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Abstract : 
 
A new approach to retrieve sea surface wind speed (SWS) in tropical cyclones (TCs) from the 
Advanced Microwave Scanning Radiometer 2 (AMSR2) data is presented. Analysis of all six AMSR2 C- 
and X-band channel measurements over TCs is shown to efficiently help to separate the rain 
contribution. Corrected measurements at 6.9 and 10.65 GHz are then used to retrieve the SWS. Spatial 
and temporal collocation of AMSR2 and tropical rain measurement mission (TRMM) microwave 
instrument (TMI) data is then further used to empirically relate TMI rain rate (RR) product to RR 
estimates from AMSR2 in hurricanes. SWS estimates are validated with measurements from the 
stepped frequency microwave radiometer (SFMR). As further tested, more than 100 North Atlantic and 
North Pacific TCs are analyzed for the 2012–2014 period. Despite few particular cases, most SWS 
fields are in a very good agreement with TC center data on maximum wind speeds, radii of storm, and 
hurricane winds. As also compared, very high consistency between AMSR2 and L-band SMOS wind 
speed estimates are obtained, especially for the super typhoon Haiyan, to prove the high potential of 
AMSR2 measurements in TCs. 
 
 

  
1. Introduction 

 
Today the data for ocean winds are provided by different marine, aircraft, and satellite platforms with 
different accuracies and limitations. Remotely sensed measurements from passive and active 
microwave instruments ensure global wind mapping capabilities. Advantages and limitations of such 
measurement techniques in severe weather are often discussed, especially to improve knowledge of 
surface wind speeds (SWS) in hurricanes and typhoons [1]–[4]. As reported, active microwave co-
polarized backscatter signals of currently operating instruments (e.g., C-band Metop/ASCAT) saturate 
under hurricane force winds [5] and is 
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heavily affected in the presence of high rain rates, ensuring an increasing role of microwave radiometry. 

More recently the potential of the cross polarized radar signal to sense hurricane winds was however 

demonstrated [6]–[8]. The study [9] describes the improvements in the QuikSCAT hurricane winds that 

might be reached by accounting for the rain attenuation and scattering. Yet, the implementation of this 

method requires simultaneous rain rate data. As already long been established [10]–[12], whitecaps, streaks 

and various associated foam structures at the ocean surface significantly contribute to increase the microwave 

emissivity of the sea surface. This emissivity increase is observable even when a very small portion of the sea 

surface is covered by foam formations. Contrarily to scatterometer signal, the radiometric signal does not 

saturate at high winds providing the potential for foam property and surface wind speed retrievals using 

passive microwave observations [1], [10], [13], [14]. Moreover, the sensitivity of microwave brightness 

temperature tends even to increase for the winds above 15 m/s [15]–[17]. 

Until the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009, most orbiting 

microwave radiometers operated at frequencies higher or equal to C-band. Measurements from Special 

Sensor Microwave Imager (SSM/I), Special Sensor Microwave Imager and Sounder (SSMIS), Tropical Rain 

Measurement Mission (TRMM) Microwave Instrument (TMI), Advanced Microwave Scanning Radiometer 

(AMSR), AMSR-E and WindSat are used to retrieve atmospheric and oceanic parameters such as cloud 

liquid water, water vapor, wind speed, rain rate, and sea surface temperature. AMSR-E onboard Aqua 

satellite stopped working in October 2011 but AMSR2 onboard GCOM-W1 satellite, launched in may 2012, 

ensures continuity. At C- and higher frequency bands, at which these instruments are operating, atmospheric 

absorption, emission and scattering associated with high cloud liquid and ice water content and intense 

precipitations in tropical cyclones (TCs) have large impacts on the brightness temperatures. Microwave 

radiation at L-band is almost transparent to atmosphere [18] and with negligible impacts of precipitation and 

water clouds with respect those reported at higher frequency bands. L-band ocean emissivity is less sensitive 

(by about a factor 3) to sea surface state changes at high winds than at the higher C- and X-band microwave 
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frequencies but as demonstrated in [13], the data from SMOS mission operating at L-band can be 

successfully used to retrieve ocean surface winds under rain in severe weather conditions. 

Though satellite passive microwave techniques to retrieve oceanic and atmospheric parameters under non-

rain conditions are well established [19], [20], measurements of the oceanic parameters under rain conditions 

are still a challenge [21]. In [22] an approach is suggested to estimate surface winds from the WindSat data 

using the calculation of the atmospheric transmittance. Yet, this approach was shown in [22] to be 

unsuccessful under TC high wind and rain conditions. The physics of the sea surface remote sensing is not 

understood completely under severe weather conditions including high winds and precipitation. Intensive 

rains both shield the ocean surface and change the ocean surface emissivity in a complicated manner. Rain 

affects on the sea surface roughness through the downdrafts, altering surface wave spectrum, and impinging 

on the surface producing splashes and generating turbulence in the upper water layer [23]. Moreover, recent 

studies indicate the strong correlation between high rain rates and high wind speeds in the areas encircling TC 

eyes [24]. This complicated air-sea interaction is hard to be theoretically modeled especially for such extreme 

events as TCs combining the strongest precipitation and hurricane-force winds leading to appearance of 

whitecaps, foam streaks and spray layer [13], [25].  

The microphysical processes describing the growth, decay, and fallout of precipitation particles within 

TCs are very complicated, different in eyewall clouds and in rainbands, and may fast change in time during 

TC development [26]. Beside liquid water drops, various forms of frozen hydrometeors may compose the 

microphysical structure of TC clouds. For example in [27], the microphysical package, used in the TC 

numerical model, features 12 hydrometeor habits, including cloud droplets, rain, cloud ice and different forms 

of graupel, snow and hail. Some of these habits due to their large sizes affect the radiances at C- and X-band 

microwave frequencies. Thus, though many algorithms have been developed to measure ocean surface wind 

speeds with an accuracy of about or less than 1 m/s for non-rain conditions [28]–[30], most of them break 

down completely if even only light rain is present.  
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In principle, sea surface wind speed retrievals in hurricanes under rain are possible if one can assume that 

the brightness temperatures are far from saturation. Numerical modeling shows that this is true for rain rates 

up to 20-30 mm/h for C and X-band channels [31]. Non saturated brightness indicates that the radiometer can 

sense the ocean surface changes even under rain and the measured signal can be used to derive its properties. 

The practical implementation of C and X-band channel measurement usage for SWS retrievals under rain 

from WindSat data is presented in [21]. In that study an empirical SWS algorithm, exploring C and X-band 

channel measurement data, is developed using WindSat data, collocated with H*Wind fields considered as 

quasi ground-truth data [32]. The major problem concerns the separation of the ocean radiation from that of 

precipitating atmosphere. Such a separation is possible when the brightness temperature signals at different 

frequencies are available, whose spectral signatures make it possible to find the channel combinations that are 

sensitive to wind speed, and significantly less sensitive to rain. Such a technique has been explored 

successfully for wind speed retrieval from the Stepped-Frequency Microwave Radiometer (SFMR), which 

operates at six close C-band frequencies from ~4 to 7 GHz [16], [33] The data from the NOAA SFMR are 

considered to be among the most accurate marine wind observations for hurricane winds [34]. This becomes 

a much more difficult task when considering orbiting radiometers such as AMSR-E, or WindSat, which 

probe the Earth at several frequencies but in clearly separated bands, with each channel having very distinct 

geophysical dependencies on various atmospheric and oceanic parameters. 

