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Abstract—Information of crop phenology is essential for eval-
uating crop productivity. In a previous work, we determined
phenological stages with remote sensing data using a dynamic sys-
tem framework and an extended Kalman filter (EKF) approach.
In this paper, we demonstrate that the particle filter is a more
reliable method to infer any phenological stage compared to the
EKF. The improvements achieved with this approach are dis-
cussed. In addition, this methodology enables the estimation of
key cultivation dates, thus providing a practical product for many
applications. The dates of some important stages, as the sowing
date and the day when the crop reaches the panicle initiation stage,
have been chosen to show the potential of this technique.

Index Terms—Agriculture, multitemporal, particle filter,
phenology, polarimetry, rice, synthetic aperture radar (SAR).

I. INTRODUCTION

R ICE is one of the most important sources of food in the
world, Asia being the largest producer with increasing

importance in Africa and Latin America as well as pockets of
production in Australia, Europe, and the U.S. To ensure a max-
imum yield, it is necessary to keep a continuous monitoring
over fields. This would allow producers to have an accurate
knowledge on the crop status and to apply a correct treatment
at the precise moments. Phenology represents a measurement
of crop evolution and it can be used as a control variable by
the farmers [1], [2]. Traditionally, it is measured by means of
visual inspection on ground but, due to clear limitations, differ-
ent alternative ways of monitoring appear, such as those based
on remote sensing satellite images [2]–[4].

In [5], the phenological stage estimation problem was treated
in a dynamic context. A sequence of synthetic aperture radar
(SAR) images, acquired by the German TerraSAR-X sensor
at X-band, was used as input data to deduce the phenologi-
cal stage. The methodology consisted of: 1) the generation of
a transition model of the phenological evolution and 2) the
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application of the extended Kalman filter (EKF) [6] approach
to combine the observations and the derived model for estima-
tion purposes. This filtering method uses a linearization of the
transitions and assumes that the probability density function
(pdf) of both observation and transition models are described
by a Gaussian distribution in order to provide optimal esti-
mations. However, the model is strongly nonlinear and the
observations do not exhibit exactly a Gaussian distribution. For
these reasons, another filtering method able to work under these
conditions needs to be considered. The particle filtering (PF)
approach [7] is proposed here because the estimation proce-
dure is not affected by these limitations. It is a sequential Monte
Carlo [8], [9] method based on approximating the posterior pdf
of the state vector, based on all available information, by a set
of samples (or “particles”). When a new input data is avail-
able the pdf given by the model is combined with the pdf of
the observation to estimate the most likely state. Hence, the PF
is proposed here as a convenient method for obtaining more
accurate estimations of phenological stages than the EKF.

From the application point of view, different works in
the literature are based on the analysis of normalized differ-
ence vegetation index (NDVI) curves. Phenological parameters
are derived in correspondence to inflection points or local
minimum/maximum points of the temporal signal [10], [11].
Despite the reduced observation space (only one observable),
the time coordinate is exploited to estimate some stages, such
as vegetation green-up or start of season, end of season, begin
of brown-down, and end of brown-down. In our work, the tran-
sition model is presented in a state space defined by a set of
variables (a detailed explanation is given in Section III) pro-
viding a continuous representation for the phenological stages.
Therefore, the estimation of any date is feasible with this
methodology.

This approach enables estimating the date of critical stages
that are strongly related with the productivity, as the panicle ini-
tiation stage or the sowing date [12]. A tight control of nutrient
inputs, especially nitrogen (N) fertilizer [13], is one of the key
aspects in the improvement of yields in the world. While N fer-
tilization maximizes grain yield, an overuse may actually have
the opposite effect [14], [15]. For this reason, N fertilization is
stopped at panicle initiation stage. The accurate prediction of a
particular crop reaching this stage will enable to optimize pro-
duction and reduce the impacts on the environment, which is
becoming a serious issue as it happens in Asia [16]. Moreover,
the access to an accurate sowing date estimate will provide the
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required information to governments or relevant agencies to
reduce the increase in pests and soil damages. Pests affect the
crop yield and force farmers to use toxic products to combat the
problem, and it can be dangerous to consumers. For instance,
an alternative technique for breaking the life cycle of the insect
pest is presented in [17]. The goal is to synchronize the plant-
ing date of crops in large areas. However, this study concludes
with the need of a legislation control in the cycle of sowing to
make it effective. On the other hand, dependence of yield with
the sowing date is shown in [12] and [18], so the knowledge of
sowing dates can be used to establish when is the optimum date
to plant in certain area.

