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Object Recognition Based on the Context Aware
Decision-Level Fusion in Multiviews Imagery
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Abstract—Spectral similarities and spatial adjacencies between
various kinds of objects, shadow, and occluded areas behind
high-rise objects as well as the complex relationships between
various object types lead to the difficulties and ambiguities in
object recognition in urban areas. Using a knowledge base con-
taining the contextual information together with the multiviews
imagery may improve the object recognition results in such a sit-
uation. The proposed object recognition strategy in this paper
has two main stages: single view and multiviews processes. In
the single view process, defining region’s properties for each of
the segmented regions, the object-based image analysis (OBIA) is
performed independently on the individual views. In the second
stage, the classified objects of all views are fused together through
a decision-level fusion based on the scene contextual information
in order to refine the classification results. Sensory information,
analyzing visibility maps, height, and the structural characteris-
tics of the multiviews classified objects define the scene contextual
information. Evaluation of the capabilities of the proposed con-
text aware object recognition methodology is performed on two
datasets: 1) multiangular Worldview-2 satellite images over Rio
de Janeiro in Brazil and 2) multiviews digital modular camera
(DMC) aerial images over a complex urban area in Germany.
The obtained results represent that using the contextual infor-
mation together with a decision-level fusion of multiviews, the
object recognition difficulties and ambiguities are decreased and
the overall accuracy and the kappa are gradually improved for
both of the WorldView-2 and the DMC datasets.

Index Terms—Contextual information, decision-level fusion,
object recognition, visibility analysis.

I. INTRODUCTION

R ECENT YEARS’ advances in airborne and spaceborne
sensor technology and digital imaging techniques lead

to the very-high resolution (VHR) remotely sensed data, those
provide geo-information for automatic recognition of objects
in complex urban areas. Increasing the spectral heterogene-
ity at VHR data leads to more within-class variances, less
interclass variances, and the inadequacy of the traditional
pixel-based classification approaches [1]–[6]. Already many
researchers have investigated the potential of the object-based
image analysis approaches for dealing with VHR imagery and
the complexities in urban areas [2], [3], [5], [7]–[9].
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As it is depicted in the previous researches in the field
of OBIA, the accuracy of the object recognition results in
complex urban areas directly depends on the segmentation
and knowledge-based classification processes [3], [5], [9]–[11].
Moreover, depending on the viewing angle of the sensor, some
parts of urban objects may be occluded by their adjacent high-
rise objects such as buildings or trees [12], [13]. Therefore,
using only single shot imagery, it is very difficult to obtain valu-
able object recognition results. The fusion of the information
coming from multiviews aerial or satellite imagery is valu-
able for filling up occluded areas and obtaining reliable object
recognition results. Fusion of multiviews imagery together with
the contextual information may be considered as a solution to
enhance completeness and accuracy of the object recognition
results in complex urban areas.

A. Object Recognition Based on Multisource Information
Fusion

Data fusion appears as an effective way for a synergistic
combination of information from various sources in order to
provide a better understanding of a given scene [14]–[17].
Many researchers have investigated the potential of perform-
ing various pixel, feature, and decision-level fusion algorithms
for integrating multisource remotely sensed data [6], [17]–[20].
In [20], multiangle imaging spectroradiometer (MISR) data
collected in four bands and at nine view angles are fused in
pixel level with Landsat data in Shenzhen, China. This fused
data were used to demonstrate the view-angle effects on the
spectral response and discrimination of the urban land cover
types.

Ran et al. [19] present a decision-level fusion method to
produce a higher accuracy land cover map by combining mul-
tisource local data based on the Dempster–Shafer evidence the-
ory. In decision-level fusion, single source images are processed
independently and their decision outcomes are combined using
weights of significance. As an advantage, decision-level fusion
does not depend on the type and source of information such as
images, maps, and databases. In [19], the primary objective of
the land cover mapping based on the decision-level fusion is
to facilitate the extraction of biogeophysical information from
land cover for use in regional and global modeling studies. The
results of the fusion validation analyses show a great improve-
ment in accuracy in comparison with other land cover maps. In
[6], a multilevel classification system is used for integrating the
pixel-based structural features and the object-based shape fea-
tures based on a decision-level probability fusion approach. In
the first level, the multispectral and the structural features based
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on the morphological transformation are separately fed into two
support vector machines, respectively. The spectral–structural
pixel-based decision fusion is carried out by considering the
weighted probabilistic outputs of the two SVMs. At the second
level, the object-based decision fusion is implemented by con-
sidering the probabilistic outputs of level I within the boundary
of each object obtained from performing mean shift segmen-
tation. The results showed that the extension of pixel-level to
object-level decision fusion improved the accuracies of classi-
fication by 0.8% and 8.3% for the hyperspectral and QuickBird
datasets, respectively.

