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Abstract—We present an innovative region-growing-based
technique that permits to improve the surface displacement time-
series retrieval capability of the two-scale Small BAseline Subset
(SBAS) Differential Interferometric Synthetic Aperture Radar
(DInSAR) approach in medium-to-low coherence regions. Starting
from a sequence of multitemporal differential SAR interfero-
grams, computed at the full spatial resolution scale, the developed
method “propagates” the information on the deformation relevant
to a set of high coherent SAR pixels [referred to as source pix-
els (SPs)], in correspondence to which SBAS-DInSAR deformation
measurements have previously been estimated, to their less coher-
ent neighbouring ones. In this framework, a minimum-norm con-
strained optimization problem, relying on the use of constrained
Delaunay triangulations (CDTs), is solved, where the constraints
represent the displacement values at the SP locations. Such
DInSAR processing scheme, referred to as Constrained-Network
Propagation (C-NetP), is easy to implement and, although specif-
ically developed to work within the two-scale SBAS framework,
it can be extended to wider DInSAR scenarios. The validity of
the method has been investigated by processing a SAR dataset
acquired over the city of Rome (Italy) by the Cosmo-SkyMed con-
stellation from July 2010 to October 2012. The achieved results
demonstrate that the proposed C-NetP method is capable to
significantly increase the spatial density of the SBAS-DInSAR
measurements, reaching an improvement of about 250%. Such
an improvement allows revealing deformation patterns that are
partially or completely hidden, by applying the conventional two-
scale SBAS processing. This is particularly relevant in urban areas
where the assessment and management of the risk associated to
the deformation affecting infrastructures is strategic for decision
makers and local authorities.

Index Terms—Constrained optimization problems, defor-
mation, Delaunay triangulations, Differential Interferometric
Synthetic Aperture Radar (DInSAR), Small BAseline Subset
(SBAS), time series.
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I. INTRODUCTION

D IFFERENTIAL synthetic aperture radar interferome-
try (DInSAR) [1], [2] is nowadays a well-consolidated

technique for the monitoring of Earth’s surface deforma-
tions. Traditionally developed to investigate single deformation
episodes [3]–[7], the DInSAR methodology has afterward
been extended to investigate the temporal evolution of the
surface displacements through the development of the so-
called “advanced” multitemporal DInSAR approaches [8]–
[16], implementing proper inversions of sequences of SAR
interferograms computed between pairs of SAR data collected
at different time epochs. Over almost the past 15 years, sev-
eral advanced DInSAR methodologies have been presented;
they can be broadly grouped in the two main categories of
the Persistent Scatterer (PS) [8]–[11] and the Small Baseline
(SB) [12]–[16] approaches. While PS techniques are mostly
focused on analyzing point-like targets that are not significantly
affected by decorrelation effects [17], [18], the SB methods
allow the investigation of deformation signals related to dis-
tributed scatterers (DS) on the ground, which can be instead
severely corrupted by decorrelation effects. In this latter case,
an a priori selection of the exploited SAR data pairs with SB1

values is required to reduce the noise levels in the generated
interferograms [17]. Despite of their intrinsic differences, both
the PS and SB algorithms have successfully been used to detect
and monitor deformation phenomena due to several natural
and anthropic hazards, such as volcanic events, earthquakes,
landslides, damages to man-made infrastructures in urbanized
areas caused by underground, and tunneling excavations and/or
gas and water exploitation [19]–[29]. Nevertheless, the existing
advanced multitemporal DInSAR approaches exhibit some spe-
cific limitations affecting their own performances. In particular,
one limiting factor of the SB techniques resides in their reduced
capability to correctly investigate deformation signals associ-
ated with isolated targets that are fully (or partly) embedded
in regions on the ground characterized by low spatial coher-
ence values, as well as in their difficulties to correctly analyze
displacement signals with very high rates both in space and
time. In such cases, the correct identification of coherent tar-
gets’ location and the subsequent analysis of their relevant
deformation signals are rather critical, especially while work-
ing at the full spatial resolution scale (i.e., at the scale of

1The baseline represents the spatial/temporal separation between the acqui-
sition orbits of the investigated SAR data pair.
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single-look interferograms), making the risk to incur in “false
alarm” conditions more likely.