The new Japan passive microwave instrument AMSR2, launched in May of 2012, has four C-band 

channels at the frequencies of 6.925 and 7.3 GHz [35]. This instrument features improved calibration with 

respect AMSR-E and a higher spatial resolution due to larger antenna diameter. The addition of two new C-

band channels was initially intended for the radio frequency interference (RFI) pixel identification. But they 

might be also explored the same way as in SFMR, since the signal at close frequencies has similar sensitivity 

to the sea wind speed but differs in sensitivity to rain by about 12%. In this study this new possibility to 

retrieve sea surface wind speed under rain in hurricanes is studied through the analysis of AMSR2 brightness 
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temperature (TB) fields over TCs, using some assumptions concerning TB dependencies on atmospheric and 

oceanic parameters.  

Many investigators have been studying the sensitivity of brightness temperatures to cloud and rain 

microphysical properties for the application to passive microwave remote sensing from satellite [36]–[39]. 

These studies rarely concern C- or X- band frequency measurements since these bands are typically used for 

the ocean parameter retrievals, the atmosphere being significantly more transparent for the radiation at these 

lower microwave frequencies. 

Simulation of the microwave brightness temperatures over the oceans as functions of frequency [31], [39], 

[40] shows that in general, the brightness temperatures increase towards a maximum and then drop off due to 

scattering as rainfall rate (RR) increases further. The range of RRs for TB increase (emission/absorption 

range) depends on the microwave frequency and the hydrometeor size distribution. The larger the frequency, 

or the percent of large particles at the same rain rate, the more important role the atmospheric scattering 

plays. TB at lower frequencies including C- and X-bands tends to increase through much of the rainfall range, 

thus, making them suitable in modeling for emission type schemes. TB at higher frequencies saturates quickly 

and decreases for much of the rainfall range [31], [41].  

In tropical cyclones, rain intensity, the presence of large drops in the raindrop-size distribution, and hail 

dominantly contribute to the brightness temperature signal measured at X-band and even at C-band.  These 

contributions from rain can mask the ocean surface signature through either saturation or even cooling (due to 

scattering) of the brightness temperature.  

The approach to separate rain-induced TB from non-rain atmosphere-ocean system TB, presented in this 

paper, is based on the analysis of AMSR2 measured TB fields over TCs. The proposed technique relates 

AMSR2 brightness temperature differences at C- and X-band channels at vertical polarization to rain 

microwave radiance and is described in section II. After subtraction of the rain radiance from the total TBs the 
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residual TBs are supposed to be appropriate as the inputs for the non-rain SWS AMSR2 retrieval algorithm 

developed earlier [42]. 

SWS have been estimated for 110 Atlantic and Pacific TCs intercepted by AMSR2 swath over the period 

2012-2014 and further compared to the data from the Japan Meteorological Agency, archived by the Joint 

Typhoon Warning Center (JTWC), and the NOAA's Hurricane Research Division (HRD), processed by the 

Atlantic Oceanographic & Meteorological Laboratory (AOML). In section III, SWS and RR retrieved fields 

are presented for some of TC cases in comparison with other available satellite products. In section IV, 

AMSR2 retrieved wind speeds are further compared with those retrieved from SMOS [13] for some specific 

TC cases, including the super typhoon Haiyan that devastated Philippines in 2013. Further validation of the 

approach is done by means of the comparison of AMSR2 winds with SFMR data for two flights over TCs.  

II. METHODOLOGY 

A. AMSR2 SWS rain free retrieval algorithm 

An AMSR2 rain-free sea surface wind speed retrieval algorithm was developed and extensively validated 

earlier [42]. This is a physical algorithm based on the numerical simulation of the microwave brightness 

temperature of the atmosphere-ocean system under non-precipitating conditions. In [42] two separate 

AMSR2 SWS algorithms are considered. The first algorithm uses AMSR2 six brightness temperatures TB at 

the AMSR2 frequency channels 18.7, 23.8 and 36.5 GHz, horizontal and vertical polarization (higher 

frequency algorithm). The second one (lower frequency (LF) algorithm) uses four brightness temperatures at 

the lower frequency channels: 6.9 and 10.65, horizontal and vertical polarization. Both algorithms use 

simulated microwave radiances and Neural Networks (NNs) approach to create inversion operators for the 

algorithm derivation. The simulation is based on the version of the geophysical model that includes empirical 

ocean emissivity and atmospheric absorption models taking into account the emission and absorption of 

oxygen, water vapor and cloud liquid water [43]. For the construction of the data set of simulated TB and 
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wind speeds, computer simulations of the brightness temperatures were carried out for the input data set of 

more than 2500 collocated atmospheric and oceanic in-situ data, representing the global spectrum of the 

atmospheric and oceanic conditions. These simulations were fulfilled for the frequencies, polarization, 

sensitivity, and sensing geometry of the AMSR2 instrument. NNs were trained for SWS retrievals after 

adding a radiometric noise with 0.5 K equivalent temperature to the simulated TB values. Before application 

to actual measurement data special adjustment of simulated brightness temperature values to measured ones 

were done as described in [43]. 

The algorithms are based on a radiative transfer model valid for non-precipitating conditions and therefore 

involve specifically developed atmospheric filter to mask rain pixels [44]. Both higher frequency and lower 

frequency algorithms were extensively validated against in-situ measurement of wind speed data from oil 

platform stations in the North Sea and Norwegian Sea, including high wind events. 

This study explores the LF rain-free algorithm since here an attempt is undertaken to retrieve SWS under 

rainy conditions. The approach successively consists in i) estimation of the rain contribution to the total 

microwave emission, ii) correction of rain effects on the latter, and (iii) application of the rain free algorithm 

to the residual TB. We used rather simplifying assumptions (detailed in the next section) not valid for 

frequencies higher X-band. 

B. Rain TB empirical estimation. 

To derive empirical estimation of rain TB over TCs, the AMSR2 TB fields have been analyzed for 18 cases 

of typhoons. AMSR2 Level 1B swath brightness temperature data have been supplied by the GCOM-W1 

Data Providing service, Japan Aerospace Exploration Agency. The spatial resolution of TB varies depending 

on the channel frequency but the grid spacing is the same - 10 km10 km - for all the channels except 2 

channels at 89 GHz for which it is 5 km5 km. Thus, AMSR2 Level 1B TB data at C- and X-band channels 

are provided on the same irregular grid [45]. The actual resolutions of AMSR2 C- and X-band channels are - 
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35 km62 km for 6.9 GHz, 35 km62 km for 7.3 GHz, and 34 km58 km for 10.65 GHz channels. In fact, 

due to the horn location differences the brightness temperatures of different frequencies, even stored in the 

same pixel, are measured in different areas. In case of large atmospheric or oceanic inhomogeneity the usage 

of these brightness temperatures as inputs in parameter retrieval algorithms decreases the retrieval accuracy. 