B. Object Recognition Based on Contextual Information

Context can be defined as any information that is not directly
produced by the appearance of an object. Context can be
obtained from the nearby image data and neighboring objects
and comprises any kind of relations between the semantic
entities present in an image. Therefore, context can provide
additional information to disambiguate appearance inputs in the
object recognition tasks [21]–[25].

According to different levels of the utilized information, con-
text can be further categorized concerning various points of
view. In some researches, this categorization concerned sev-
eral interaction levels; pixel interactions based on the notion
that neighboring pixels tend to have similar labels, region
interactions between image patches/segments, and object inter-
actions between various objects represented in the scene [22],
[23]. Context also can be categorized into local and global.
Local context concerns relations derived from the area that
surrounds the object to be detected. Global context includes
information about the overall spatial layout of the image and
concerns objects’ occurrences and co-occurrences in the scene
[22]. Hermosilla et al. [26] aim to define and analyze context-
based descriptive features for classifying land-use in urban
environments using three different object aggregation levels:
object-based, internal context, and external context. Object-
based features are composed of image, geometrical, and three-
dimensional (3-D) features. Internal context features describe
an object with respect to the subobjects contained within it.
External context features characterize each object by consider-
ing the common properties of its adjacent objects. Their results
of the classification tests show that the internal and external
context features suitably complement the image-derived and
3-D features, improving the classification accuracy values espe-
cially between those classes with similar image and 3-D feature
patterns.

Guo et al. [23] represent an object-based classification pro-
cedure for high-resolution images by exploiting different levels
of the contextual information. The contexts used in each stage
were the object’s inner context (i.e., the gray constraints of dif-
ferent pixels in an object), the object’s neighbor context (i.e.,
the characteristic constraint of different objects adjacent to the
object of interest), and the object’s scene context (i.e., the spa-
tial homogeneity of the label distribution for different image
objects and the consistency of feature distributions for different
object classes in the whole scene), respectively. Their exper-
imental results, which are based on a complex urban area,

Fig. 1. General structure of the proposed object recognition strategy.

confirm that classification using high-level context yields a
greater improvement than that based on the results provided by
the low-level context.

The novelty of our proposed object recognition methodol-
ogy concerns the combination of the contextual information and
decision-level fusion strategy in order to solve the difficulties
related to generating a complete classification map. The fol-
lowing items introduce some of the most important aspects in
the proposed method:

1) decision-level fusion of the results of the multiviews
object-based image analysis together with the digital
surface model as scene space in order to enhance the
completeness and accuracy of the classification map;

2) considering various aspects of each image such as sensory
information, occluded areas, size and shape of the object
regions, and topological relationships between objects for
assigning weights to each of the object classes;

3) estimating the real object type in the shadow and occluded
areas by integrating the calculated weights of all prede-
fined object classes and using topological relationships
between adjacent object regions.

II. CONTEXT AWARE OBJECT RECOGNITION

In this paper a context aware object recognition strategy
composed of multiple steps is proposed for solving object
recognition difficulties in complex urban areas, based on multi-
views VHR remotely sensed imagery and digital surface model.
As depicted in Fig. 1, the object recognition method is com-
posed of two main stages: single view process and multiviews
process.

In the first stage, the properties of each segmented region are
utilized for object classification on the individual images. Per
segment spectral and textural characteristics together with the
structural features based on the size, shape, and height of a seg-
mented region generate region’s properties. The second stage
of the proposed methodology performs decision-level fusion
on the multiviews classified regions based on the scene con-
text in order to reduce the ambiguities and uncertainties in the
generated classification map.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAHMOUDI et al.: OBJECT RECOGNITION BASED ON THE CONTEXT AWARE DECISION-LEVEL FUSION IN MULTIVIEWS IMAGERY 3

A. Single View Process

Object-based image analysis requires generating segmented
regions as the classification units. In this research, multireso-
lution segmentation technique is applied to the content of each
of the individual images in order to segment it into regions. The
multiresolution segmentation algorithm starts with single image
objects of one pixel and repeatedly merges a pair of image
objects into larger ones. The merging decision is based on the
local homogeneity criterion, describing the similarity between
adjacent image objects [27]. After performing segmentation,
a knowledge-based classification process should be performed
on each of the segmented regions. Therefore, it is necessary
to gather proper knowledge composed of per segment spec-
tral and textural features and structural characteristics of each
segmented region in order to provide region’s properties.