In this paper, the estimation of the current phenological stage
of rice crops is addressed first, showing the improvements
achieved by the PF instead of the EKF. In second place, this
method provides a solution to predict or estimate any key date
of the cultivation cycle. Due to their relevance, as described
in the previous paragraph, the sowing date and the panicle
initiation stage date have been chosen to test it.

An introduction on the PF theory is described in Section II,
followed by the description of the methodology proposed for
this particular problem in Section III. Then, results are pre-
sented in Section IV. Finally, conclusion and a discussion are
addressed in Section V.

II. THEORY OF PARTICLE FILTER

Particle filter is a method based on Monte Carlo [8], [9]
and recursive Bayesian sequential estimation [19], [20] that is
very suitable for nonlinear and/or non-Gaussian applications
[21]–[23].

Systems that have a dynamic behavior can be described
mathematically by a set of inputs, outputs, and variables, using
what is known as a state space [24]. The state-space approach
is convenient when the process is nonlinear and non-Gaussian
instead of using traditional time-series techniques [25]. The rel-
evant information about a dynamic process is represented in an
N-dimensional space. The state vector defines the position in
the state space of the process at a precise moment. For exam-
ple, in navigation tracking problems, the information could be
defined by the distances to the boundaries and the orientation
angle. Data acquired by noisy measurements define the result-
ing state vector and introduce an uncertainty, forcing us to work
in statistical terms. Therefore, filtering techniques are necessary
to obtain the optimal estimation.

The goal of Bayesian sequential estimation is to construct the
posterior pdf, to know which is the most likely state, in a recur-
sive way, by separating the process in two stages: prediction
and update.

Prediction: The Chapman–Kolmogorov integral equation
can be used to generate the prior pdf, if we have defined
the transition model p(Xk|Xk−1), which will be explained in
Section III-A, and the posterior pdf p(Xk−1|Z1:k−1) is avail-
able. The prior pdf defines the most likely state at time k
without introducing the observation.

Update: When the observation Zk is available, the prior
pdf is updated via Bayes’ rule to obtain the posterior pdf. A
complete expression is shown in [26].

Fig. 1. Illustration of the stages of the PF algorithm for a pixel at 1-D.

Considering the Markovian assumption, the posterior
pdf p(Xk|Z1:k) can be obtained recursively from the pdf
p(Xk−1|Z1:k−1) calculated at a previous state k − 1. In case
the initial distribution pdf p(X0|Z0) = p(x0) is unknown,
a uniform distribution over the whole state space can be
considered.

PF is used to approximate the posterior pdf with a set of N
samples when the prediction and update steps are not analyti-
cally tractable. Particles represent possible states over the state
space. Each particle is defined by a vector (position) and a prob-
ability value (weight) based on the likelihood of an observation.
In other words, the posterior pdf is represented by a set of N
particles and their weights. In the initialization step, a set of N
particles are distributed with an initial pdf that can be uniform
(step 1). In the prediction step particles evolve in time accord-
ing to the transition model p(Xk|Xk−1) to obtain the prior pdf.
When an observation is available the update step is carried out,
in which the weights of the particles are computed to gener-
ate the posterior pdf using (1) and, being N sufficiently large, it
approximates the posterior pdf (step 3)

p(X0:k|Z1:k) ≈
N∑

i=1

ωi
kδ(X0:k −Xi

0:k) (1)

where δ is the delta-Dirac function, p(X0:k|Z1:k) is the true
posterior pdf, Xi

0:k is the ith simulated sample (particle), and
ωi
k is the weight of ith simulated sample (particle).
For a one-dimensional (1-D) process, a graphical evolution

of the samples at each state is shown in Fig. 1. The particles
are distributed over the horizontal axis represented by a circle,
and the area indicates the weight of each one. At step k, the
particles evolve using the transition model to obtain the prior
pdf. When a new observation is available, weights are updated
by the observation p(Zk−1|Xi

k−1) to obtain the posterior pdf.
As k increases, only a few particles will keep a significant

weight, or in other words, the particles will degenerate with
time. In order to resolve the degeneracy problem, it is neces-
sary to implement a resampling step. In the literature, we can
find a lot of resampling methods [27]. If the number of particles
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Algorithm 1. RSR Method

Generate a random number �U (0) ≈ U [0, 1
M ]

for m = 1 to N do
i(m) = �(ω(m)

n −�U (m−1)M�+ 1

�U (m) = �U (m−1) + i(m)

M − ω
(m)
n

end for

with high weight is below a threshold, resampling is employed
to concentrate more particles where the posterior pdf is more
likely. To measure the degeneracy, an estimate of the effective
sample size is typically used as