To compensate for the different channel resolution AMSR2 L1R product of resampled to a common 

resolution brightness temperatures is now available. Its usage will reduce the retrieval errors associated with 

different spatial resolution of the channels. From the Digital Typhoon database 

(http://agora.ex.nii.ac.jp/digital-typhoon/), we selected only those typhoons for which the radii of the 

hurricane-force winds were reported (by JTWC) to be axis-symmetric and where we found non-precipitating 

along with rainy areas observed at the same distance from the typhoon center. These criteria are necessary for 

the attempt to isolate the rain portion of C- and X-band measured brightness temperature over the ocean from 

the other portion including the ocean radiation and the radiation of the atmosphere without rain. To separate 

the two contributions, we considered the microwave radiation of the atmosphere-ocean system taken over the 

footprints located at equal distance from the typhoon centers. Accurate typhoon center locations have been 

determined using MODIS high resolution data with only few minute time differences with AMSR2 

acquisitions. The MODIS Level 1B Calibrated Radiances used in this study were acquired as part of the 

NASA's Earth-Sun System Division and archived and distributed by the MODIS Adaptive Processing System 

(MODAPS). This data set contains several products of different resolution. MODIS Level 1B 250M Earth 

View data product for MODIS bands 1 and 2 at 250 meter resolution has been used [46]. The coordinates of 

the cloudless center of the cyclone were determined from the MODIS images. Then they were shifted 

according to the differences in time between AMSR2 and MODIS measurements and the cyclone movement 

velocities as it was done in [47]. The general assumption is that for TCs with symmetric radii of hurricane 

force winds, (JTWC information) the variation of the microwave radiance due to wind changes at the same 
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distance from the center is negligible with respect to that of induced by rain rate variations. Two examples of 

such cases are shown in Fig. 1 and Fig. 2. 

Fig. 1 shows the brightness temperature fields measured by AMSR2 at 10.65 GHz, vertical polarization 

over the typhoons Haiyan (a) and Danas (b). Black circles are plotted at a radius of about 200 km for Haiyan 

and 110 km for Danas. In [48] the convective and rainfall properties of tropical cyclones are summarized 

based on the 11 year analysis of high resolution TRMM Precipitation Radar data. Common precipitation 

features are found for tropical cyclones. Most of the tropical cyclones at different intensity stages exhibit an 

inner core (IC) region, including either complete or incomplete eye walls, and for storms without an eye the 

near-center is still an intense convection zone. The inner rain band (IB) region includes banded or bloblike 

precipitation immediately outside of the IC boundary. It usually extends from the IC boundary outward about 

100 km, and is bounded on the outside by a rain free region adjacent to the outer rain band. According to this 

classification, most part of the circles in Fig. 1 goes over the inner rain band (IB) region whereas some part 

(at least, the arcs A and B, marked with thick dark green line) covers typical for IB rain free region adjacent 

to the outer rain band. Fig. 2 shows TB fields for the same typhoons measured by AMSR2 at 89 GHz, vertical 

polarization. TB values at this high frequency channel are equal approximately 280K for the arcs A and B. 

These values, along with the whole TB field around, indicate the absence of ice or rain scattering (contrarily to  

the eyewall and spiral rainband areas which exhibit much lower Tb values), and even TB saturation at 89 GHz 

is not reached for these areas. 

We assumed absence of rain for the arcs A and B (and similarly for selected arcs chosen for a total of 

18 typhoon cases that were analyzed), so that the brightness temperatures measured over these areas at 6.9 

GHz, 7.3 GHz, 10.65 GHz, vertical and horizontal polarizations, are the TBs of the ocean and atmosphere 

without rain. These TBs will be denoted further as TB6
V

0, TB6
H

0, TB7
V

0, TB7
H

0, TB10
V

0, TB10
H

0 correspondingly. 

Along the cloudless arcs A and B the range of brightness temperature changes is very small, within 0.5 K for 

C-band TBs and within 1.5 K for X-band TBs. The next step is then to find the rain contribution to TBs for 
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those channels which are used in the sea surface wind speed AMSR2 LF retrieval algorithm (these 

constituents will be denoted as TB6
V

R, TB6
H

R, TB10
V

R, TB10
H

R) and express them in terms of some measured 

values so that then one could subtract TB6
V

R, TB6
H

R, TB10
V

R, TB10
H

R from the total measured radiances and 

apply the algorithm as if there were no rain. 

Analyzing brightness temperatures from the measurement pixels along the circle of equal distance 

from the typhoon center we make several assumptions. First, we suppose that for defined circles of equal 

distance from the typhoon center cloud liquid water content and atmospheric water vapor content variations 

influencing TB in C- and X-bands are negligible comparatively to rain drop parameter variations (drop size, 

form and their distribution in the vertical profile and over the footprint). Strictly speaking this is not correct. 

But the influence of total atmospheric water vapor content (TWV) and cloud liquid water content (CLW) on 

TB in C- and X-bands is considerably lower than on TB at higher frequency channels. Numerical simulations 

show that the increase in TWV of as large as 10 kg/m2 will lead to AMSR2 TB increase of 0.4 K in C-band 

and 1 K in X-band TB measurements at vertical polarization. The increase in CLW of 0.5 kg/m2 will lead to 

TB increase of 2 K in C-band and 6 K in X-band values also at vertical polarization. This is much less 

than the expected signature from precipitation parameter variations [23]. 

The second assumption concerns the wind speed variations along the circles and their influence on TB. 

These variations cannot be priori considered negligible. The surface wind field can be asymmetric, and the 

wind speed differences at the radius of maximum winds (RMW) can be as large as 3 – 10 m/s. Out of the 

hurricane-force radii the surface wind asymmetry is about 30% lower than at RMW [50]. But the wind 

dependency in C- and X-bands is very similar. So to some extension the differences in measurements 

TB
V

7,6 = TB7
V - TB6

V and TB
V

10,7 = TB10
V - TB7

V, estimated along the circle of equal distance from the center 

of the typhoon, can be considered independent of the sea state and dominantly functions of the rain 
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properties. The differences in measurements at horizontally polarized channels are not considered here due 

to their larger dependency on wind speed changes than for vertically polarized channels. 

To summarize, we express the brightness temperature TB over the rainy part of the circles as a sum of 

two components: brightness temperature of the non-rain atmosphere and ocean TB0 and brightness 

temperature of rain TBR. To find TBR, we assume constant value for TB0 along a circle. To estimate the errors 

introduced by the last approximation we performed numerical calculations of the brightness temperatures of 

the atmosphere – ocean system using the geophysical model developed in [43], complemented by liquid 

water content absorption and rain rate attenuation parameterized in accordance with [51]. 