To mitigate these problems, we present in this paper an
innovative DInSAR processing scheme, which relies on the
application of a network-optimization strategy. This solution is
able to improve the performance of the well-known two-scale
Small BAseline Subset (SBAS) technique [13] for the retrieval
of deformation time series at the full-resolution spatial scale.
The basic idea is to take profit from the previously retrieved
deformation (and residual topography) estimates relevant to
a group of highly coherent targets, and simply “to propa-
gate” this information to less coherent neighboring regions. To
achieve this task, we have properly extended to a wider sce-
nario the constrained optimization strategy originally proposed
in [30] for the analysis of PS targets displacement through
the Extended Minimum Cost Flow (EMCF) phase unwrapping
(PhU) algorithm [31]. More specifically, the proposed DInSAR
optimization scheme, hereinafter referred to as Constrained-
Network Propagation (C-NetP), starts from the computation
of deformation values in correspondence to a group of very
coherent pixels on the ground, referred to as “source pixels”
(SPs). In particular, the SP displacement time series, which
remain unchanged after the processing operation, is obtained as
the result of a preliminary processing step performed by using
the (conventional) two-scale SBAS processing algorithm [13].
Accordingly, SPs are successfully identified by calculating, for
each investigated target on the ground, the inherent value of
the temporal coherence factor [13]. The “propagation” of the
solution from such very coherent targets to their neighboring
ones allows us to drastically increase the coherent pixel den-
sity of the SBAS-DInSAR results. Indeed, critical points with
moderate-to-low temporal coherence values can be initially dis-
carded (imposing larger temporal coherence thresholds) and,
only subsequently, recovered via the proposed C-NetP strat-
egy, thus appreciably reducing the probability to incur in “false
alarm” conditions.

The proposed method has been validated through a series
of experiments carried out on a sequence of differential SAR
interferograms computed at the full spatial resolution scale
over the city of Rome (Italy) using an archive of SAR data
collected by the COSMO-SkyMed (CSK) sensor constellation
[32]. The achieved results demonstrated the effectiveness of the
proposed strategy, proving its capability to increase the density
of DInSAR measurements.

This paper is organized as follows. Section II provides the
general formulation of the constrained network optimization
problem, which is at the base of the C-NetP approach. The
rationale of the method as well its practical implementation is
described in Section III. Experimental results are presented in
Section IV, whereas conclusions and further developments are
addressed in Section V.

II. CONSTRAINED NETWORK OPTIMIZATION PROBLEM

This section introduces the theoretical framework at the base
of the proposed DInSAR C-NetP processing scheme (which
is fully detailed in Section III), relying on the solution of a
constrained optimization problem [33] for the PhU operation
of differential SAR interferograms.

A. Formulation of the Lp PhU Problem

To introduce the problem at hand, let us first refer to one
single differential SAR interferogram, and let φ and ψ be the
wrapped (measured) and unwrapped (unknown) interferometric
phases, respectively. PhU operation [34]–[43] basically consists
in searching for the (unknown) 2π-integer multiples, namely
K, that have to be added to the wrapped phase to determine
the unwrapped (full) interferometric phase at the same grid
locations, that is:

φ(P ) = ψ(P ) + 2πK(P ) ∀P ∈ V (1)

where V is a discrete (and generally irregular) grid of coher-
ent SAR pixels of the azimuth/range AZ ×RG spatial domain.
On irregular grids, PhU is usually performed by first comput-
ing a planar connected graph G = {V,E} (e.g., a Delaunay
triangulation [44]), where V is the set of vertexes and E is
the corresponding set of NE edges. The wrapped (measured)
phase difference Δφq = ΔφAB =Wr[φ(A)− φ(B)], calcu-
lated over the generic qth edge of the graph G that connects the
points A and B of the spatial domain [see for instance the arc
highlighted in Fig. 1(a)], can be then related to the correspond-
ing (unknown) unwrapped phase difference Δψq = ΔψAB =
ψ(A)− ψ(B), as follows:

Δψq = ΔψAB = ψ (A)− ψ (B) = Δφq + 2πHq (2)

where inHq = [K(A)−K(B)] + [φ(A)− φ(B)−Δφq]/2π,
and Wr(·) is the wrapping operator that wraps all values of its
argument into the (−π, π) range by adding (or subtracting) an
integral number of 2π rad from its argument. Given the wrapped
phase values {Δφq}NE

q=1 and a corresponding set of (properly

chosen) weighting costs {wq}NE
q=1, which are mapped over the

arcs of the network graph G, the most general formulation of
a (weighted) minimum Lp norm PhU problem consists in the
solution of the following nonlinear optimization [35]:

ψ = argmin

[
NE−1∑
q=1

wq|Δψq −Δφq|p
]

(3)

The problem stated in (3) is a global minimization since
all the observed phases are needed to compute the unwrapped
phase in a given pixel, and its complexity is strictly dependent
on the connectivity characteristics of the exploited graph G.
With p = 2, the problem in (3) becomes a least-squares opti-
mization problem that has analytical solutions [36]. However,
a drawback of the L2 norm is that it tends to smooth discon-
tinuities, not preserving the 2π difference constraint between
unwrapped and wrapped phases (i.e., it is not ensured that the
terms K in (1) assume integer values). For the above-mentioned
reasons, L1 norm is usually preferred to the L2 one; in this
case, the problem in (3) can be equivalently stated [see (2)] as
follows:

H = argmin

[
NE−1∑
q=1

wq |Δψq −Δφq|
]

= argmin

[
2π

NE−1∑
q=1

wq |Hq|
]

(4a)
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Fig. 1. Spatial network in the azimuth/range spatial domain involving a set of spatially coherent pixels. (a) Delaunay triangulation related to very coherent SPs
used in the following experiments. (b) CDT relevant to the TPs.

subject to:

Q∑
i=1

Δψi =

Q∑
i=1

Δφi + 2π

Q∑
i=1

Hi = 0 (4b)

where condition (4b) ensures that unwrapped phase gradients
Δψq, q = 1, . . . , NE − 1, define a spatially irrotational field,
with Q being the number of edges of any possible closed
loop, namely �, into the graph G. Noteworthy, as said earlier,
for practical implementations, the graph G is formed by ele-
mentary loops that consist of triangles [see Fig. 1(a)], and a
Delaunay triangulation [44] is typically computed.

The problem in (4a) and (4b) has been solved by Flynn [40]
and Costantini [36], [42] by reformulating it in terms of an
equivalent minimum cost flow (MCF) network problem, for
which efficient network programming codes (i.e., the RELAX
IV [45]) are available; the only requirement is that the graph G
is planar and fully connected (see [42] for more details).

B. Formulation of the Constrained Lp PhU Problem

In this subsection, we analyze the more general case [with
respect to (4a) and (4b)] that arises for the solution of a
constrained PhU problem. In this framework, it is addition-
ally required that unwrapped phases corresponding to a sub-
set of radar pixels, namely S ⊆ V , have to be constrained
(bounded) to assume specific and a priori known values
ψ (P ) = ψ′ (P ) ∀P ∈ S, which must remain unchanged after
PhU processing operation. Eventually, the following con-
strained (weighted) minimum Lp norm optimization problem
has to be solved:

ψ = argmin

[
NE−1∑
q=1

wq|Δψq −Δφq|p
]

(5a)

subject to:

ψ (P ) = ψ′ (P ) ∀P ∈ S. (5b)

We can easily recognize that the solution of the constrained
problem in (5a) and (5b) can be efficiently (and generally)

achieved, extending what originally proposed in [30], through
the computation of a “primary,” connected subgraph G′ =
{V′,E′} from the set of bounded pixels S and, subsequently,
by considering a “secondary” constrained graph [46] that con-
tains all the edges E′ of the primary network, i.e., E′ ⊆ E. We
remark that constrained graphs are largely used in constrained
satisfaction [47], [48] and network optimization problems [49],
[50] where they are used to solve more complex problems aris-
ing from the introduction of additional constraints in canonical
linear and/or nonlinear programming problems.

In such a way, over the N ′
E edges E′ of G′, the unwrapped

phase differences, namely {Δψ′
h}N

′
E

h=1, are completely known
and, accordingly, the solution of the problem (5a) and (5b) is
the same as

ψ = argmin

[
NE−1∑
q=1

μq|Δψq −ΔΘq|p
]

(6a)

with

μq =

{
wq eq /∈ E′

L eq ∈ E′,
ΔΘq =

{
Δφ′ eq /∈ E′

Δψ′ eq ∈ E′ (6b)

where L (see also [30]) is a very large number which is rep-
resentative of the infinite value. In this manner, the unwrapped
phase differences over the edges of the primal network G′ are
fully preserved2. It is instructive to note that the problem in (6a)
and (6b) is formally identical to the problem in (3), and, in par-
ticular, to its particularization to the case of the L1 norm [see
(4a) and (4b)], which is reported in the following for the sake
of completeness:

H = argmin

[
2π

NE−1∑
q=1

μq |Hq|
]

(7a)

2As a matter of fact, the problem in (6a) and (6b) is a minimization and,
accordingly, any additional correction w.r.t. the phase differences over the edges
E’ would correspond to an “infinite” (depending on L) cost of the solution, thus
no further corrections are automatically guaranteed.
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Fig. 2. Examples of CDTs relevant to the discrete set of (black) vertexes drawn
in (a)–(d); in (a) and (c) the constrained edges (red arcs) are shown, whereas in
(b) and (d) are depicted the corresponding CDTs, where constrained edges are
drawn in red and the unconstrained ones in black.

subject to:

Q∑
i=1

Δφi + 2π

Q∑
i=1

Hi = 0 (7b)

with

μq =

{
wq eq /∈ E′

L eq ∈ E′ , ΔΘq =

{
Δφ′ eq /∈ E′

Δψ′ eq ∈ E′.
(7c)

We remark that the framework represented by the PhU
problems in (5a) and (5b), (6a) and (6b), and (7a)–(7c) is
extremely wide, including almost all familiar existing PhU
approaches. More importantly, such an optimization scheme is
large enough to also include recently developed 3-D (e.g., [51],
[52]) and mixed space-time PhU approaches [30], [31], [53],
only requiring a few adaptations. We remark, in particular, that
the approach originally described in [30] represents the partic-
ularization of the optimization scheme provided in (7a)–(7c) to
the case when EMCF PhU algorithm is used.

For the practical implementation of such a constrained opti-
mization procedure, the generation of the (planar) constrained
graph G′ is, hence, required. This is efficiently done by com-
puting a so-called constrained triangulation and, in particular,
a constrained delaunay triangulation (CDT). CDTs are used in
different fields of technology and science (computer graphic,
physics, etc.) [33], [54] and are defined as follows: they are
essentially triangulations including a specified set of edges
referred to as constraints or constrained edges and are as close
as possible to Delaunay triangulations3. A few examples of
CDTs are shown in Fig. 2, related to a specified set of points
and for two different sets of constrained edges. In particular,

3Interested readers can find a comprehensive description of CDTs and
additional details in [30].

Fig. 2(a) and (b) represents the case of a set of constrained
edges constituting a (connected) spatial redundant network, and
Fig. 2(c) and (d) represents the case when they form a spanning
tree. In Fig. 1(b), we also show the CDT corresponding to the
set of constrained edges of the network depicted in Fig. 1(a)
related to the case-study area of the city of Rome used for the
experiments presented in Section IV.

III. C-NETP ALGORITHM

We extend here the constrained optimization procedures
described in Section II to a multitemporal framework, where
sequences of differential SAR interferograms need to be jointly
managed, showing how these methods can be profitably used
for the generation of surface deformation time series through
advanced DInSAR analyzes.

The developed constrained-network propagation method,
hereinafter referred to as C-NetP, is a two-stage algorithm
that, starting from the preliminary knowledge of the defor-
mation time series corresponding to a group of (coherent)
points, is capable to drastically improve surface deformation
retrieval capability performance by: 1) soundly identifying the
set of coherent SAR pixels characterized by deformation sig-
nals with suitable levels of accuracy, 2) increasing the number
of detectable targets on the ground by “propagating” the “cor-
rect” solution from highly coherent radar pixels to nearby
regions with reduced level of coherence.

The developed C-NetP DInSAR optimization scheme can
also be potentially used with no restrictions at all on the way
the preliminary displacement time series are retrieved. For
instance, a PS-oriented approach could also be exploited to
perform such a preliminary step, while a general purpose SB-
oriented approach could be possibly applied to compute the
“propagated” displacement time series, following the solution
of the constrained optimization problem.

In Section IIIA, we first present the rationale of the C-
NetP method, whereas in Section IIIB, we concentrate on the
implementation of the constrained PhU optimization procedure
within the C-NetP processing framework.