Neff =
1

∑N
i=1(ω

i
k)

2
. (2)

When Neff is smaller than a previously defined threshold,
resampling is applied. A small Neff value means a large vari-
ance for the weights, hence more degeneracy. The objective of
the resampling is to concentrate more particles, where there are
high weights and drop only a few where weights are low. In this
work, the residual-systematic resampling (RSR) [28] is used for
this purpose. The pseudocode in Algorithm 1 shows the RSR
algorithm for N input and M output particles, where ωN

n is an
array of weights. The �� indicates a rounded down and U [0, 1

M ]
represents the uniform distribution between 0 and 1

M .
The resulting set of samples is in fact an independent

and identically distributed (i.i.d.) from the discrete posterior
pdf p(Xk|Z1:k). Therefore, the weights can now be reset to
ωi
k = 1/Ns. In Fig. 1, the resampling and normalization steps

are illustrated, showing the particles before and after being
resampled. In addition resampling enables the adaption of the
computational cost, i.e., the number of particles can be varied
at each step, and the minimum number of particles can be used
to keep the most important information from the pdf (hence
reducing the computational cost), or it can be increased when
necessary. However, if we reduce sharply the number of parti-
cles it is possible that the new acquisition pdf does not overlap
the pdf given by the transition mode, meaning that the predic-
tion and the observation are incoherent. To solve this issue,
a uniform redistribution of the particles is necessary. To pre-
vent this, it is important to adapt the number of particles after
resampling.

The last step is the normalization of the weights before going
to the prediction step again. A summary of all stages involved
in the estimation process is shown in Table I.

III. METHODOLOGY

In this section, the methodology for our particular problem is
presented. Point A describes the transition model employed in
this work. In point B, the development of the PF in the frame-
work of precision farming is shown, and finally, the approach
to estimate different key dates and the phenological stage is
exposed in Section III-C.

TABLE I
PF SEQUENCE

A. Dynamic Model

A transition model, which characterizes the behavior over the
state space, is required to apply the prediction step in a filtering
procedure. It is a representation of the phenological evolution
for any rice crop, and it can be employed by any dynamic filter-
ing method. In this paper, the dynamic model defined in [5] is
used.

From data provided by a polarimetric SAR sensor, it is pos-
sible to derive a set of polarimetric observables. In our case,
we have decomposed the available dual-polarization data into
three sets of polarimetric parameters: power terms, magnitude,
and phase from the correlations between polarimetric chan-
nels, and parameters derived from the eigen decomposition of
the coherency matrix. In this particular scenario, a total of 13
parameters are employed, as detailed in [5].

In order to reduce the number of these observables, but mini-
mizing the loss of information, an orthogonal transformation is
made based on a principal component analysis (PCA) [29], and
a 3-D state space is defined. A time series of dual-polarization
SAR images and the corresponding phenological ground truth
are used to generate the dynamic model in the space state. The
complete procedure is explained more detail in [5]. In this work,
the estimation process is based on the exploitation of this pre-
viously generated model, but with a PF approach. In general,
all parcels present a similar behavior, so for that reason they
are combined to create an average model (or signature). Such a
signature describes the temporal evolution of crops that follow
the same management practices. The model must be built with
homogeneous plots, since heterogeneities in the parcel means
that some areas are not evolving correctly. In such cases, the
signature in the space state is different from the signature of
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Fig. 2. Dynamic model applied to a particle at time k to obtain the new posi-
tion at time k + 1. Black line represents signature of rice on state space. Blue
point represents particle position at time k. Blue line represents signature of rice
shifted to the particle position. (Red point) Position of particle at time k + 1
without noise. Red circle represents zone of possible positions when noise is
added.

the model. This deviation can be used to alert the farmers of a
possible problem in the crops.

It is important to remind that using a PCA transformation
entails the loss of physical interpretation of the polarimetric
data in the new state space. However, this study is focused on
the final application (i.e., estimation of the current phenological
stage) and not in the physical interpretation of the polarimetric
data. It should be noticed that the definition of the state space
employing such a tool provides us an effective mechanism to
reduce the dimensions of the space while losing the minimum
quantity of information.

Fig. 2 shows the phenological evolution of rice crops over
the state space. The model is used to define the evolution of
each particle from time k − 1 to k. It is necessary to deter-
mine the way to apply it, due to the absence of an analytical
model. First, each particle is projected to the closest state of the
model (hereafter referred as closest state). Once we have a cor-
respondence between both, the model is shifted to the particle
position. Particles will evolve as their closest state would do.
Therefore, the new position at time k is obtained by evolving
over the shifted model (this is illustrated in Fig. 2). In case the
temporal resolution of the model is in a daily basis, we have to
increment as many steps as days from the previous acquisition
to obtain the new state of the particle. The noise on the transi-
tion model was defined by a covariance matrix that depends of
the variance of the input data (used when the model was gener-
ated). Once the new position is calculated, the state vector and
the covariance matrix are multiplied to obtain a new state vec-
tor. The same process is applied to all particles to generate their
prior pdf.