In its simplified form, the radiative transfer equation (RTE) for the brightness temperature of the 

atmosphere – ocean system can be written as: 

)()()(cos zTzTz
dz

dT
B

B    
(1)

 

This “absorption only” form of RTE, where the absorption coefficient absorption is replaced by the total 

attenuation coefficient , accounts accurately for the negative effect of scattering and approximately for its 

positive effect due to forward scattering [52]. As well, it does not account for the polarization effect of 

scattering which increases with rain rate and microwave frequency. The solution of the equation (1) is TB, 

which can be presented as a sum of several contributions: 

cSB
down

aB
up

aBB TTTTT 
 

(2)

where  is the upwelling atmospheric radiation,  is the downwelling atmospheric radiation, 

reflected by the sea surface and attenuated further in the atmosphere,  is the sea emitted radiation, also 

attenuated in the atmosphere, and  is the cosmic radiation.  and  can be presented as: 

up
aBT down

aBT

up
aBT

SBT

down
aBcT T
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 


0

'' ))(
cos

1
exp()()(

cos

1
dhdhhhhTT

h

up
aB 




  

(3)

))))(
cos

1
exp()()(

cos

1
()exp()1(

0

'

0

' 


 dhdhhhhTET
h

down
aB 







 

(4)

where T is the atmospheric temperature, E is the sea surface emission coefficient, strongly dependant 

on the sea surface wind speed,  is the atmospheric optical thickness defined as: 

dhh



0

)(
cos

1 



 

(5)

The sea radiation depends on its physical temperature and emission coefficient: 

)exp(  ETT SSB  
(6)

)1()2exp(7.2 ETc    (7)

For the simplified isothermal atmosphere with T(h) = Ts – ΔT = T, where ΔT = 10-15°K is the 

correction for nonisothermity, the upwelling and downwelling atmospheric radiations are equal [53] and can 

be presented as a sum of Ta and TR, where: 

Ra

h

up
aB TTTdhdhhhhTT   

 

)}exp(1{))(
cos

1
exp()()(

cos

1
0

0

'' 





 (8) 

))))(
cos

1
exp()()(

cos

1
()exp()1(

0

'

0

' 


 dhdhhhhTET
h

down
aB 





 = 

)()exp()1()}exp(1{)exp()1( 0 Ra TTETE    

(9) 

where Ta = T τo, TR = T τR, R
  - rain attenuation coefficient, 0

  - atmospheric absorption coefficient.  
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Actually, R represents a liquid water attenuation coefficient consisting of absorption by cloud and 

small rain droplets and of attenuation by large rain drops. In such a case 0
  is an absorption coefficient of 

clear atmosphere (molecular oxygen and water vapor).   

Neglecting Tc due to its smallness (< 2 K) we can now rewrite (2) as 

))(exp())(exp()1()()( 00   RSRRaRaB ETETTTTT  (10)

So, the brightness temperature of the system can be written as a sum of two components: 

 

BAOSBRB TTT 
 

(11)

where TBAOS is: 

)exp()exp()1(   ETETTT SaaBAOS  (12)

and TBR is: 

)exp()1(  ETTT RRBR  
(13)

- the brightness temperature of the rain constituent of the atmosphere, which due to its downwelling 

reflected part is also a function of the sea state. 

The brightness temperature of the system over the arcs A and B TB0 is: 

)exp()exp()1( 00000   ETETTT SaaB  (14)

Assuming a constant value for TB0 along the circle, i.e., assuming TBAOS = TB0, is equivalent to 

replacing actual Ta by Ta0 and actual exp(-(0 + R)) by exp(-0). Making such assumption translates into an 

overestimation of TBAOS. Consequently, calculating TBR as TB (over the rainy part of the circles) minus TB0 

(over the arcs A and B), we underestimate the actual value of the rain radiance. The larger the wind is the 
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larger the underestimation errors are. Numerical calculations have been done to estimate these errors. Fig. 3 

shows the differences between TB0, calculated according to (14), and TBAOS with actual Ta (calculated 

according to (8)) and reduced by a factor of exp(R) ( ), at SWS = 20 m/s, as functions of the rain 

rate R for 6.9 and 10.65 GHz, horizontal and vertical polarization. The calculations have been performed for 

a typical tropical atmosphere. The rain optical thickness has been calculated supposing constant rain rate up 

to 5 km. The values of TWV and CLW equal to 70 kg/m2 and 0.9 kg/m2 respectively. Even such simplified 

calculation allows concluding that large rain radiance estimation errors result from the approximation of the 

constant attenuation along the circles. At the rain depth of 5 km, rain rate of 10 mm/h and sea surface wind 

speed of 20 m/s the errors are as large as 5 K for 6.9 GHz, horizontal polarization, 12 K for 6.9 GHz, 

vertical polarization, 16 K for 10.65 GHz, horizontal polarization and 34 K for 10.65 GHz, vertical 

polarization. SWS increase leads to the increase of these errors. The polarization effect of precipitating 

hydrometeors can also magnify the errors for horizontally polarized radiation. Equation (10) also indicates 

that by trying to separate the rain radiance, we inevitably include in TBR the downwelling part depending on 

the sea state. This also generates errors which nevertheless decrease with higher wind speeds (higher values 

of E) and rain rates (R). Fig. 4 shows the differences in the calculated values of the downwelling part of TBR 

at SWS = 0 m/s and SWS = 40 m/s as functions of the rain rate R at 6.9 and 10.65 GHz, horizontal and 

vertical polarization. At the rain rate of 10 mm/h, 40 m/s difference in the wind speed brings the errors of 

about 2 – 3 K at 6.9 GHz, 5 K at 10.65 GHz, vertical polarization and of about 12 K at 10.65 GHz, 

horizontal polarization. Thus, neglecting wind dependency of TBR leads to much smaller errors than 

neglecting rain attenuation. 

SB
down

aB TT 

Having in mind all the sources of errors due to formulated above assumptions, we can write for the 

brightness temperature of rain: 
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TB6
V

R = TB6
V - TB6

V
0

TB6
H

R = TB6
H - TB6

H
0

TB10
V

R = TB10
V - TB10

V
0

TB10
H

R = TB10
H - TB10

H
0 

(15)

where TB6
V

0, TB6
H

0, TB10
V

0, TB10
H

0– are the TBs of the ocean and atmosphere without rain taken from the arcs 

A, B and the other quantities used in the study: TB6
V, TB6

H, TB10
V, TB10

H– are the brightness temperatures 

measured over the remaining arcs of the circles. 

After estimating TB6
V

R, TB6
H

R, TB10
V

R, TB10
H

R, we parameterized these radiances as functions of the 

differences in vertically polarized measurements between  the two C-band channels of AMSR2 (TB
V

7,6 ) 

and between the C and X-band channels (TB
V

10,7):  

TB6
V

R =a0 + a1TB
V

7,6 + a2TB
V

10,7 

TB6
H

R =b0 + b1TB
V

7,6+ b2TB
V

10,7 

TB10
V

R =c0 + c1TB
V

7,6 + c2TB
V

10,7 

TB10
H

R =d0 + d1TB
V

7,6 + d2TB
V

10,7 

(16)

The derived coefficients ai, bi, ci, di and measured values of TB
V

7,6 and TB
V

10,7 will be used for the 

calculation of the rain radiances for any pixels in all areas of the TCs.  

After calculation of rain brightness temperatures TBR using the differences in measurements in C- and 

X-band channels at vertical polarization TB
V

7,6 and TB
V

10,7 TBR is subtracted from the total measured 

brightness temperatures. Finally, the non-rain SWS retrieval algorithm is applied to the residuals TBs, 

assuming the latter are the brightness temperatures of non-precipitating systems. 
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Note that the assumptions we made cannot be valid for all type of conditions encountered in cyclones, 

particularly at very high rain rates. Moreover, the ocean - atmosphere systems under hurricane conditions 

are complex both in terms of precipitating cloud systems and the ocean state and their interdependencies. 

Intensive precipitation changes both the atmospheric radiative properties and the ocean surface emissivity. 