1) Region’s Properties: Per segment spectral and textural
characteristics together with the structural features of each seg-
mented region can provide region’s properties that are the main
tool for performing knowledge-based classification [23], [26].

1) Spectral features: The ratios between the reflectance val-
ues of every possible combination of spectral bands are
called index ratios; those can be used to establish the spec-
tral characteristics of a region. According to the spectral
capabilities of the remotely sensed data, in this paper, nor-
malized difference indices (NDI) and simple ratios (SR)
are used for proper definition of spectral features based
on the mean values of the spectral bands (Bandl, Bandk)
over the regions

NDIk,l = (MeanBandk−MeanBandl)/

(MeanBandk+MeanBandl) (1)

SRk,l = MeanBandk
/MeanBandl

. (2)

2) Textural features: Textural features can be measured
based on the gray value relationships between pixels over
the entire preidentified segmented region. In this paper,
referring to the complexities of the object recognition in
urban areas, more than one feature is used for identifying
the textural characteristics of the objects. Table I repre-
sents these features with some basic mathematics for each
of them.

3) Structural features: Calculating structural features based
on the spatial characteristics and heights of segmented
regions provide another part of the region’s properties for
using in the object classification process. In this paper,
2-D structural features such as area, rectangularity, elon-
gation, roundness, and solidity are used together with the
mean height value of each segment as 3-D structural fea-
ture; those have high potential in recognizing objects in
complex urban areas. Table II represents these features
with their basic mathematics.

After generation of the above-mentioned spectral, textural,
and structural features based on the image data and DSM, for
generating a rich knowledge base of region’s properties, an
optimum feature selection is performed. The threshold values
for the optimum features are determined by the combination
of expert knowledge and quantitative analysis. In this phase,

TABLE I
BASIC MATHEMATICS OF TEXTURAL FEATURES

GLCM (i, j), value of the pixel (i, j) in GLCM space; N, segment size as local
window; n(h), number of pixels in a segmented region in the distance lag h from
the central pixel of the region; xi, central pixel of the segmented region; I(xi),
value of the image at pixel xi.
GLCM: In gray-level co-occurrence matrix, according to the definition of a
local neighboring window (segmented region) and proper orientation selection,
the relationships between the gray values of the pixels transform to the co-
occurrence matrix space. Sum of the pixel values in GLCM space for each
segment after performing the statistical operations on them is assigned to the
segment as textural attributes.

TABLE II
BASIC MATHEMATICS OF 2-D STRUCTURAL FEATURES

Rectangularity indicates how well a shape is described by a rectangle having
major and minor lengths. Elongation indicates the ratio of the major axis of the
bounding rectangle to the minor axis of it. Solidity compares the area of the
region to the area of the smallest convex polygon that can contain the region.
Roundness indicates the ratio of region’s area to the length of its bounding
rectangle.

optimum spectral and textural feature selections are based on
the capabilities of the input spectral bands and various tex-
tural features for recognition of each individual object types.
Optimum structural feature selection is based on the analysis
of relations between features and objects, for instance, the rela-
tion between elongation and road objects or rectangularity and
building objects.

The object classification can be performed by encapsulat-
ing the knowledge base into a rule set and the definition of
a strategy for object recognition. The proposed strategy is a
multiprocess classification model that is based on the spec-
tral, textural, and structural reasoning, respectively. Table III
shows the structure of reasoning rules in different steps of the
recognition strategy.