B. Filtering Approach

Initially, particles are distributed uniformly because the ini-
tial pdf is unknown. To generate the prior pdf the transition

model is applied for each particle, evolving to the new posi-
tion k days later. When the observation is available the weights
of the particles are computed using (3)

ωi
k ∝ ωi

k−1

∑
piδ(Zk − Zi

k) (3)

where p(Zk|Xi
k) =

∑
piδ(Zk − Zi

k) represents the proba-
bility of particle Xi

k to generate an observation Zk, and
p(Xk|Xk−1) is used as proposal pdf [7]. In this case, the num-
ber of particles used to provide the estimations was N = 1000.
With N below 1000 the representation of the posterior pdf’s
is deficient. In particular, some stages show a multimodal pdf
which cannot be properly modeled due to the small number of
samples, producing an incorrect estimation. If we increase N
to values much larger than 1000 the estimations do not present
any significant improvement but the computational burden is
increased considerably. Consequently, a set of 1000 particles
was selected as a good tradeoff.

The observations described in [5] are used in this work.
However, instead of generating the covariance matrix employed
in the EKF approach, the pdf is generated to characterize the
observation.

The projection of the 3-D pdf over each axis of the state
space is used to apply the methodology. Finally, when the
posterior pdfs are available we can combine them to get the
three-dimensional pdf again. The result is a set of particles
located in a particular zone of the state space. Each particle will
have an associated phenological stage which is determined by
the projection of the state vector over the model. The particle
with largest weight, i.e., the highest probability, shows the most
likely phenological stage, and the standard deviation is given by
the projection of the other particles. If the posterior pdf in (1)
has degeneracy, i.e., only a few particles have a significant value
whereas the rest of them have a low weight, we have to make a
resampling. Finally, a normalization of the weight is necessary,
and the sequence is repeated from the prediction step.

C. Application of PF

Using the previously introduced model and a set of obser-
vations, the PF method provides an estimation tool that can be
applied for different purposes. We focus on the retrieval of the
current phenological stage, the estimation of the sowing date,
and prediction of the date at which the crop will reach the
panicle initiation stage.

To have a proper description of the crop evolution, the
general Biologische Bundesanstalt, Bundessortenamt, and
Chemical industry (BBCH) scale for cereals [1], [30] is consid-
ered. The BBCH scale provides a numerical code to represent
every growth stage along the life cycle of plants. This code
ranges in a continuous way from 0 (associated with sowing)
to 100 (associated with harvest). Therefore, every phenological
stage along the cultivation period of cereals is associated with
a BBCH code, which constitutes a convenient way to describe
numerically the evolution of crops.

The evolution model contains all possible ranges of BBCH.
The way to obtain the phenological stage from any state is by
projecting its position over the closest state in the model. Using
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only one input image the result depends on the observation
precision. Instead, when a set of images is used, noise effects
are reduced, wherewith the state is better determined, and the
final estimate is improved.

To track phenological changes, particles evolve according to
the transition model, generating a prior pdf. When a new obser-
vation is available, the pdf can be updated to provide the new
distribution of particles. The projection of the new states over
the model generates a set of possible phenological values (one
for each particle). To provide a single solution, the maximum a
posterior probability (MAP) estimate is used. The phenology is
calculated using the particle with highest weight, and the vari-
ance is given by the estimates of the other particles. Each time
a new observation is available, we can estimate the phenology
of the crop by repeating this procedure.

Furthermore, each state of the model has a temporal stamp
that represents the position along the temporal evolution of the
crop over the state space. This temporal stamp information is
exploited here to provide estimates of the date at which the crop
reaches a specific stage. Due to their relevance in rice farming
(explained in the Section I), we have chosen the date of sowing
and the date of the panicle initiation stage for this study.

In order to know the time elapsed between two states, e.g.,
from k − n to k, being k the state at the current observation,
the difference between the two temporal stamps is calculated.
Issues appear when k − n is an unknown state, for instance
when the observations available are only of later states. In such
a case, the state is predicted from a signature (or trace) over the
state space from k −m to k, being k −m the state defined by
the first observation available and k −m > k − n. This trace is
represented by a specific zone of the model.