A. Algorithm Rationale

To describe in details the C-NetP algorithm, let us start
by considering a set of N+ 1 SAR scenes collected at the
ordered epochs [t0, t1, . . . tN ]T properly coregistered with
respect to a reference (i.e., the master one) scene, namely the
one acquired at tm. A preliminary step is accomplished to
retrieve in correspondence to a group of so-called SPs on the
ground, namely {SP}, the relevant deformation time series
(corrupted by atmospheric artefacts [8], [12]), namely d (P ) =

[0, d1 (P ) , d2 (P ) , . . . , dN (P )]
T ∀P ∈ SP , where di (P ) is

the deformation at time ti estimated with respect to the first
time acquisition t0. As said earlier, even though the method
has been designed to improve performances of the conven-
tional two-scale SBAS approach [13], the first step of the
C-NetP scheme can be either performed using one of currently
available DInSAR tools or exploiting displacement measure-
ments inferred from leveling/GPS campaigns (possibly both
kind of measurement values could be concurrently available).
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Fig. 3. Block diagram of the proposed C-NetP DInSAR processing scheme.

Furthermore, let us assume to have an estimate of topographic
height inaccuracies of the digital elevation model (DEM) used
for the generation of the interferograms, namely z (P ) ∀P ∈
{SP}, as retrieved in correspondence to the SPs’ location as
an ancillary product of the preliminary step for the generation
of DInSAR displacement time series. Generally, the identifica-
tion of the SPs is done by computing a quality factor on the
retrieved displacement time series, namely γ, which is inferred
by analyzing the interferometric phase history of the stack of
used DInSAR interferograms. As a matter of fact, for the prac-
tical implementation of the PS [8], [9] and the SBAS DInSAR
processing chains [12], two distinct temporal coherence fac-
tors are typically provided, which can be used for the purpose.
Eventually, the location of coherent SPs is thus identified as
follows:

{SP} = {P ∈ AZ ×RG : γ (P ) ≥ α} (8)

where α is a properly chosen threshold.
Once SPs location is identified, the second stage of the

C-NetP DInSAR processing scheme consists in solving a con-
strained (weighted) Lp-norm PhU problem, which is performed
on a sequence of M multitemporal differential SAR inter-
ferograms, namely {φj}Mj=1. This step relies on the global
optimization problem stated in (6), which can be either applied
to each SAR interferograms, separately, or concurrently to the
stack of interferograms by adjusting the existing conventional
2-D [34]–[38] and 3-D [51], [52] (or mixed hybrid 2-D+2-
D space-time [30], [31], [53]) PhU strategies to the newly
constrained optimization framework.

B. C-NetP Processing Implementation

The implementation of the proposed C-NetP method requires
the preliminary computation of a sequence of unwrapped

phases, namely
{
ψ′
j

}M

j=1
, in correspondence to the group of

high-coherent SPs (previously identified during the first stage of
the algorithm), which are subsequently used as constraints into
the constrained optimization schemes (6a) and (6b) or (7a)–
(7c). As a consequence, on the selected SPs, the unwrapped
phases are totally preserved during subsequent constrained opti-
mization procedures. Specifically, the unwrapped phase values
corresponding to SPs are calculated as follows:

ψ′
j (P ) =

4π

λ

b⊥j

rsinϑ
z (P ) +

4π

λ

[
dIMj

(P )− dISj
(P )

]
+Wr

{
φj (P )− 4π

λ

b⊥j

rsinϑ
z (P )

−4π

λ

[
dIMj

(P )− dISj
(P )

]}
∀P ∈ {SP} ∀j = 1, . . . ,M (9)

where r is the sensor-to-target distance, λ is the operational
wavelength, ϑ is the side-looking angle of the imaged scene,
[IM1, IM2, . . . , IMM ]T and [IS1, IS2, . . . , ISM ]T are the
indexes of the “master” and “slave” time acquisitions related
to the selected SAR data pairs4, whereas [b⊥1, b⊥2, . . . , b⊥M ]T

4The selection of SAR data pairs, involved in the optimization scheme,
depends on the specific DInSAR processing tool used for the optimization.
For instance, in a PS-like framework [8], [9], single-master SAR data pairs are
selected, whereas in an SB context [12], a set of small baseline multi-master
SAR data pairs is considered.
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TABLE I
CSK SAR DATASET

is the corresponding vector of interferometric perpendicular
baselines. Note that starting from the knowledge of the sur-
face deformation time series at the location of SPs, the relative
constrained deformation occurred between the “master” and
“slave” time acquisitions for each single SAR data pair is then
computed by simply differencing the known displacement time
series.