Despite the high potential of the strategies in the object-based
image analysis, the object classification results based on the
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TABLE III
STRUCTURE OF REASONING RULES IN THE PROPOSED OBJECT

CLASSIFICATION SCHEME

s, indicator of a segmented region; TNDI, predefined threshold for
NDI(bandi,bandj); TSR, predefined threshold for SR(bandi,bandj); TEntropy,
predefined threshold for entropy; Thomogeneity, predefined threshold for
homogeneity; TArea, predefined threshold for area of the region; TElongation,
predefined threshold for elongation of the region; THeight, predefined thresh-
old for height of the region.
Object classes K1, K2, and K3 can be the same or not.

region’s properties still cannot deal with the uncertainties and
ambiguities related to the shadow and occlusion in the complex
urban areas. Using higher levels of the contextual informa-
tion related to the objects’ occurrences in the whole scene
and considering the classification accuracies in multiviews may
increase the reliability of the classification map. Therefore, as
the final process in the first stage of the algorithm, the visibil-
ity map should be generated for each of the individual images
using the digital surface model in the ground space. Generation
of the visibility maps is based on detecting the areas occluded
by the high-rise natural or man-made structures in each of the
individual views. As depicted in (3), shown at the bottom of the
page (the rules are the simplifications of the real set of rules),
considering the recognized 3-D urban objects such as build-
ings and trees in the results of the object-based image analysis,
one can detect occluded areas by analyzing height values and
off-nadir angles, as shown at the bottom of the page.

In which, Threshold3D Object Class j is the predefined min-
imum height of 3-D objects in class j and threshold view angle
is the largest reliable off-nadir angle for images considering the
line of sight from sensor to the image. If the prerecognized 3-D
object i has the reasonable height in 3-D object class j, heights
of its surrounding 3-D objects should be considered together
with the viewing angle of the sensor in order to reconstruct the
line of sight from the sensor to the object and estimate the state

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If View = ViewK

• If Objecti belongs to 3D Object Classj AND Heighti < Threshold3D Object Class j

AND Off − nadir AngleK > ThresholdView Angle Then Visibility Map = 0

• If Objecti belongs to 3D Object Classj AND Heighti ≥ Threshold3D Object Class j

AND Heighti ≥ HeightSurrounding Objects Then Visibility Map = 1

• If Objecti belongs to 3D Object Classj AND Heighti ≥ Threshold3D Object Class j

AND Heighti < HeightSurrounding Objects AND Off − nadir AngleK > ThresholdView Angle

Then Visibility Map = 0

(3)

of visibility. Individual visibility maps will be used for further
analysis in the second stage of the proposed method.

B. Multiviews Process

High-rise objects together with the viewing angle of the
sensor make some uncertainties in the object classification
results which cannot be solved using only single shot imagery.
Therefore, in the proposed object recognition methodology,
another processing stage is defined based on the context aware
decision-level fusion of the object-based image analysis on
multiviews. This stage is composed of two main operations:
preanalysis on the object classification results for all images and
the decision-level fusion of the multiviews.

1) Preanalysis on Classified Regions: The preanalysis is
based on generating total visibility map from the summation
of all of the individual visibility maps as the main tool for per-
forming visibility analysis. Visibility analysis determines the
number of views the pixel (x, y) of the ground space is visible
in all of them. Performing visibility analysis, one can catego-
rize all of the ground space pixels into three groups: visible in
all images, visible in some images, and visible in none of the
(occluded in all) images. This categorization is useful for the
definition of the scene context in the proposed decision-level
fusion algorithm.

2) Decision-Level Fusion: For the decision-level fusion of
the classified regions in multiviews, results of the visibility
analysis are utilized through a higher level context aware strat-
egy. The first step of the decision-level fusion is the back pro-
jection from each ground space pixel to its preidentified visible
images (all images for the group of visible in none) based on the
results of performing visibility analysis. These back projections
find the classified regions in multiviews that pixels belong to.

As scene context of an object can be defined in terms of its
co-occurrences with other objects and its occurrences in the
whole scene, information regarding sensor’s look angle, dis-
tance from occluded areas, heights, and areas of the object
regions that pixels belong to are the fundamentals for the scene
context definition. In this research, scene contextual informa-
tion is utilized for weighting all object classes in order to assign
them to the ground space pixels. The decision-level fusion strat-
egy takes place on the level of the predefined object classes
based on the object classification results. Therefore, if there
are n various recognizable object classes in the multiviews,
also n different weights should be calculated for assigning the
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Fig. 2. Illustration of the angle-based rule [28].

object classes to each of the ground space pixels. Following
items represent the components for defining scene contextual
information:

1) Sensor weight (W Sensor): This weight depends on the
off-nadir viewing angle (θ) for each of the multiview
images. According to the angle-based rule for composing
multiview images, the nearest to nadir view has the most
reliability because of taking the values of nonoccluded
regions as vertically as possible [28]. Object classes in
the nearest to nadir view have the largest sensor weights
for assigning to the ground space pixels (Fig. 2).