To provide a solution for the sowing date, the model is used
to complete the trace to the initial state to find the starting point.
The amount of model used gives the elapsed time. As new data
from the time series are incorporated, the trace is more repre-
sentative and the fitting of the model is more accurate. This
procedure allows us a more accurate estimation of the time
elapse than when only one observation is available.

The anticipation of future events enables farmers to organize
campaigns in an optimized way and maximize the yield. Once
the current stage is identified in the transition model, it can be
used to predict any future stages. Indirectly, this provides infor-
mation about the time remaining before an event occurs. In such
an approach, the temporal prediction is made in “open loop,”
so as new images are available they can be used to correct the
estimation. Due to its importance for rice crops, an example of
this procedure for the date of panicle initiation (BBCH 30) is
considered here.

IV. RESULTS

This methodology was tested with rice crops located in
Sevilla (Spain), using a stack of 11 HH/VV dual-polarization
X-band images acquired by TerraSAR-X in 2009 at 30◦ of inci-
dence angle, and with a resolution of 6.6 and 2.3 m in azimuth
and ground range, respectively [4]. The dynamic model used
was presented in [5] and is valid for this configuration mode
and for the same crop management. In addition, ground truth

Fig. 3. BBCH estimates and ground truth values in the 2009 cultivation
campaign versus days from sowing. Black line represents BBCH estimation.
Blue square represents ground truth. Blue line represents ground truth linear
interpolation.

data are available at parcel scale. First, current phenology is
retrieved to show the advantages of employing a PF approach
instead of the EKF. Then, the estimation of the date for two key
events, i.e., sowing and panicle initiation stage, are presented to
show the potential of this technique to be applied in precision
farming.

A. Phenology Estimation

Fig. 3 shows the estimation results for one of the moni-
tored parcels. The result is compared with the available ground
truth. At any date, the estimate is taken from the most likely
value of the posterior pdf defined in (1). There is a good agree-
ment between estimates and ground data, but we can identify
two zones in which estimates are clearly different from the
ground truth data. As aforementioned, the first step of the
estimation consists of a uniform distribution of particles over
the state space (see initialization step in Table I), since prior
information is not available. Consequently, the estimation dur-
ing the first states presents larger errors. However, as soon as
new images are incorporated the accuracy of the estimation
increases, thanks to the convergence to the real value. The
second zone in which results differ from ground truth occurs
between BBCH 30 and 50. This phenological range presents
the strongest nonlinear behavior in the model. At this point,
after the posterior pdf’s have been obtained (step 3 in Table I),
the most likely value is projected over the model to provide an
estimation of the current phenological stage. The projection in
this zone of the model is more likely to provide an incorrect
estimation because the stages before and after stage 4 are very
close to each other (see Fig. 2).

To show the benefits involved when the PF approach is
used, in contrast with the EKF method, both algorithms are
tested for the phenological estimation process at all available
parcels. To get a measurable difference between them, a con-
fusion matrix is also calculated considering the phenology
estimation as a classification problem. The confusion matrix
shows the coincidences or agreements between the predic-
tions (rows) and the ground truth values (columns) for a set
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TABLE II
STATISTICS OF THE BBCH RESULTS WITH EIGHT PHENOLOGICAL INTERVALS USING PF

0–15 16–27 28–34 35–49 50–59 60–84 85–100 Totals User’s Accuracy

0–15 %00169
16–27 %5.7861412
28–34 %08514
35–49 %57862
50–59 %05422
60–84 1 6 2 9 66.6 %
85–100 4 4 100 %
Total 11 14 6 9 3 6 6 55

Producer’s Accuracy 81.8 % 100 % 66.6 % 66.6 % 66.6 % 100 % 66.6 % Total:81.81%

Kappa: 0.7874

TABLE III
STATISTICS OF THE BBCH RESULTS WITH EIGHT PHENOLOGICAL USING EKF

0–15 16–27 28–34 35–49 50–59 60–84 85–100 Totals User’s Accuracy

0–15 %8.181129
16–27 %5.452235212
28–34 %3.333111
35–49 %08514
50–59 %0101
60–84 2 4 2 8 50 %
85–100 2 4 6 66.6 %
Total 11 15 6 9 3 6 6 55

