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Foreword to the Special Issue on
Hyperspectral Image and Signal Processing

T HIS SPECIAL issue presents state-of-the-art algorithms
and applications for hyperspectral image and signal

processing.Algorithmsaddress topics suchas spectralunmixing,
classification, target and anomaly detection, compression, data
fusion, noise reduction. Applications include monitoring of
vegetation and environment. Seventy-four papers were selected
for this issue. The large number of papers included in this special
issue is indicative of the high level of research activity, interest,
and applications for hyperspectral image and signal analysis.

The 5th Workshop on Hyperspectral Image and Signal
Processing—Evolution in Remote Sensing (WHISPERS) was
held on June 25–28, 2013 in Gainesville, FL, USA. WHIS-
PERS 2013 received the technical sponsorship of the IEEE
Geoscience and Remote Sensing Society (GRSS) and support
from the University of Florida and the WHISPERS Founda-
tion. The workshop was held on two parallel tracks over 3 days
and was a great success, welcoming over 180 international
researchers. At the workshop, 158 papers were presented,
covering a wide range of topics related to hyperspectral image
and signal processing.

Hyperspectral imagery provides a wealth of information about
an imaged scene. Each pixel consists of a spectrum resulting
from the combination of radiance information from one or more
materials in a physical region. Different materials reflect and emit
varyingamountsof radianceacross theelectromagneticspectrum
and, as a result, generally have distinguishing signatures. These
unique spectral signatures provide the promise of being able
to distinguish, detect, and classify materials at the subpixel
level [1]. Given the amount of information that can be obtained
from hyperspectral imagery, many applications make use of
hyperspectral data and the development of algorithms which
leverage all the information is an active area of research. In
this special issue, several current algorithmic methods and
applications for hyperspectral image and signal analysis are
presented. In the following, a brief overview of the algorithmic
topics covered in this special issue is provided.

Spectral unmixing: Spectra of materials can mix in a variety
of ways. Even with high spatial resolution, the measured
spectrum at a pixel is a combination of materials in the pixel’s
field of view and dependent upon the point-spread function
of the optical system. Spectral unmixing, the problem of
decomposing each pixel into it’s respective material signatures
(i.e., endmembers) and the amount of each endmember (i.e.,
abundances), is a major area of study. Spectral unmixing
algorithms depend on the assumption of a mixing model.
Both linear and nonlinear mixing models have been considered
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in the literature [1]–[5]. In this special issue, 14 papers on
spectral unmixing are presented. This includes a review and
comparison of nonlinear methods. Sparse unmixing methods
[5]–[7], which assume that each pixel is a mixture of a
sparse subset of the endmembers in a scene, is a current
area of research. Spectral unmixing methods that leverages
spatial information is also a major area of research since
neighboring pixels in a scene are likely to be composed of the
same materials [8]–[10]. Methods that address and incorporate
endmember spectral variability during unmixing can result
in more physically accurate models and proportion estimates
[11]. Finally, given the large number of spectral unmixing
methods, algorithms that can be used to evaluate and compare
spectral unmixing results is an important topic of study.

Classification: Classification methods provide algorithms to
segment and classify pixels or regions in hyperspectral im-
agery. Like many spectral unmixing algorithms, many current
classification algorithms investigate methods to incorporate
spatial information during analysis [12]. Sparsity promotion
has also been employed to help improve classification results
[13]. In addition, many current topics in the machine learning
literature such as multiple kernel approaches [14], [15] and
swarm optimization [16], have been adapted and applied
toward classification of hyperspectral data.

Compression and high-performance computing: Given the
extremely large size of most hyperspectral data cubes, com-
pression methods and methods that make use of high-
performance computing approaches are an important area of
study and development. Studies have been conducted on em-
ploying and evaluating various lossy and lossless compression
approaches for hyperspectral imagery [17], [18].

Target and anomaly detection: Given the ability to perform
subpixel analysis, target and anomaly detection at the subpixel
level is an area of great interest in the hyperspectral com-
munity [19], [20]. Topics in this area include investigations
into methods to accurately model background characteristics,
predict detection performance, and the development of a new
target and anomaly detection algorithms.

Data fusion: Data fusion between other imagery from other
sensor types and hyperspectral imagery can provide more
information about an imaged scene than either data set indi-
vidually. For example, LIDAR provides elevation information
that can be used in conjunction with hyperspectral data [21],
[22]. Fusion between multispectral and hyperspectral data is
also an area of interest [23], [24].

Noise reduction: As with all sensor data, hyperspectral
imagery can be, and is often, corrupted with sensor noise.
Often, particular wavelengths in a hyperspectral image have
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more noise than others. As such, methods for noise reduction
are an important area of study [25].

As can be seen, there is a wide variety of topics for
hyperspectral image and signal analysis that are under study.
We believe that this issue provides a wide sampling of the
interesting and promising research topics within this area. We
thank all of the contributors who made this special issue such
an interesting overview of many of the current areas of study.
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