The last effect is very difficult to model accurately under hurricane-force winds due to extremely 

complicated nature of breaking waves and the various forms of foam and spray layers encountered at the 

ocean surface in extreme conditions [25]. Our derived empirical coefficients, relating rain brightness 

temperature to TB
V

7,6 and TB
V

10,7 might therefore not be valid for the whole range of atmospheric and 

oceanic states encountered in TCs.  

To investigate the impact of the natural variability of these conditions on the robustness of our 

empirical approach, the sets of coefficients ai, bi, ci, di were derived separately for 18 typhoons cases. The 

derived coefficients proved to be very stable for the 18 different cases somehow suggesting the robustness 

of our parameterization under differing hurricane conditions. Nevertheless, for precipitating areas outside 

hurricanes with RR > 15 mm/h, we sometimes obtained unrealistically high SWS values (comparatively to 

Metop ASCAT SWS). Care should be therefore taken in the application of the approach for the general 

conditions and more studies are needed to define the limits of its applicability.  

C. Rain rate estimation. 

Since rain influence on TB at C-band is significantly lower than at X-band [49], the channels in X-band 

are more appropriate for rain parameter estimation. Rain integral parameter – rain rate (RR) – can be related 

to rain microwave brightness temperature TB10
V

R as derived in the previous section. To estimate the 

functional dependency TB10
V

R(RR), we used the RR data from the Tropical Rainfall Measuring Mission's 

(TRMM) Microwave Imager (TMI). TMI data are produced by Remote Sensing Systems and sponsored by 

the NASA Earth Science MEaSUREs DISCOVER Project. Data, their description and supporting software 

tools are available at www.remss.com. TMI is a multi - channel, dual polarized, conical scanning passive 
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microwave radiometer designed to measure rain rates over a wide swath under the TRMM satellite. TMI 

operates on the TRMM satellite in a semi-equatorial orbit, measuring microwave radiation in a wide swath 

of 850 km and covering a global region from 40S to 40N. TMI data are provided as daily gridded data on a 

regular grid with 0.25 degree resolution, separated into ascending and descending orbit segments. RSS rain 

rates are calculated using the algorithm described in [54]. For the collocation with TMI RR product TB10
V

R 

were gridded onto the same grid. TRMM semi-equatorial orbit ensures TMI to sample the surface at all 

times of day. Collocated in space and time measurements between TMI and AMSR2 can thus be obtained 

for any day [55]. However, small time difference between the two sensors is a key requirement for the 

collocation since the rain field in typhoons changes very fast [48]. 

One of the considered typhoons satisfies the conditions under which the rain field within the typhoon 

did not change significantly during the time between TMI and AMSR2 measurements. Fig. 5(a) illustrates 

the rain rate field for the typhoon Danas on 7 October 2013 imaged by TMI (product of Remote Sensing 

Systems) at  18:36 UTC (time of measurements over the typhoon center), whereas Fig. 5(b) shows the rain 

brightness temperature TB10
V

R at 10.65 GHz vertical polarization, estimated from AMSR2 measurement data 

at  17:14 UTC, using TB
V

7,6 and TB
V

10,7. Red dots in Fig. 5(a) and Fig. 5(b) indicate the center of the 

typhoon at  17:14 UTC – time of the AMSR2 overpass. It can be seen that one hour and a half after 

AMSR2 overpass, the typhoon moved north and the rain field structure weakly evolved. We therefore 

considered it possible to match both fields after shifting AMSR2 measurements to the north accordingly (so 

that to superimpose the typhoon centers on both images) and gridding both TMI RR and AMSR2 TB10
V

R 

onto the same grid. The dependency of RR on TB10
V

R derived after such manipulations is shown in Fig. 6. 

The empirical relationship, thus derived is: 

RR =0.27 TB10
V

R (17)
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We further use that relationship to estimate rain rate from the differences in AMSR2 measurements 

TB
V

7,6 and TB
V

10,7. This RR retrieval method has been preliminary tested by comparing AMSR2 retrieved 

RR with TMI RR product for a dataset of spatially and temporally collocated observations collected during 

2012-2014. AMSR2 Level 1B ascending and descending swath data for 2012-2014 have been first gridded 

at a resolution of 0.25 degree onto the same grid than the TMI RR products within 40S to 40N. Only those 

pixels for which the time lag between AMSR2 and TMI data was less than 30 minutes were considered. The 

comparison (not shown here) indicates reasonable performance of the algorithm for RR exceeding 10 mm/h 

with an rms difference between AMSR2 and TMI RR of 1.4 mm/h. For lower rain rates it increases to 2.8 

mm/h, indicating that our RR estimation method is not appropriate for low rain rate estimation.  

 

III. SEA SURFACE WIND SPEED ALGORITHM APPLICATION FOR TROPICAL CYCLONE STUDY 

Our AMSR2 SWS retrieval algorithm has been applied for the reconstruction of the sea surface wind 

speed fields for 110 tropical cyclones intercepted over the North Atlantic and North Pacific basins for 2012-

2014 years. Maximum sustained wind speeds (SWSmax) and wind speed radii for the North Pacific and 

Atlantic basins have been compared to the best track data from the Joint Typhoon Warning Center 

(http://agora.ex.nii.ac.jp/digital-typhoon) and from NOAA HRD Atlantic Oceanographic & Meteorological 

Laboratory (http://www.aoml.noaa.gov/hrd/data_sub/hurr.html), respectively. For a subset ensemble of the 

AMSR2 intercepts for 93 TCs including a large variety of TC development stages, we find a root mean 

square difference between the AMSR2 and data center estimated maximum sustained wind speeds of 4.3 m/s. 

For these cyclones the radii of the gale, storm and hurricane winds, when available, conform in average 

within 60 km (the actual spatial resolution of AMSR2 SWS). These intercepts are featured by comparatively 

low (< 15 mm/h) maximum RR values, which are estimated from the nearest in time TMI data. Here we 

would like to underline that the actual rain rates might be much higher. The spatial smoothing reduces high 

values of rain rates, occurring over small portions of a ~50 km long satellite passive microwave radiometer 
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footprint. The range of rain rates over which our algorithm is valid need to be investigated more in depth 

using higher resolution data (e.g. the data of Precipitation Radar (PR) on TRMM or the new data of the Dual-

Frequency Precipitation Radar on the Global Precipitation Mission) [56], taking into account not only RR 

values but also their distribution over a footprint. This is going to be done in the future. 

For the remaining intercepts of 17 TCs, AMSR2 SWS retrievals show significant discrepancies with the 

data from the TC centers. Eleven cases out of seventeen are characterized by high RR > 15 mm/h while for 

the six others, TRMM PR rain rates are about 10-20 times higher than TRMM TMI rain rates. 

Several examples of the application of our new approach for SWS estimation from AMSR2 data in severe 

weather of TCs are discussed hereafter. SWS and RR fields from other available satellite products are also 

shown for comparison. All Remote Sensing Systems products (WindSat, AMSR2) are produced by Remote 

Sensing Systems and sponsored by the NASA Earth Science MEaSUREs DISCOVER Project and the NASA 

AMSR-E Science Team. They are gridded onto the same grid (0.25°0.25°). The preliminary validation of 

our RR retrieval algorithm was based on TMI data alone as RSS AMSR2 data were only made available 

recently. For SWS field comparison we systematically use the RSS WindSat all-weather product [21].  

