
the random forest is trained using data from training
locations of 35 subregions, and applied to all pixels of
the one hold-out region. We iterate this leave-one-block-
out classification over all 36 regions and obtain a dense
probability map indicating the most likely location of
anthrosols within the given ASTER image (e.g., Fig. 12,
right column).

2.3 Multitemporal fusion for the detection of static
spatial patterns

Averaging probability maps: As variable numbers of obser-
vations are available for every pixel, we use parametric
noise models for summarizing the observed anthrosol
probabilities. Parameters of the distributions can then
be evaluated for their ability to separate “anthrosol”
and background pixels. This approach can be considered
to follow a generative modeling strategy: Given the
unknown label that indicates presence or absence of
anthrosols we have an observational model that — with
different sets of model parameters for either “anthrosol”
or “background” — is capable of generating an arbi-
trary number of observations. This generative “forward”
model matches our averaging approach from [3] under
the assumption of a Gaussian observation model, i.e.,
assuming a normal distribution for the noise in both
classes.

Some multispectral images are acquired under ideal
conditions, while others may contribute little more than
noise. At best, averaging over such low quality maps
will average out if noise is uncorrelated and many image
are available, for example from local cloud cover or arti-
facts of the camera system that are unrelated to surface
features. At worst, they will significantly bias results
towards systematic errors which are in our application,
for example, modern sites or geological features with

light soils. So we may want to identify subsets of the
available images that have the optimal contrast between
anthrosol and surrounding, i.e., that have the least bias.
At the same time, we want to pool over the maximum
number of ASTER images that are available to remove
image-specific noise for uncovering the static surface
pattern we are interested in. This requires strategies for
finding optimal subsets of probability maps that we want
to average over.

In general, our image classification approach requires
a retraining of the classifier for every multispectral image
in order to cope with changing environmental conditions
and changing spectral signature [3]. To this end, a limited
number of archaeological sites have to be present in
every image we want to use in our analysis. This, in
turn, also allows us to measures how well individual
satellite images reveal the surface features we want to
map. We can order the images accordingly and test how
well averages over different top ranking subsets perform
and choosing the subset that minimizes, for example,
the local least-squares fit error. Our experiments suggest,
however, that such a crisp selection may lead to a
selection of very few images (Section 3.2). In both test
areas no more than 10% of the locally available images
are combined, returning results that are very noisy and
do not make full use of the available data. Also, we
have to keep in mind that the same probability map may
be have good contrast for one location while being less
than optimal for other locations nearby, and we may not
want to rely on approaches that follow a very aggressive
selection strategy.

Averaging weighted subsets of the probability maps: As an
alternative to the crisp threshold we may weight obser-
vations predict anthrosol locations from a weighted sum
of all available probability maps. With K available prob-
ability maps from the ASTER images I* (k = 1...K), the
predictions p¥ of a fix subset of N pixels i with available
labels ¥;, we seek for the optimal weights w* that are
obtained by minimizing a least squares criterion:

N K
) 1
argmin Z(l% % Zwk )2 (1)
i=1 k=1

To enforce that we do not subtract probabilities, we
introduce nonnegativity constraints for image weights
Wi

wb>0Vk=1...K, ()

leading to a standard non-negative least squares re-
gression. Unfortunately, we cannot apply this standard
approach directly, as most probabilistic maps only have
partial overlap with our region of interest, and the set of
the K observations varies locally (Fig. 3).

To this end, we make our weights w not dependent
on the individual image, but on a more general image
“quality” score ¢; that we calculate for each image
regardless of its localization. An example of this quality
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score can be the average site-wise area under the curve of
the receiver-operator-characteristic (AUC ROC), a non-
parametric ranking measure of class separation that has
a value of 0.5 in case of a random mixture of both
classes and 1 for perfect separation. We substitute the
map-specific wy; from Eq. 1 by function W(¢?) = ¢,
with j =1...D equally spaced intervals in the range g,
and coefficients c; that represents one common weight
for all images with a quality score that match ¢;. For a
given prediction p? from an image I* with data quality
q(I*) = ¢; we obtain