It is worth remarking that the residual topography Z rep-
resents one of the outputs of the preliminary step of the
algorithm that is needed to recover the deformation values at
SPs. However, in case the information on “residual” topog-
raphy was not available (e.g., when the displacement values
are inferred through GPS/leveling campaigns), the unwrapped
phases at the SPs can still be computed using (9) by simply
setting z(P ) = 0 ∀P ∈ {SP}. In the latter case, the deforma-
tion time series d(P ) = [0, d1(P ), d2(P ), . . . , dN (P )]T ∀P ∈
{SP} (used as constraints in the optimization procedure)
do not evidently take account for any additive atmospheric
signal; accordingly the phase terms in (9) Wr{φj(P )−
4π
λ [dIMj

(P )− dISj
(P )]} ∀P ∈ {SP} ∀j = 1, . . . ,M will

TABLE II
INTERFEROMETRIC SAR DATA PAIRS USED FOR THE

PRESENTED EXPERIMENT ON CSK DATA



4916 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 10, OCTOBER 2015

Fig. 4. Maps of coherent pixels, represented in red, related to (a) SPs and (b) TPs, superimposed on an amplitude SAR image (gray scale) of the city of Rome,
Italy. The sets of pixels have been selected by imposing a threshold on the temporal coherence, (a) γ ≥ 0.9 and (b) 0.4 < γ < 0.9, respectively. Note also that
radar coordinates are considered.

Fig. 5. (a) Map of coherent pixels retrieved at full resolution by applying the conventional SBAS-DInSAR approach, superimposed on an amplitude SAR image
(radar coordinates) of the city of Rome. (b) Map of coherent pixels obtained after applying the C-NetP processing scheme. For both maps a temporal coherence
threshold equal to 0.8 has been considered.

also contain phase contributions due to residual topography,
atmospheric disturbances, and noise. Finally, the minimiza-
tion operation in (6a) and (6b) [(7a)–(7c), in case p = 1] is
performed, thus requiring the generation of a CDT over the
grid of the so-called target pixels, namely TPs, of the spatial
azimuth/range domain, whose constrained edges are related to
the set of SPs. TPs are efficiently identified by analyzing (again)
the temporal coherence factor, but considering now a lower
threshold, namely β < α, i.e.,

{TP} = {P ∈ AZ ×RG : β ≤ γ (P ) ≤ α} . (10)

As a result of the solution of the optimization pro-
cedure in (6a) and (6b) [(7a)–(7c), in case p = 1], the
stack of M unwrapped phases at the TPs pixels ψ(Q) =
[ψ1(Q), ψ2(Q), . . . , ψN (Q)]T ∀Q ∈ {TP} is finally retrieved.
They are subsequently inverted through the SBAS strategy [12],
using the Singular Value Decomposition (SVD) method [55], to
compute on propagated pixels the relevant displacement time
series d̂(Q) = [0, d̂1(Q), d̂2(Q), . . . , d̂N (Q)]T ∀Q ∈ {TP} as
well as to provide an estimate of the residual topography
ẑ(Q). Finally, the map of the temporal coherence [31] is
computed and the coherent target pixels are identified, the

Fig. 6. Retrieved C-NetP mean deformation velocity map, superimposed on an
optical image of the city of Rome, and relevant to the exploited 2010–2012
CSK data archive. An area of about 300 km2 has been mapped for monitoring
the deformation phenomena over the city of Rome.
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Fig. 7. Comparison between the zoomed views of full resolution conventional SBAS-DInSAR mean displacement maps (left side) and the ones achieved by using
the proposed C-NetP processing strategy (right side), relevant to three selected areas.

atmospheric artefacts are estimated and filtered out [8], [12]
from the retrieved displacement time series, thus obtaining the
filtered d̂f (R) = [0, d̂1(R), d̂2(R), . . . , d̂N (R)]T ∀R ∈ TP ∪
SP ones.

The block diagram of the developed C-NetP DInSAR pro-
cessing scheme is shown in Fig. 3 for the readers’ sake of
convenience.