Producer’s Accuaracy 81.8 % 80 % 16.6 % 44.4 % 0 % 66.6 % 66.6 % Total:58.2%

Kappa: 0.5393

of phenological intervals. Along the main diagonal one finds
the correct estimations (the estimation and the ground truth
are in the same stage), so high values in the main diagonal
with respect to off-diagonal positions mean that the estima-
tion process is accurate. To interpret correctly the numbers in
these tables, we provide here an example. In Table II, a total
of 11 ground truth samples are in the BBCH range 0–15 (first
column). Then, in the estimation process nine of them were
correctly estimated (first row), and two were wrongly assigned
to the next range of BBCH values (second row). To quantify
the validity of the results, two different accuracy values are
usually defined: producer’s accuracy and user’s accuracy. For
a given set of samples in the ground truth data (a column),
producer’s accuracy provides the percentage of them that were
classified correctly. On the other hand, for a set of samples in
the estimates (a row) user’s accuracy yields the percentage of
the correctly classified. Finally, the kappa index reflects the dif-
ference between actual agreement and the agreement expected
by chance, so high values (close to 1) mean results better than
by chance alone (close to 0). Table II shows the results using the
PF approach, and Table III the results using the EKF approach.
In both cases, we use the same set of seven intervals of pheno-
logical stages. In the case of the PF, the kappa value improves
46% with respect to the value obtained with the EKF. This is
mainly due to the zones in which the model is strongly nonlin-
ear and a rapid trend change is present (i.e., around BBCH 40).

In such a situation, the linearization made by EKF technique
is very poor to fit the evolution and cannot provide a good
estimation, hence the error increases. Note that a value of
kappa = 0.78 is regarded as a substantial agreement, whereas
kappa = 0.53 corresponds to a moderate agreement [31].

In the approach presented here, as in [5], the observation
noise may not be completely modeled. To test the consequences
for both approaches (EKF and PF), a simulation in which the
noise distribution was distorted in the input data has been car-
ried out, generating a new set of simulated observations. After
applying the PCA the most likely state keeps the same value,
but new zones acquire relevance by the noise effects. Fig. 4
shows the projection of the observation pdf over one dimen-
sion (a state variable) and the same pdf with the simulated
observation noise. With these conditions the PF can provide a
more reliable estimation than the EKF. The reason is that the
PF can consider all the potential zones by drawing particles in
all potential states, but the EKF cannot work with multimodal
pdf’s. Fig. 5 shows the phenological estimation using the PF,
the EKF, and the ground truth. When input data are noisy, and
also the model has a strong nonlinearity, like around BBCH 40,
the EKF is unable to follow the evolution to provide a good
estimation.

Fig. 6 shows the estimation results at pixel level for a sin-
gle parcel, using the BBCH ranges employed in the previous
confusion matrices. The first three images show a completely
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Fig. 4. Projection of the pdf of one observation over one dimension of state
space. Blue line is the observation without noise added. Red line is the
observation with noise added.

homogeneous estimation, since stages 1–27 are contained in
a wide zone over the transition model (from stage 0 to 3 in
Fig. 2). Afterward, there appear some heterogeneities, mean-
ing that there exist pixels at diverse phenological stages within
the same acquisition date. These pixels can evolve at different
rates but all of them follows the same signature. These evo-
lution differences make the prediction step less accurate but
the observation step allows to minimize the impact over the
estimation. In case the prediction is very inaccurate (a wider
pdf), the estimation is limited by the observation accuracy. The
last two phenological intervals, which dominate in the last four
images, are the most mixed for the same date, as it was expected
from their proximity in the state space (see stages 6 and 7
in Fig. 2).

Finally, in order to provide a visual insight of the potential
of this approach, the estimation approach was applied to a large
set of parcels (786 in total) for which information on the sow-
ing date and harvest date was available. In Fig. 7, the values
obtained at the time of the 11 acquisitions are represented in
the form of colour maps. Although there was not ground truth
available over these parcels for validation, and the model gen-
eration was carried out with information from only six parcels,
this result shows a monotonic and spatially coherent evolution
over the whole area, hence confirming its potential.

B. Estimation of the Date of Key Events

1) Sowing Date: Tables IV and V show the absolute errors
(in days) that are made on the sowing date estimation for two
different parcels. Series of up to 10 images are used to test this
application. The acquisition dates, relative to the date of sow-
ing, i.e., days after the sowing date (DaS), are indicated in the
first row. The row index refers to the first image used in the esti-
mation process, and the column index represents the last image
used to compute the sowing date. For instance, for parcel A
(Table IV) the element on row 1 and column 5 shows that the
error is 1 day when the estimation is made with image 5 com-
bined with the past information, given by the last four images.
The main diagonal contains the estimation error when previous
information is not used, i.e., with a single acquisition. In this sit-
uation, considering the results of both parcels, the error ranges

Fig. 5. Phenological estimation vs days regarding sowing when the observation
has large distortion. Black line represents ground truth. Blue line represents
particle filter estimation. Red line represents EKF estimation.

between 87 days in the worst scenario and 1 day in the best one
(the closest state to the sowing day).