D
W (q(I*)) = ch5jk7 ®3)
j=1

where ¢ is the Kronecker delta §;;, that is equal to one
(and equal to zero otherwise) when image I* has has the
global quality score ¢; and, hence, is assigned weight c;.
We can look at the second term in eq. 1

1 K 1 K D
=2 W@ = XY it (@)
k=1

k=1 j=1

D 1 X
chgzéjk pf ©)
j=1 k=1

and reorder it with respect to the different values of c;.
With p), = Zfil §;x p¥ being the average probability over
the K observations available at pixel ¢ we obtain, similar
to Eq. 1, for ¢;

N D
arg min Z(ﬁi — ch ph)? (6)
i=1 =1

now subject to
¢;>0Vi=1...D, (7)

where each weight ¢; determines how much an obser-
vation with data quality ¢; should be considered for ex-
plaining the ground truth labels ¥J. To obtain a smoother
distribution of W, we repeat the estimation of the ¢;
with different temporal subsets K (“bootstrapping”) and
average the resulting estimates (Fig. 10).

3 EXPERIMENTS

In a first experiment we test alternative fusion statics that
may be as well or better suited for fusing probability
maps than a plain averaging. In a second experiment
we test how the fusion of ranked subsets differs from
pooling all probabilistic maps, and in a third we evaluate
the proposed method weighting images for fusion.

3.1 Testing generative fusion models

Noise and variation in the given data result from
changes in vegetation cover, type of crop and land use,
differences in contrasts on the ground after precipitation
— due to humidity of the different soils — or variation
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Fig. 6. Parametric distributions fit to the observations of a
pixel in the anthrosol class (first row) and the background (third
row). The gray vertical lines show the observed probabilities for
the different time points, also summarized by the histograms.
The boxes below (second and forth row) show the different
distribution models that have been fit to the same data; here
the gray vertical lines indicate the corresponding distribution
parameters used to summarize the observations of the given
pixel.

in incoming or reflected radiance due to cloud coverage
or aerosols. So we want to test whether averaging, i.e.,
assuming a “normal” or at least symmetric distribution
performs sufficiently well by comparing it against a
number of different noise models.

Experiment: We test a number of distributional noise
models — “Cauchy”, “chi-squared”, “exponential”, “log-
normal”, “logistic”, “negative binomial”, “normal”,
“Poisson”, “t-distribution” and “Weibull” distributions —
focusing on a comparison with our previous averaging
approach [3] that is assuming a normal distribution of
the noise. In addition, we test median and trimmed mean
(using the inner 50% quantile) as robust variants to the
normal distribution, and the posterior error. We evaluate
the quality of the class separation in terms of the area
under the curve of the receiver operator characteristic
(AUC ROC) that measures class overlap.

For every pixel in our first test set we calculate the
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parameters of these models using the time series of
anthrosol probabilities observed at that pixel. Figure 6
shows the different distribution for the probabilities ob-
served at a “anthrosol” pixel, and a “background” pixel,
as well as an estimate of the model parameters used to
summarize the observations in either case. For Normal,
log-Normal, exponential and Poisson distributions we
do this using analytical solutions, for all others we esti-
mate the parameters using a direct optimization of the
log-likelihood (Nelder-Mead downhill simplex method).
For each archaeological site, we obtain parameters of the
anthrosol area, and parameters from its direct surround-
ing, and we can calculate the ROC AUC to quantify
how well the parameters of the given distribution model
distinguish the signature of the anthrosols from their
surroundings. Fig. 7 summarizes the resulting 243 ROC
AUC scores for each fusion strategy.