Typhoon Danas, an extremely dangerous Category 4 strength tropical cyclone, according to the Joint 

Typhoon Warning Center reached its peak intensity on 7 October 2013 with maximum sustained winds of 

115 knots (55 m/s). AMSR2 maximum SWS is estimated to be 53 m/s in excellent agreement with that of 

JTWC. Fig. 7(a) shows SWS field retrieved from AMSR2 data for the typhoon Danas on 7 October 2013 at 

about 17:15 UTC. In Fig. 7(b) the WindSat RSS SWS at about 21:36 UTC is shown for comparison. The 

maximum wind is close to that of AMSR2 SWS (50 m/s). 

White pixels in Fig. 7(a) correspond not only to the land contaminated pixels in coastal areas but also to 

RFI contaminated areas. SWS retrieval algorithm, described in this paper, is based on the usage of the 

brightness temperature differences at C- and X-band channels at vertical polarization. In case of RFI at 7.3 
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GHz or 10.65 GHz these differences appear without any precipitation. So, before the algorithm application it 

is necessary to exclude from the consideration RFI contaminated pixels. Low level RFI contamination is 

difficult to be identified over oceans [57]. The method to discriminate RFI contaminated pixels from rain is 

based on the analysis of the modeled TB values and their differences. Several threshold values for the channel 

measurement differences are derived from the results of the numerical modeling and used for RFI detection 

before SWS algorithm application.  

One of the West Pacific typhoons of 2014 is shown in Fig. 8. The tropical cyclone Halong with a 

minimum pressure of 915 mB was assigned a category 5 super typhoon on 3 August 2014 with maximum 

winds of 53 m/s. On 4 August Halong underwent an eyewall replacement cycle and weakened to a category 4 

typhoon. At 6:00 UTC maximum winds were reported by JTWC to be about 45 m/s. Fig. 8(a) shows AMSR2 

SWS at about 4:36 UTC retrieved with our algorithm. Estimated maximum winds are about 47 m/s. Fig. 8(b) 

shows the corresponding AMSR2 RR field. RR values were retrieved from AMSR2 using formula (17). The 

pictures below illustrate the performance of RSS AMSR2 algorithm: Fig. 8(c) shows RSS AMSR2 RR, 

whereas Fig. 8(d) demonstrates the differences between RSS AMSR2 RR and RR, retrieved with the new 

approach. To calculate the differences, we gridded RR retrieved from Level 1B brightness temperature data 

onto RSS grid. Underestimation of RSS rain rates over the center of the typhoon by our method and 

prevailing overestimation of RSS at low rain rates can be concluded from Fig. 8(d). The scatter of the 

differences is within 4 mm/h. Fig. 8(e) and Fig. 8(d) are given to illustrate the performance of the WindSat 

all-weather algorithm: Fig. 8(e) presents WindSat SWS field at about 9:24 UTC, approximately 5 hour later 

AMSR2 acquisition time. Estimated maximum winds are about 36 m/s. Fig. 8(f) shows the corresponding 

WindSat RR field. It can be seen that the rain signature clearly manifests itself on the WindSat wind field 

whereas much weaker rain artifacts are observable in AMSR2 wind field in the south-west quadrant and to 

the east of the storm. 
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Another example is given in Fig. 9, demonstrating SWS fields for the TC Rafael on 15 October 2012. Fig. 

9(a) is H*Wind field, built using the data of NOAA HRD at 19:30 UTC, whereas Fig. 9(b) is an AMSR2 

SWS field at 18:00 UTC, shifted on the map so that the TC center corresponds to that of H*Wind.  

H*Wind data, presented as 1-minute winds at a spatial grid of ~ 5.65.6 km,  are the result of the objective 

analysis based on the assimilation and interpolation of all available storm wind observation data measured 

from various surface, aircraft and satellite platforms [32]. Most of these observations are scarce and taken 

over a long temporal window. These are the main reasons of H*Wind field errors, discussed in more details 

in [58], [59]. Comparing AMSR2 SWS field with H*Wind we need to be sure that the TC is well sampled by 

most reliable observations close in time with the AMSR2 path acquisition. Rafael H*Wind field on 15 

October 2012 at 19:30 is based on a lot of data including representative data from 2 aircraft flights fitted with 

SFMR and dropsondes, moored buoys and ships. The area of high winds (> 25 m/s) distinguished in the 

AMSR2 wind field to the south-east of the hurricane center, non-conformed with H*Wind, seems to contain 

erroneous values due to high rain rates (Fig. 9(f) shows corresponding RSS AMSR2 rain rate field). There is 

a “tail” of a little bit higher (17-22 m/s) winds seen by ASCAT from Metop-A earlier (Fig. 9(c)) in the day at 

about 13:35 UTC. The ASCAT Level 2 Operational and Optimized Coastal Ocean Near-Real-Time ocean 

wind vector dataset (12.5-km resolution), provided by Royal Netherlands Meteorological Institute and 

processed at the Ocean and Sea Ice Satellite Application Facility, is used. The data were downloaded from 

the Physical Oceanography Distributed Active Archive Center (PO.DAAC) of NASA Jet Propulsion 

Laboratory. ASCAT winds for this area are lower than AMSR2 ones. But there are no grounds to judge how 

far from the truth AMSR2 or ASCAT winds since this area is not covered by in-situ reliable data. The RSS 

WindSat all-weather winds (Fig. 9(c)) are mostly masked. The area to the south-east of the hurricane center is 

not totally masked but the winds don’t seem to be reliable for the comparison (non-physical high variations). 

The RSS AMSR2 rain rates (Fig. 9(f)) for this area are about 10-15 mm/h, RSS AMSR2 winds are totally 
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masked (Fig. 9(e)). As for the AMSR2 wind over the center of the hurricane, there is generally good 

agreement with H*Wind image, except for the streaking close to the core due to high rain rates. 

Hurricane surface winds strongly depend on the measurement averaging time. AMSR2 spatial resolution 

is more consistent with 10-minite winds which are ~ 0.93% of 1-minute winds [60], used in H*Wind analysis 

and reported by TC centers. This means that the demonstrated maximum wind correspondence can be due to 

general overestimation of 10-minute winds by the AMSR2 algorithm under high rain rates due to the 

underestimation of the rain radiance following from the numerical modeling results.  

 

IV. VALIDATION AND DISCUSSION. 

To evaluate more quantitatively AMSR2 SWS algorithm performance in TCs, SMOS derived winds [13] 

have been compared with AMSR2 winds. 

SMOS (Soil Moisture and Ocean Salinity) is the European Space Agency’s water mission, an Earth 

Explorer Opportunity Mission belonging to its Living Planet Program, aiming to provide global and regular 

observations of soil moisture and sea surface salinity [61]. The SMOS radiometer elements operate at L-band 

(~1.4 GHz). SMOS TB image is synthetically formed from simultaneous multiangular observations. These 

images of the brightness temperature are obtained over a large swath of 1200 km with a spatial resolution 

within the swath from ~30 km to ~ 80 km. SMOS signatures are significantly less sensitive to rain than the 

other passive microwave radiometer TBs, thus providing the capabilities to measure oceanic parameters in 

TCs under heavy precipitation. SMOS SWS were validated against SFMR data for several NOAA flights 

over TCs and can be considered as the first satellite “close to truth” winds [13]. 