2) Weight of occlusion (W Occlusion): It depends on the
neighborhood relations between each object region and
the occluded areas in the multiviews visibility maps [29].
Having less common borders with occluded areas leads
to the less uncertainty and larger weight of occlusion for
each object region.

3) Weight of area (W Area): It depends on the area of the
object regions. If the ground space pixel (x, y) belongs to
a large object region, the object class of the large region
has more reliability and the larger weight of area assigns
to it. The reason of this rule is the uncertainties of small
regions. For instance, if a small road region is completely
contained by the building object class, it can be caused
as an error by the spectral similarities between road and
building roofs.

4) Weight of topological relationships (W Topology): For an
occluded region in all views, it depends on its neighboring
relationship with the nearest visible object regions. Using
the weight of topological relationship, the class label of
the neighboring visible object region with the smallest
height difference assigns to the occluded region in all

views. The simplification of the real developed rules for
topological relationships is depicted in (4), shown at the
bottom of the page.

In which, ThresholdΔH is the predefined maximum height
difference between neighboring regions and ThresholdArea

is the predefined minimum area for large regions. As it is
depicted in (4), if there is a small amount of height differ-
ences between neighboring object regions (W Topology = 1),
the class label of the neighbor visible region with the smallest
height difference should be assigned to the occluded one.

For the ground space pixel (x, y), which is categorized in
the groups of visible in all or visible in some images, calcu-
lating the weight of scene contextual information for assigning
object class i to this pixel is based on the summation of sensor,
occlusion, and area weights in the visible views, those classi-
fied pixel (x, y) into the object class i (5). For the ground space
pixel (x, y), which is visible in none of the images, the weight
of topological relationships and the sensor weight in all views
are utilized for calculating the weight of scene context for each
of the object classes in order to assign the neighboring visible
object class i to this occluded pixel (6)

W(Scene Context)
(x,y)
Class ii∈[1,n]

=
∑

k∈visibleviews

(WSensork+WOcclusionk
+WAreak)(x,y)∈class i

(5)
W(Scene Context)

(x,y)
Class ii∈[1,n]

=
∑

k∈Allviews

WTopologyk
∗ (WSensork).

(6)

In addition, classification accuracies of various object types
in each view also affect on the decision-level fusion results
[6]. Classification weights of the object classes are determined
based on the user and producer accuracies in the results for each
of the multiviews object-based image analysis

W(Classification)KClass i =
2Ak

U(Class i) ×Ak
P(Class i)

Ak
U(Class i) +Ak

P(Class i)
(7)

where W(Classification)KClass i is the classification weight for
object class i in view k and Ak

U(Class i) and Ak
P(Class i) are the

user and producer accuracies for the object class i in view k.
For calculating the producer accuracy, the total number of cor-
rect classified pixels in an object class is divided by the total

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If RegionK = Occluded in All Views

• If RegionK Compeletely Contained By Visible Regions

AND Minimum(ΔHeight(RegionK, Neighboring Visible Regions)) ≤ ThresholdΔH

Then WTopology = 1(Assign Label of Neighbor Visible Region with Minimum(ΔHeight))

• If RegionK Partialy Contained By Visible Regions

AND Minimum(ΔHeight(RegionK, Neighbouring Visible Regions)) ≤ ThresholdΔH

AND AreaRegionK
> ThresholdArea

Then WTopology = 1(Assign Label of Neighbor Visible Region with Minimum(ΔHeight))

• Else WTopology = 0

(4)
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number of reference pixels of that object class. If the number of
correct classified pixels in an object class is divided by the total
number of classified pixels in that class, the measure of com-
mission error or user accuracy is obtained. Reference maps in
each datasets (Fig. 6) are used for calculating the user and pro-
ducer accuracies in each of the individual object-based image
analysis results.

Therefore, the total weight calculation for each of the object
classes is based on the weights of scene context and classifica-
tion in multiviews. The object class with the largest total weight
should be selected as the winner class label for assigning to the
ground space pixel (x, y)

Total Weight
(x,y)
Class i =

∑
k=Visible Views
(x,y)∈class i

W(Classification)KClass i

×W(Scene Context)
(x,y)
Class i (8)

Winner Class(x,y) = Max(Total Weight
(x,y)
Class i)

i ∈ 1, 2, . . . ,n.
(9)

If the winner class is shadow, the structural and height-based
relations are used in order to determine the true object types
instead of the shadow area. According to the rules depicted in
(10), shown at the bottom of the page, those are simplifica-
tions of the real developed rules, determining the true object
type in a shadow region also depends on the class labels of
its neighboring visible regions with the small amount of height
differences.