We find that most summary statistics perform equally
well, including the exponential, poisson, logistic and
normal distribution (as determined in a Cox-Wilkinson
test between the respective distributions for differences
at 5% significance level; indicated gray). The distribution
models also outperform their robust counter-parts (me-
dian, trimmed mean). The posterior, producing nearly
binary maps (Fig. 8), ranks last due to its sensitivity to
extreme probabilities (i.e., a single zero due to complete
coverage of a site for a single observation will lead
to an overall assignment to class 0). As several fusion
statistics perform equally well, we focus on the normal
distribution — as the most basic noise model — in the
following.
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Fig. 7. Performance of different fusion statistics and ap-

proaches. Box-and-whisker plot show results for the 243 AUCs
of the site-wise ROCs for the first data set. Boxes represent
quartiles of these distributions, whiskers extend to the most
extreme data point which is no more than 1.5 times the in-
terquartile range from the box. Non-overlapping notches indi-
cate strong evidence that two medians differ. Normal performs
best in terms of average site-wise prediction error, statistically
indistinguishable from exponential, Poisson, and logistic (gray
boxes).
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Fig. 8. Eastern test area with survey region (light gray)
and sites mapped on the ground (outline black). The poste-
rior probability (top right) does not show much details and is
nearly identical with .5 threshold from average (outlined black).
The averaged probability maps show significantly more details
(average of all images: bottom left; average of optimal subset:
bottom right). The image is centered around 36.8126 latitude /
41.9561 longitude, the extension of the area is about 15km in
both directions. The red box corresponds to the area shown in
Fig. 12.

3.2 On the benefit of ranking and pooling

We calculate two ranking criteria. One considers the
difference between class means; the other considers the
difference between the full distributions: 1) We calcu-
late the average probability of all “anthrosol” locations
within the image and the average probability of all
“background” pixels. We then use the difference of both
values, which indicates global class separation, to rank
the images covering our two test areas. 2) We test another
ranking criterion that also considers class overlap. For
each site within a given scene, we calculate the AUC
ROC between “anthrosol” and nearby “background”
pixels. We then calculate the median AUC ROC value
of all sites that are visible in the image.

Experiment: We evaluate the benefit of pooling using
the ground truth for the western area. Here all 243
sites are at least covered by 30 observations (Fig. 4).
Figure 9 presents results from pooling the top n =
1,...,30 images, and from pooling random subsets of
probabilistic maps of the same size. We evaluate least
squares error, variance, bias (being inverse proportional
to class separation as used for the ranking), and AUC
ROC. The fusion without ranking reduces the least
squares error by reducing the variance while keeping
the bias unchanged. The class-separation is maximal for
the maximal number of 30 images that can be fused. At
this point the unranked fusion coincides with the two
ranked approaches, reducing the RMSE by 3%, a value
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that corresponds to the level of the best single images.
The two ranked fusion approaches return very similar
results. Pooling reduces variance as well, although not
as fast as for the unranked baseline method, with the
best results obtained from pooling a large number of
images. At the same time, the bias is smallest — i,
the average class separation is maximal — when only a
few “high quality” images are fused. As a consequence,
both the mean error (which is composed of bias and
variance) and the separation of the distributions (AUC
ROC, which depends on class separation, but also the
dispersion or noise of each distribution) has a minimum
in between these two extremes. Pooling prediction maps
by averaging (black lines) reduces the AUC error (ie.,
1-ROC AUC) from 0.14 (average performance of indi-
vidual images) and 0.08 (best image) to 0.035. Ranking
the images according to one of the two measures (red
and green lines) reduced the AUC error even further,
to 0.025 at best, corresponding to 20% and 5% of the
results obtained for the single image. While results are
very robust with respect to the ranking measures used —
returning similar results for both average class difference
and median site-wise AUC ROC - other parametric or
non-parametric quality scores that measure differences
between univariate distributions, such as entropy, Gini
impurity, or Fisher’s ratio, may be used.
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Fig. 9. Ranking classification maps according to their quality
(using the average site-wise AUC - green crosses, or using
average site-wise class difference - red triangles), reduces the
L2 error and AUC noticeably in comparison to a fusion of all
available images (black circles). Decrease in L2 error is due to a
lower bias when discarding low quality data, and and only fusing
the anthrosol maps that have the best best separation between
the two classes.

3.3 Learning fusion weights using NNLS regression

Ordering observations using the cross-validated test er-
ror and pooling only a subset may improve results.