The noise of the observation is modeled by only taking into
account the polarimetric speckle noise. Hence, other sources
of noise are being dismissed. Zones with non modeled noise
may produce larger deviations in the estimation, e.g., column 9.
The PF allows us to reduce this effect significantly when a new
image with low noise is available, for example the transition
between column 9 and 10. Moreover, this improvement can be
observed between images 4 and 5 on row 3, or images 6 and 7
on row 4 (Table IV). On the other hand, in some cases more than
two images are necessary to guarantee an accurate estimation.
The situation is shown in row 4. This is mainly due to the high
nonlinearity and the large variance in this part of the model,
and also because the observations exhibit their highest variance
values. However, the results of parcel B (Table V) show much
better estimates. For instance, estimates with only two images
are much better for this parcel.

In this example, we have not made any assumption
about the stage of the crop before the first observa-
tion is considered in the estimation. Therefore, in order
to know the current phenological stage, when the first
observation arrives, the observation is directly pro-
jected over the model (as explained in Section III-B).
As aforementioned, these results, obtained by a direct projec-
tion, are contained in the main diagonal of Tables IV and V.
In most cases, the induced errors are large because only the
projection is used, so they depend on the accuracy of a single
observation. Between DaS 65 and 88 (columns 5–7), the pro-
jection over the model is very precise and the result is accurate
enough with only one observation. Improving the estimation
using more observations is not possible due to the high variance
of the model in these areas. In consequence, in this range of
days, observations present a high weight in the filtering pro-
cess, producing similar results employing a single observation.
On the other hand, it is possible to reach a situation for which
the errors are so large that we cannot recover. For these two
particular parcels, this situation is found at image 8, from which
the estimated dates are no longer precise. The error cause is the
method employed to estimate the current phenological stage:



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 6. Phenological estimation results obtained over the test parcel at pixel basis with the proposed methodology. The index indicates the images sequence. The
first was acquired 12 days after sowing. The time between images is 11 days.

Fig. 7. Maps with the phenological estimation computed over 786 parcels in the area at 11 acquisition dates. The time between images is 11 days. NS means that
the parcel was not sown yet at that date.

the projection fails to distinguish between starting states (1 and
2) and ending states (6 and 7) because they are very close in the
model (see Fig. 2). An incorrect projection causes that when
the next image is available (image 9) the prior pdf given by the
transition model is not overlapped with the pdf given by the
observation. Consequently, the posterior pdf cannot be defined
and an uniform redistribution of the particles is necessary (step
1 in Table I). The same situation is repeated for images 9 and
10. This is the reason why it is not possible to have a good
estimation when the first input data is after DaS 100. This issue
can be solved by simply dividing the model into two sections
to apply the projection. The first section, for instance, could be
defined from state 0 to 3, and the second from state 4 to 7 (see
Fig. 2). After projecting and applying the transition model,
each section gives different prior pdf’s. Considering the case in
which there is an overlap between prior and observation pdf’s,
an accurate estimation starting at any image could be provided.

Finally, the improvement achieved in the estimation when
a set of images is employed, instead of a single acquisition,
can be observed by comparing elements of the main diagonal

TABLE IV
ERROR (IN DAYS) OF THE SOWING DATE ESTIMATION FOR PARCEL A

DaS 21 32 43 54 65 76 87 98 109 120
Image 1 2 3 4 5 6 7 8 9 10
1 2 5 4 1 1 3 3 9 8 1
2 6 5 6 1 3 3 8 8 1
3 30 34 1 4 3 7 8 1
4 32 21 21 8 8 8 1
5 2 4 4 7 8 1
6 4 3 7 8 1
7 4 9 9 1
8 65 78 84
9 77 83
10 81

with off diagonal elements. Extremely noisy input data could
produce inaccurate estimates, as e.g., at image 4 in Table IV.
The error in the estimation is about 32 days (row 4, column 4)
when previous information is unknown, but using the pro-
posed methodology the error decreases down to 1 day (row 1,
column 4).
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TABLE V
ERROR (IN DAYS) OF THE SOWING DATE ESTIMATION FOR PARCEL B

DaS 22 33 44 55 66 77 88 99 110 121
Image 1 2 3 4 5 6 7 8 9 10
1 1 2 1 2 2 6 1 0 8 1
2 3 1 2 2 6 1 0 9 1
3 3 2 2 6 1 1 8 1
4 12 4 2 2 1 9 1
5 5 8 0 0 9 1
6 7 1 0 8 1
7 2 0 9 1
8 65 78 86
9 76 83
10 87

Fig. 8. Map and histogram of the error in the estimation of the sowing day for
a set of 786 parcels, obtained by using the first four SAR acquisitions.