According to (10), for each of the shadow regions, con-
sidering its area, the visible neighbor object class with the
longest neighboring border, with respect to the predefined
threshold (ThresholdBorder), should be used for analyzing the
height and 2-D structural features such as rectangularity and
roundness. If the height difference between the investigat-
ing shadow region and its longest visible neighboring object
class is below a predefined threshold (ThresholdΔH), the class
label of this neighboring object is assigned to the shadow
region.

III. EXPERIMENTS AND RESULTS

A. Dataset

The potential of the proposed methodology is evaluated
for automatic object recognition based on two multiviews

If Regioni = Shadow

• If AreaShadow i < ThresholdArea AND Neighboring Border(Shadowi,Objectj) > ThresholdBorder

AND ΔHeight(Objectj, Shadowi) < ThresholdΔH

Then True Object Class of Shadowi = Class Labelj

• If AreaShadow i ≥ ThresholdArea AND Neighboring Border(Shadowi,Objectj) > ThresholdBorder

AND ΔHeight(Objectj, Shadowi) < ThresholdΔH

AND RectangularityShadow i < ThresholdRectangularity AND RoundnessShadow i < ThresholdRoundness

Then True Object Class of Shadowi = Class Labelj.

(10)

Fig. 3. (A) WorldView-2 dataset. (a1–a4) Four multiangular WorldView-2
satellite images. (a5) Generated digital surface model from matching. (B) The
DMC dataset. (b1–b6) Six multiviews DMC aerial images. (b7) Lidar DSM.

datasets. The first dataset is the multiangular pan-sharpened
WorldView-2 satellite imagery over Rio de Janeiro (Brazil)
which was collected in January 2010 with half a meter spa-
tial resolution and 8 spectral bands and within a 3-min time
frame with satellite elevation angles of 44.7◦ and 56.0◦ in the
forward direction, and 59.8◦ and 44.6◦ in the backward direc-
tion. The multiangular sequence contains the downtown area
of the city, including a number of large and high buildings,
commercial and industrial structures, and a mixture of commu-
nity parks and private housing. Moreover, using multiangular
WorldView-2 images, the DSM with a grid width of 50 cm is
generated from multiple pairs of panchromatic stereo images—
in epipolar geometry—using the Semi-Global Matching (SGM)
algorithm [30].

The other dataset contains multiviews digital aerial imagery
over Vaihingen in Germany. The aerial images were acquired
using an Intergraph/ZI DMC on 24 July and 6 August, 2008
[31]. As depicted in Fig. 3, a DSM that is interpolated from the
airborne laser scanner (ALS) point cloud with a grid width of
25 cm, using only the points corresponding to the last pulse,
is used together with the six overlapping pan-sharpened color
infrared aerial images with a ground sampling distance of 8 cm
and a radiometric resolution of 11 bits. The sample area is sit-
uated in the center of the city of Vaihingen. It is characterized
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TABLE IV
OPTIMUM SELECTED FEATURES AND THEIR THRESHOLDS

by dense development consisting of historic buildings having
rather complex shapes, but also has some trees.

B. Obtained Results

In the stage of performing single view process, the mul-
tiresolution segmentation algorithm is applied to the content of
each of the individual images using eCognition software. For
the WorldView-2 dataset, the values 90, 0.2, and 0.1 and for
the DMC dataset, the values 150, 0.2, and 0.5 are used for the
scale parameter, compactness, and shape parameters, respec-
tively. These parameters were determined based on the trial
and error in order to provide suitable size of the segments
for recognizing various object types in both datasets. Then, all
of the spectral, textural, and structural features mentioned in
Section II-A1 are measured on all of the image regions on the
whole datasets. Optimum feature selection and threshold set-
ting for each object class is performed semiautomatically by
an expert operator using the quantitative and visual analysis
on each of the features in feature view of eCognition software.
Table IV depicts the optimum-selected features and their esti-
mated thresholds based on all images in both datasets, for the
generation of the knowledge base and performing object-level
classification on the segmented regions (see Section II-A1 for
descriptors).