Searching for the subset that optimizes the least squares
criterion in a cross-validation as in Fig. 9, however, leads
to a selection of very few images. In both test areas
no more than 10% of the locally available images are
combined, returning results that are very noisy and do
not make full use of the available data. As an alternative
to the crisp threshold we may weight observations and
predict anthrosol locations from a weighted sum of all
available probability maps.

Experiment: We apply the NNLS resampling strategy to
the probabilistic maps of both test areas. Figure 10 shows
the resulting coefficients ¢; as a function W (g;) of quality
score AUC ROC. The approximate cut-off at W = 1,
where images with corresponding AUC ROC are either
upweighted W > 1 or down-weighted W < 1, is in
between the cutoff that has been found for AUC ROC
and least squares criterion in the cross-validation (Fig. 9).

Fig. 12 shows results for the eastern test region when
fusing (i) all images that are available, (ii) all images
above the AUC ROC cutoff from the cross-validation,
and (iii) all images weighted by W (q). The probabilistic
maps from the fused subsets show more detail, including
a string of small sites that are only visible in one or
two of the individual images. Setting a — somewhat
arbitrary — threshold of 50% probability, we can calculate
the average probability of the foreground pixels for each
of the 76 site as well as the average probability of
nearby background pixels. For the simple average over
all anthrosol map, we find that 45 sites with a fore-
ground probability surpassing the 50% threshold, while
at the same time 10 sites have an average background
probability that is also above 50%. Calculating the same
for the map that we obtain by averaging the image
subset with the least fit error, the two numbers change
to 52 and 7, and to 54 and 12 when calculating them
with the weighted averaging. These results indicate that
the subset selection strategies perform better than our
previous fusion approach from [3] that was averaging
over all available images.

A more comprehensive comparison for all possible
thresholds is possible by evaluating precision and recall
for all pixels of the test area, as shown in Fig. 11. Again,
the plain averaging of all anthrosol probability maps
(“fusion all”) is outperformed by the two more restrictive
approaches. Comparing results from the subset that has
the least fit error (“fusion XV”) with the results from the
weighted averaging (“fusion NNLS”), we find that both
method perform nearly equally well — here, with a slight
edge for the weighted averaging.

4 DISCUSSION
4.1

We tested several distributional models to cope with
a variable number of observations, and different ap-
proaches improved the performance significantly. Fusing
multiple decisions is a relatively common concept in

Multitemporal fusion and bias-variance tradeoff
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Fig. 10. Learning the relation between weight and data quality
for the western (top) and eastern (bottom) test area. Shown is
the weight function used when averaging the probability maps,
the distribution of the available observations with inner 75%
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Fig. 11. Precision and recall for the eastern test area with

pixel-wise ground truth, using 49 7091px. for background and
21 959px. for the anthrosol “foregrond”. Precision-recall curves
along the negative diagonal (indicated black) can be considered
a random classification. The F-measure, i.e., the harmonic
mean of the observations, is indicated by triangles. Points
indicate precision and recall for a classification with threshold
0.5.

Fig. 12. Ground truth, averaged, averaged subset (left column),
and individual images of different quality (right column), for the
south eastern part of the second area. Dark areas indicate high
probability. Pooled images background shows less variance,
while sites are still visible. True outlines of the large area in
central left part of the image are still subject to debate. Also
see Fig. 8 to compare with ground truth. The extensions of the
area shown are about 3.5km in both directions.