To further evaluate the accuracy of the sowing date estima-
tion process, the complete set of 786 parcels was also used for
validation. The results are shown in Fig. 8. Date estimates are
obtained by using the first four SAR images. Each color rep-
resents a range of error in days and the percentages of parcels
in each range are presented also in the picture. Negative values
mean that the estimated date is before the actual value, whereas
positive values mean it corresponds to later dates. It must be
emphasized that we are estimating the sowing date of 786 plots
using a model that was created with information from only six
plots [5]. Even so, we have obtained a very good accuracy: the
absolute error is less than 5 days for 50% of the parcels and less
that 10 days for 85% of them. If the number of plots used to
build the model were increased, it is expected that the accuracy
in the estimation process would increase because the average
behavior of them would be better defined. The fact that these
accuracies are achieved with so few samples is an evidence of
the potential of the methodology.

Fig. 9. Error (in days) in the estimation of the date in which rice reaches stage
BBCH 30 (panicle initiation) for different parcels, represented by different
colours. The vertical axis shows the estimation error in days, and the horizon-
tal axis indicates the DoY when the acquisition was made. The vertical dashed
lines represent the DoY in which each crop reaches BBCH 30 according to the
ground truth.

2) Date of Panicle Initiation Stage: The final set of results
corresponds to the predictions of the date in which crops reach
the panicle initiation stage. Fig. 9 shows the results obtained for
the six individual parcels with ground data, represented with
different colours. The estimated error is depicted in the verti-
cal axis and represents the difference in days between the date
given by the ground truth and the estimated date. The horizontal
axis shows the day of year (DoY) in which the acquisitions (and
hence the estimations) were made. The vertical dashed lines
indicate the dates in which each parcel reaches the BBCH 30
according to the ground truth. The first acquisitions available in
the data set are around 10 days after the sowing date. A total
of up to five images are employed to predict the moment in
which stage 30 is reached. The first predicted dates (around 50
days before) exhibit the worst values, as expected, with errors
greater than 5 days in most cases. Each time a new image is
incorporated (every 11 days) the error decreases, even in the
parcel represented in black, for which the nonmodeled noise
has the strongest influence. All parcels show an improvement
when temporal sequences are used in the estimation process.
The results obtained from 40 days before the panicle initiation
date onward show differences of only 3 days in average, and not
larger than 5 days in most cases. Therefore, the estimation of the
date associated with the panicle initiation stage shows that the
PF is a robust method to predict dates of future phenological
stages.

V. CONCLUSION AND DISCUSSION

In this paper, the advantage of the particle filter, over other
filtering techniques like the EKF, is demonstrated in estima-
tion applications relative to precision farming. It is much more
robust to noisy measurements and nonlinear evolutions, mak-
ing this method a better tool to obtain the required results. Two
main applications have been tested: retrieval of current pheno-
logical stage and estimation of dates of particular crop events,
like sowing and initiation of panicle. Phenology tracking has
been improved with this technique, and the contribution of time
series of data has been studied.

The sowing date was estimated with an error that is less than
1 day in parcels that are well characterized by the model. The
estimation was also carried out over 786 parcels using a model
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that was created with the information of only six parcels. In
this case, we achieve errors lower than 5 days in the estimation
process for 50% of the parcels, and less than 10 days for 85%
of them.

This technique also enables the prediction of the date of
future events. For instance, it has been shown that it is possi-
ble to get a prediction 40 days before the panicle initiation date
with an error of only 3 days on average.

To ensure proper estimations, the model must be built with
homogeneous fields. Plots producing a signature very different
from the model can be identified, so this approach would pro-
vide an indicator that the plot is not developing properly and
would help to alert farmers. According to our methodology, the
model characterizes crops with the same management practices.
To apply this approach to crops with different farming practices,
it would be necessary to build a new model representing each
typical crop development in the site.

Ongoing work is addressed to test the methodology over
other types of crops. Moreover, results have to be evaluated
as a function of the available revisit time. In case of exploit-
ing polarimetric data, the influence of incidence angle and the
available polarimetric space (i.e., dual-pol and compact-pol)
will be analyzed. Such a study is of interest in view of the
next availability of data from new missions like Sentinel-1 and
ALOS-2. Finally, since the methodology allows us to combine
input data from different sources, another promising line of
research would consist in combining optical and SAR data in
order to generate more accurate estimations.
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