As depicted in Table IV, building, road, tree, grassland,
and shadow area are the preidentified object classes based
on the visual inspections. Despite shadow being not a real
object class, detecting true objects instead of shadow areas
based on the spectral responses is a difficult task dealing with
VHR imagery. Therefore, in processing based on single view,
shadow is recognized as a separate object class, and in a
later step, we are going to recover shadow areas based on the
decision-level fusion of topological relationships in multiviews
processes.

TABLE V
VISIBILITY ANALYSIS ON THE TOTAL VISIBILITY MAP

Fig. 4. (A) Results on the WorldView-2 dataset. (a1–a4) Object-based image
analysis on individual WV-2 satellite images. (a5) Final decision-level fusion
object recognition results. (B) Results on the DMC dataset. (b1–b6) Object-
based image analysis on individual DMC aerial images. (b7) Final decision-
level fusion object recognition results.

According to the different characteristics of the ground
space (which is represented by the DSM) and image spaces
(individual object-based image analysis results), performing
projection is necessary for all processing steps that need the
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Fig. 5. (A) Results on the sample patch of the WorldView-2 dataset.
(a1–a4) OBIA on individual WV-2 satellite images with off-nadir angles 30.2◦,
45.4◦, 34.00◦, and 45.3◦, respectively. (a5–a8) Visibility maps on individual
WV-2 satellite images. (a9) Total visibility map. (a10) Final decision-level
fusion object recognition result. (a11) OBIA on the most nadir view with
8.6◦ off-nadir angle. (B) Results on the sample patch of the DMC dataset
with off-nadir angles 50.52◦, 50.43◦, 11.15◦, 14.63◦, 42.00◦, and 43.37◦,
respectively. (b1–b6) OBIA on individual DMC aerial images. (b7–b12)
Visibility maps on individual DMC aerial images. (b13) Total visibility map.
(b14) Final decision-level fusion object recognition result (yellow boxes high-
light improvements).

transformation between the ground space and each of the
image spaces (such as OBIA structural reasoning, decision-
level fusion algorithm, and later for the accuracy assessment).
In the WorldView-2 dataset the projection is performed using
the rational polynomial coefficients (RPC) and in the DMC
dataset, the photogrammetric linearity equation is used based
on the provided exterior orientation parameters for each of
the images. As it is depicted in Table V, before decision-level
fusion of multiviews, by performing visibility analysis on the
total visibility map, ground space pixels are categorized into
three groups, visible in all images, visible in some images,
and occluded in all images. After performing decision-level
fusion on the OBIAs based on the proposed context aware strat-
egy, analysis shows that decision-level fusion removes majority
of the shadow regions from object recognition results and
detects road regions occluded by the high-rise buildings or trees
especially in areas that are visible in some images.

Fig. 4 depicts the visual comparison between the object
recognition results on each of the individual images and
decision-level fusion of them in both datasets.

Fig. 6. References for quantitative evaluation of the results on (a) WorldView-2
dataset and (b) DMC dataset.

TABLE VI
ACCURACY ASSESSMENT OF THE DECISION-LEVEL FUSION

OBJECT RECOGNITION RESULTS

TABLE VII
ACCURACY ASSESSMENT OF THE OBJECT RECOGNITION RESULTS OF

THE INDIVIDUAL VIEWS

For providing more visual details, Fig. 5 illustrates the results
of multiviews object-based image analysis and decision-level
fusion of them on two selected patches. Some of the classi-
fication improvements are highlighted by yellow boxes in the
results of performing decision-level fusion on both datasets. For
example, in the WorldView-2 dataset, the upper left and upper
right yellow boxes highlight some recognized road regions
that are occluded or shadowed by high-rise buildings in the
individual object recognition results. Moreover, in the DMC
dataset, yellow boxes highlight improvements in recognizing
grass and road regions after solving shadow and occlusion. As
it is depicted in Fig. 5, the object-based image analysis of the
most nadir WorldView-2 image is provided in Fig. 5(a11) for
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Fig. 7. Comparing the completeness, correctness, and quality of the object
recognition results for individual views and decision fusion of them in
(a) WorldView-2 dataset and (b) DMC dataset.

visual comparison with the final decision-level fusion of the
four oblique images.

For the quantitative evaluation of the results, the following
references are used for each dataset. On the WorldView-2
dataset, some segmented regions of the predefined object
classes are manually selected by an expert operator based
on the digital surface model generated from multiangular
WorldView-2 images and the most nadir view [Fig. 6(a)]. On
the DMC dataset, the reference classification map is generated
by photogrammetric plotting for multiviews DMC images
[Fig. 6(b)] [31].