» L T A AT

machine learning and different concepts of how to gener-
ate slightly different predictions from the same training
data have been proposed: using different subsets of
the training data for training every single decision tree
is an essential element of the random forest classifier
[47], as well as the use of several different classifiers
trained on the same training data, but with slightly
different predictions [25], [48], [49]. By fusing slightly
different observations of the same spatial scene — each
of which generates a slightly differen spatial patterns —
we follow a similar approach. As pointed out earlier,
e.g., by Bachman et al: “In remote sensing applications,
variance reduction also can be achieved by using multi-
sensor or multi-temporal data to produce a pool of
classifiers with decorrelated error distributions” [50].
However, while some recommend very generally to pool
predictions [51] and that “inaccurate classifiers should
not be excluded ...since they may have the potential to
improve the overall combined accuracies” [48], we find
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that pooling does not always increase the performance
of the classification, but that the benefit will crucially
depend on the trade-off in between variance and bias.
In our experiments pooling only reduces variance, i.e.,
the “decorrelated” error distribution. Errors that come
from bias of the individual image, i.e., the average mis-
match between labels and predictions, are not removed
by averaging and — when including biased images —
pooled results may even be worse than those of the best
single prediction. As selecting un-biased predictors (or
probabilistic maps) reduces the overall prediction error,
we benefit from the NLLS weighting strategy.

4.2 Application to archaeological survey

In this application we did not perform any kind of spa-
tial regularization or smoothing as this might potentially
remove the signal of some of the smaller archaeological
sites; the pixel sizes of ASTER and Landsat images is
already beyond the limit of what is useful for many
archaeological survey problems. Eventually, combined
spectral-spatial classification approaches [52] may help
in detecting and delineating sites or in updating training
labels when repeating the whole classification procedure.

To retrain the classifier for each image, we need
some ground truth locations in the given image. For
our anthrosol detection task local ground truth is often
available, as settlement mounds at the upper end of the
settlement hierarchy are visible for example in digital
elevation models [35], and many of the smaller sites have
been mapped in field survey for many regions in the
Near East [37]. For other detection tasks in archaeological
survey, however, this requirement of having some prior
knowledge about the locations of interest is the strongest
limitation of the multi-temporal fusion approach. Still,
learning one classifier for each image from local ground
truth, evaluating the benefit of the individual map and
ranking it, and fusing the best subset, provides a fairly
general approach to combine different sources of infor-
mation: Landsat images can be combined straightfor-
wardly with ASTER images, probabilistic maps gener-
ated from hyper-spectral imagery — available for some
areas — can be considered as well. Overall, our local
retraining and fusion approach may be well tailored to
the needs of many applications in archaeological remote
sensing. While in the present study our focus has been on
anthrosols, we would expect that mapping the spectral
signal of other archaeological structures — with distinct
spectral signature and of appropriate size — would also
benefit from our pooling approach.

5 SUMMARY AND CONCLUSIONS

Averaging probabilistic maps from multiple observa-
tions, as we did in [3], is optimal for our application.
We can show that fusing several maps improves the
result by reducing the variance that can be high when
evaluating individual observations only. Ranking the
observations according to some local quality measure,

for example the AUC ROC, and considering only those
probabilistic maps that separate classes well reduces the
overall bias and, hence, reduces the overall prediction
error even further. In order to identify and suppress
those samples that do not help in separating classes,
we propose a weight function that can be estimated for
every local test region in an automated fashion using
a non-linear least squares regression strategy. Different
from a standard linear fusion model, this subset selection
approach is capable of dealing with variable numbers of
observations.

Using our weight function improves the results
also in locations where where soil properties have
a visible imprint on vegetation only during a short
time of the year. To this end we expect a significant
improvement over our previous results when applying
our classification strategy to landscapes in the Near East
with less favourable environmental conditions. While
we focus on one particular application in archaeological
survey, we expect that our ranking and fusion strategy
may also have significant impact in other related tasks. It
may be generally applicable to the mapping of spatially
static surface properties that are subject to strong
seasonal variation and that have some limited ground
truth available, for example, in the characterization of
in situ soils or minerals.

In a next step we will use the subset selection
algorithm to improve the probabilistic map of the 20
000 km? we studied in [3] °. The subset selection would
have to be adapted locally, and further tests may be
required to study how it might be applied to large areas,
and how large local blocks should be. Partial ground
truth from CORONA images can also be generated
for other regions of the Near East, for example, in a
crowd-sourcing effort using the CORONA Atlas of the
Middle East® [53]. Current surveys in Northern Iraq will
allow us to further test the generalization behaviour
of the algorithm, and to evaluate it on the ground in
further prospective studies [54].
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