Direct comparisons are complicated due to the differences in the AMSR2 and SMOS acquisition times. 

But some qualitative analysis is possible even when the time differences are large. For example the winds in 

the hurricane Leslie on 7 September 2012, retrieved at ~ 6:00 UTC from AMSR2 data, are shown in Fig. 
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10(a), aside to almost simultaneous RSS WindSat all-weather winds at ~ 5:35 UTC. The maximum sustained 

winds on this day are reported by the NOAA National Hurricane Center to be about 33 m/s. AMSR2 

maximum wind is 32.6 m/s. WindSat maximum wind is significantly less, about 25 m/s. This hurricane on 5-

8 September is featured by very slow northward motion and almost steady intensity, with increasing 

circulation diameter. Two SMOS wind fields retrieved from the evening paths of 5 and 7 September are 

shown in Fig. 10(c) and (d), demonstrating the consistency with AMSR2 wind pattern in spite of 30 and 17 

hour difference. 

Typhoon Haiyan came upon the Philippines in November 2013 with maximum sustained winds of 85 

m/s, making it one of the strongest tropical storms to date and the second-deadliest Philippine typhoon on 

record. By 6 November 2013, the JTWC assessed the Haiyan system as a Category 5-equivalent super 

typhoon on the Saffir-Simpson hurricane wind scale. The maximum intensity was reached on 7 November 

in the evening. SMOS intercepted Haiyan on the 7 Nov 2013 at ~ 09:15 UTC while AMSR2 intercepted the 

Typhoon the same day about 5 hours sooner at ~ 4:22 UTC. To compare the surface wind speed retrieved 

from both sensors, we recentered the eye estimated from each sensor data set based on the location of the 

maximum wind. Comparisons between both sensor surface wind retrievals are shown in Fig. 11. They reveal 

that above hurricane force (>33 m/s) both instruments see very similar wind speed structures. Major 

differences are observed in the lowest wind speed range below hurricane force. It can be due to temporal 

evolution of the wind field in between the two observations or to differences in the breaking wave, sea state, 

spray or other geophysical impact on the brightness temperatures. 

To further validate the suggested approach for surface wind speed estimation from AMSR2 data we 

compared the results of SWS retrievals with SFMR estimated winds [16] for the case of hurricane Sandy on 

29 October 2012 and for the hurricane Edouard on 15 September 2014. The wind speed fields retrieved from 

AMSR2 for these two hurricanes are shown in Fig. 12. 
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SFMR data used for comparison with AMSR2 have been downloaded from the NOAA HRD AOML 

web site (http:// www.aoml.noaa.gov/ hrd/). SFMR wind observations correspond to 1-minute sustained 

winds [50]. Comparing AMSR2 winds, due to their spatial resolution corresponding to 10-minute winds, 

with SFMR winds, additional important aspects should be taken into account. First, aircraft flights over the 

tropical cyclones last for 5-10 hour whereas satellite microwave radiometer measurements which form a still 

“image” of a cyclone are taken within a few minutes. Air flights are scheduled to investigate the cyclone 

development and often follow the cyclone track, several times overpassing the eye walls. Second, the SFMR 

wind speed profiles along the aircraft tracks are highly resolved spatially (~31 km [62]) in contrast to 

AMSR2 products with a spatial resolution at the lowest frequency channels of ~(3561 km). For the 

comparisons, we used only those SFMR data which were acquired within 0.5 hour difference from AMSR2 

acquisition.  

Fig. 13 illustrates AMSR2 derived surface wind speed contour plot over Sandy at ~ 18:15 UTC with a 

superimposed track of the United States Air Force (USAF) 53d Weather Reconnaissance Squadron (WRS) 

Flight 308 equipped with an SMFR instrument. Fig. 13 (a) shows SFMR winds whereas Fig. 13 (b) indicates 

SFMR measurement UTC time evolution during the aircraft flight. The black polygonal lines show the TC 

eye track during 29 October with a relatively fast forward translation speed of about 40 km/h during that 

day. 

SFMR and AMSR2 retrieved wind speeds interpolated along the aircraft track are shown in Fig. 14 as 

function of time. As illustrated, close to AMSR2 acquisition time at about 18:15 UTC the AMSR2 retrieved 

winds along the track are in good agreement with the SFMR ones. Around 17:25-17:35, 17:45 and 19:15 

UTC the aircraft flew across the hurricane eye with low wind speeds smoothed by AMSR2 coarse 

resolution. Observed differences between AMSR2 and SFMR winds for time differences larger than half an 

hour can be both due to the cyclone wind and rain structures evolution. The root mean square difference  
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between SFMR and AMSR2 winds for the considered time range is 1.3 m/s. The maximum wind speed 

estimated by AMSR2 is 35.5 m/s, the maximum wind speed estimated by SFMR is 36.0 m/s. 

The second case we consider here involves co-localized SFMR/AMSR2 observations during 

Hurricane Edouard in the evening of 15 September 2014. At the time of both acquisitions, the TC forward 

translation speed was about 20 km/h, almost twice slower than for the case of Sandy. Fig. 15 shows AMSR2 

SWS contour plot over Edouard at about 16:45 UTC with a superimposed track of the NOAA Aircraft 43RF 

that was equipped with an SMFR instrument. SFMR data are plotted over AMSR2 winds in Fig. 15 (a) and 

the SFMR measurement times are also given in Fig 15 (b). The co-localized winds along with SFMR rain 

rate are also presented in Fig. 16. In general, AMSR2 winds agree very well with SFMR ones except in the 

low winds region around the cyclone center. It can be seen that within half an hour difference before and 

after AMSR2 acquisition time, SFMR and AMSR2 winds agree well (with a  of 1.2 m/s) except that the 

SFMR wind speed drop at ~ 16:25 UTC is not distinguished in AMSR2 winds due to spatial smoothing. 

This drop is associated with the aircraft crossing the cyclone center (its south boundary is marked by  in 

Fig. 15(a)). The aircraft flew over the center from 16:20 till 16:28, measuring wind speeds in the range 13.4 

to 39.7 m/s reached at the northern eyewall and up to 47.8 m/s south of the eye center. The consistency 

between the maximum winds estimated from AMSR2 (48.3 m/s) and from SFMR (47.8 m/s) data south of 

the eye center is remarkable given the high rain rates reaching up to 30 mm/h as detected with SFMR.  

Despite differing sampling characteristics between SFMR and AMSR2 sensors, the comparison of the 

aircraft and satellite-based SWS measurements for the two flights over the two selected tropical cyclones 

has demonstrated their high correlation within half an hour time difference with a total root mean square 

error as low as 1.3 m/s within a range from 16.5 up to 40 m/s. Near the collocation time AMSR2 winds are 

generally lower than SFMR winds due to spatial smoothing. The maximum winds estimated by SFMR and 

AMSR2 differ as little as 0.5 m/s for both considered cyclones. This means, taking into account the 
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difference in AMSR2 and SFMR spatial resolution, an overestimation of SFMR maximum winds by the 

AMSR2 algorithm. 