A confusion matrix is produced for comparing the reference
areas with their corresponding results from different steps of the
object recognition methodology. As depicted in Table VI, the
comparison is based on the numbers of correctly detected pix-
els (true positive), wrongly detected pixels (false positive), and
the not correctly recognized pixels (false negative), determined
after performing the object recognition algorithm. Moreover,
using the confusion matrix and the quantitative values for
each object class, completeness, correctness, and quality cri-
teria together with the overall accuracy and Kappa value are
determined from the results [32]

Completeness =
TruePositive

TruePositive + FalseNegative
(11)

Correctness =
TruePositive

TruePositive + FalsePositive
(12)

Quality =
TruePositive

TruePositive + FalsePositive + FalseNegative
.

(13)

In order to perform more quantitative analysis on the results,
the object-based image analysis of each of the individual views
is projected to the ground space for comparing with the ref-
erence regions. Then, the overall accuracies and kappa of all
individual object-based image analysis are compared with their
decision-level fusion results. Comparing Tables VI and VII
with each other shows that using the proposed context aware
algorithm for decision-level fusion of multiviews object recog-
nition results increases the amount of overall accuracy and
kappa values in the classification results.

Fig. 7 illustrates the improvements of the completeness,
correctness, and quality of the classification for each of the
individual images and decision-level fusion of them.

IV. DISCUSSION AND CONCLUSION

A context aware strategy is proposed for decision-level
fusion of the object-based image analysis on multiviews VHR
imagery and digital surface model. According to the var-
ious off-nadir angles of the sensors, high-rise 3-D objects
such as buildings may cause occlusion and shadow areas in
the remotely sensed imagery. In such a situation, true class
labels of some parts of the object regions cannot be detected.
Therefore, large numbers of false positive and false negative
pixels decrease the classification accuracies. Using the pro-
posed decision-level fusion of the multiviews based on the
developed context aware strategy enhances the completeness
and accuracy of the object recognition results. Comparing
Tables VI and VII illustrate that the minimum values of
improvements in the overall accuracy and kappa using the
decision-level fusion object recognition algorithm are about 15
and 0.19 for the WorldView-2 dataset and 18 and 0.24 for the
DMC dataset, respectively. Comparing the results from both
datasets reveals that increasing the number of individual views
may improve the accuracies of their decision-level fusion. In
this evaluation, we used the number of 4 WorldView-2 satel-
lite images and the number of 6 DMC aerial images. Moreover,
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the accuracy of the decision-level fusion results also depends
on the precision of the utilized digital surface model. In the
WorldView-2 dataset, we used DSM with 0.5-m spatial res-
olution which is generated based on the matching and SGM
algorithm. On the other hand, in the DMC dataset, we used
the more precise Lidar DSM with 25 cm spatial resolution.
Therefore, more improvements in the classification accuracies
from the decision-level fusion of DMC aerial images depend
on using more precise DSM together with more number of
individual images. According to Fig. 7, despite improving the
completeness and quality of the classification in most object
types in both datasets, correctness values of the decision-level
fusion results have not improved in all object types for DMC
dataset. This situation relates to the dependencies between the
classification accuracies of each of the individual images and
the decision-level fusion of them. As it is depicted in Table VII,
strong spectral capabilities of WorldView-2 satellite images led
to the better accuracies of object recognition results in each of
the individual images. However, the DMC aerial images with
only three spectral bands cannot obtain the accuracies as well
as WorldView-2 images. Moreover, the most nadir views in
the DMC dataset do not have the best classification accura-
cies. Therefore, considering large weights of scene context for
the most nadir views with weak classification accuracies led to
decrease the correctness of the decision-level fusion results in
the DMC dataset.

This method still needs further modifications in the field
of defining the contextual information such as neighborhood
definition for each of the regions and using artificial intelli-
gence techniques such as multiagent system for decreasing the
classification errors related to the lack of segmentation capabil-
ities. Moreover, the potential of the proposed method can be
further evaluated for remotely sensed data with higher spec-
tral capabilities such as high resolution hyperspectral data with
more object classes. For performing the proposed decision-
level fusion method on the object-based image analysis of
other remotely sensed datasets, all aspects of the method is
transferable but only the spectral features may need to modify
according to the spectral capabilities of new datasets.
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