V. CONCLUSION 

A method to estimate sea surface wind speeds under extreme conditions of tropical cyclones using 

GCOM-W1 AMSR2 measurements in C- and X-bands is described and tested. Initially designated for RFI 

detection, the additional AMSR2 channels in C-band can indeed be exploited to help in separating rain-

induced TB from non-rain atmosphere-ocean TB. 

As such, AMSR2 measurements can be used to retrieve SWSs, even under rain conditions occurring 

during TCs. Spatial and temporal collocation of AMSR2 and TRMM TMI is then further used to empirically 

relate TMI rain rate product to RR estimates from AMSR2 in hurricanes. 

The resulting SWS fields have been obtained for 110 Atlantic and Pacific TCs intercepted by AMSR2 

swath over the period 2012-2014, and compared to data from the Japan Meteorological Agency, archived by 

the Joint Typhoon Warning Center (JTWC), and the NOAA's Hurricane Research Division (HRD), processed 

by the Atlantic Oceanographic & Meteorological Laboratory (AOML). Most of the retrieved wind speed 

fields proved to well match TC center estimates in terms of maximum wind speeds, radii of storm and 

hurricane winds although some cases, associated with high RR values, indicated considerable discrepancy. 

Since AMSR2 SWS spatial resolution better corresponds to 10-minute winds we can conclude that TC center 

maximum 1-munite winds are overestimated by the suggested algorithm. Results further include comparisons 

between AMSR2 and SMOS wind speeds to demonstrate high consistency between the wind field structures 

derived from both sensor. As SMOS measurements are very weakly influenced by rain, this overall 

agreement between two independent datasets provides additional confidence in the proposed methodology. 

Additional validation with highly accurate in TCs SFMR winds also substantiates the approach, though 

demonstrating some overestimation of maximum winds in TCs. 
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Further studies are certainly needed to investigate the possible influence of the wind field asymmetry and 

very strong precipitation on the SWS algorithm performance. As envisaged, cases of “weak” algorithm 

performance will benefit from the joint analysis of GCOM-W1 AMSR2, GPM Microwave Imager and 

Double Precipitation Radar, and also from high resolution active cross-polarized microwave measurements 

available from Sentinel-1 and RadarSat-2 SAR data acquired over TCs. 
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Figure captions 

 

Figure 1. Brightness temperature fields in K measured by AMSR2 at 10.65 GHz, vertical polarization (a) on 

7 November 2013 at  4:20 UTC over the typhoon Haiyan and (b) on 7 October 2013 at  17:15 

UTC over the typhoon Danas. Arcs A, and B marked by dark green line, indicate rain-free 

footprints. 

Figure 2. Brightness temperature fields (K) measured by AMSR2 at 89 GHz, vertical polarization (a) on 7 

November 2013 at  4:20 UTC over the typhoon Haiyan and (b) on 7 October 2013 at  17:15 

UTC over the typhoon Danas. Arcs A, and B marked by dark green line, indicate rain-free 

footprints. 

Figure 3. The differences between TB0, calculated according to (14), and TBAOS, calculated according to 

(12), at SWS = 20 m/s, as functions of the rain rate R for 6.9 and 10.65 GHz, horizontal and 

vertical polarization.  

Figure 4. The differences in the calculated values of the downwelling part of TBR at SWS = 0 m/s and SWS 

= 40 m/s as functions of the rain rate R at 6.9 and 10.65 GHz, horizontal and vertical polarization.  
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Figure 5. (a) TMI rain rate field (mm/h) for the typhoon Danas on 7 October 2013 (http://www.remss.com/) 

at  18:36 UTC; (b). AMSR2 derived rain brightness temperature at 10.65 GHz vertical 

polarization (K) at  17:14 UTC. Red dots indicate the center of the typhoon at  17:14 UTC  

Figure 6. TMI RR versus AMSR2 derived rain brightness temperature at 10.65 GHz vertical polarization 

Figure 7. Sea surface wind speeds for the typhoon Danas on 7 October 2013: (a) derived from AMSR2 at 

 17:15 UTC; (b) RSS WindSat all-weather SWS at ~ 21:36 UTC. 

Figure 8. Typhoon Halong in the morning of 4 August 2014: (a) AMSR2 retrieved SWS at  04:36 UTC; 

(b) AMSR2 retrieved RR at  04:36 UTC; (c) Remote Sensing Systems AMSR2 RR at the same 

time; (d) the difference between RSS AMSR2 RR and retrieved AMSR2 RR; (e) RSS WindSat all-

weather SWS at ~ 9:24 UTC; (f) RSS WindSat RR at ~ 9:24 UTC.  

Figure 9. The hurricane Rafael on 15 October 2012: (a) NOAA HRD H*Wind sea surface wind speed field 

(m/s) at 19:30; (b) AMSR2 SWS at  18:00 UTC; (c) Metop ASCAT SWS at ~13:35 UTC; (d) 

RSS WindSat all-weather SWS at  21:50 UTC; (e) RSS AMSR2 SWS at  18:00 UTC and (f) 

RSS AMSR2 RR at  18:00. 

Figure 10. Sea surface wind speeds in the hurricane Leslie: (a) retrieved from AMSR2 on 7 September 2012 

at ~ 6:00 UTC; (b) RSS WindSat all-weather winds on 7 September 2012 at ~ 5:35 UTC; (c) 

retrieved from SMOS on 5 September 2012 at ~ 22:00 UTC; (d) retrieved from SMOS on 7 

September 2012 at ~ 22:20 UTC. 

Figure 11. East-West (a) and North-South (b) sections of the retrieved wind speed through the super 

Typhoon Haiyan on the 7 November 2013 (blue=SMOS; red=AMSR2). AMSR2 storm intercept is 

at ~ 4:22 UTC, SMOS time intercept is at ~ 9:15 UTC. 

Figure 12. (a) AMSR2 retrieved sea surface wind speed (SWS) field in the hurricane Sandy on 29 October 

2012 at ~18:15 UTC; (b) AMSR2 SWS field in the hurricane Edouard on 15 September 2014 at 

~16:45 UTC. The black lines show the hurricane tracks.  
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Figure 13. AMSR2 SWS contour plots for the hurricane Sandy on 29 October 2012 at 18:15 UTC with (a) 

superimposed SMFR winds from USAF 53 WRS Flight and (b) SMFR measurement time in UTC. 

The black polygonal lines show Sandy track.  

Figure 14. AMSR2 retrieved surface wind speed (blue) and SFMR wind speed (red) in m/s and SFMR rain 

rate in mm/h as functions of time along the USAF 53 WRS Flight aircraft flight track on 29 

October 2012. Vertical dashed line indicates time of AMSR2 overpass of Sandy at ~18:15 UTC. 

Figure 15. AMSR2 SWS contour plots for the hurricane Edouard on 15 September 2014 at ~ 16:45 UTC 

with (a) superimposed SMFR winds from NOAA Aircraft 43RF and (b) SMFR measurement time 

in UTC. The black polygonal lines show Edouard track.  

Figure 16. AMSR2 retrieved surface wind speed (blue) and SFMR wind speed (red) in m/s and SFMR rain 

rate in mm/h as functions of time along the NOAA Aircraft 43 Research Flight track on 15 

September 2014. Vertical dashed line indicates time of AMSR2 overpass of the hurricane Edouard 

at ~16:45 UTC.  
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