IV. EXPERIMENTAL RESULTS

The overall performance of the proposed constrained C-NetP
optimization scheme is here investigated through a series of
experiments carried out on a sequence of full spatial resolu-
tion differential interferograms. As a case study, we selected
the city of Rome (Italy), which is a heavily urbanized area, and
for which a sequence of 40 SAR data frames collected over
descending passes from July 7, 2010 to October 1, 2012 by
the COSMO-SkyMed (CSK) radar constellation sensors (see
Table I) was available. Based on the collected dataset, we
first selected a group of 104 SB differential SAR interfero-
grams characterized by perpendicular baseline values smaller
than 400 m, which are listed in Table II. Satellite orbital infor-
mation and a 3 arc-seconds shuttle radar topography mission
(SRTM) [56] digital elevation model of the study area were
also used to generate the sequence of single-look DInSAR
interferograms, with a pixel size of about 3 m in the azimuth and
range directions. As required by the preliminary stage of the
C-NetP DInSAR scheme, the computed interferograms were
analyzed through the “conventional” two-scale SBAS-DInSAR
processing chain [13]. This has led, as a final outcome, to
the generation of the displacement time series that represent
the constraints of the constrained-network optimization prob-
lem to be subsequently implemented. Moreover, as a quality
index of the retrieved displacement time series, for each pixel
of the AZ ×RG grid, the temporal coherence factor γ is124
computed.

To assess the performance of the C-NetP processing scheme
to efficiently recover deformation time series in medium-to-
low coherence areas (increasing the spatial density of DInSAR

Fig. 8. Same as in Fig. 7, but now relevant to other three selected infrastruc-
tures.

measurements), we started by selecting the highly coherent SP
pixels, which are less affected by noise and PhU errors. To do
this, we considered a higher temporal coherence threshold (γ =
0.9), which is larger than the threshold (i.e., 0.8) applied to
identify the coherent pixels in the SBAS-DInSAR analysis [23].
Therefore, a cluster of about 18 000 SPs have been identified,
which are portrayed in Fig. 4(a), in correspondence to which
displacement time series d (P ) ∀P ∈ SP , as well as estimates
of the residual topography z (P ) ∀P ∈ SP , are available. We
remark that such a set of pixels does not represent the SBAS
coherent points, but only a subset of them. From these SPs,
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Fig. 9. (a)–(c) Zoomed view of the full resolution SBAS and C-NetP DInSAR velocity maps, superimposed on an optical image of the investigated areas
corresponding to three infrastructures. The displacement time-series relevant to some points located on the three infrastructures are depicted in (a’)–(c’).

we generated a “primary network,” forming a Delaunay trian-
gulation in the AZ ×RG spatial domain, which represents the
backbone structure of the C-NetP scheme for further process-
ing steps. More specifically, the L1 PhU optimization problem
in (7a)–(7c) was independently solved for each DInSAR inter-
ferogram. It corresponds to the “conventional” Minimum Cost
Flow (MCF) PhU method in [42] and [43], and for which effi-
cient solvers are currently, and freely, available in literature
[45]. To this aim, a “secondary” network involving a group of
low-to-moderate coherent SAR pixels [i.e., the targeted pixels
(TPs)] was built in the AZ ×RG spatial domain by comput-
ing a CDT, whose constrained arcs represent the edges of the
“primary” network related to the high coherent SPs (i.e., the
SPs). The TPs for the considered case study, which have been
selected searching for SAR pixels with temporal coherence val-
ues γ ranging in the (0.4, 0.9) interval, are around 1.5 million
and are shown in Fig. 4(b). As outcome of the application of
the C-NetP processing scheme to TPs, we retrieved a cluster
of about 470 000 SAR pixels, characterized, following the C-
NetP processing, by a temporal coherence γ greater than 0.8.
When compared with respect to conventional two-scale SBAS-
DInSAR approach, our method has guaranteed an increase in
the spatial density of coherent SAR pixels of about 250%,
moving from the 136 000 (conventional SBAS processing) to
470 000 estimated “good” SAR pixels. For the sake of compar-
ison, we portray in Fig. 5(a) and (b) the distribution of SAR
coherent pixels as retrieved by applying the conventional as
well as the C-NetP method, respectively. For each coherent tar-
get, an estimate of the topographic height inaccuracies of the
used DEM was also obtained, which is taken into account for
the correct estimation of displacement time series as well as for
a correct geo-localization of obtained DInSAR products. The
observed increase in the number of coherent points achieved

by using the C-NetP technique is profitable to give a more
detailed picture of ongoing deformation phenomena occurring
over individual structures in the investigated areas, which can
be either totally absent or characterized by a reduced num-
ber of independent measurement points in the conventional
SBAS-DInSAR solution. The obtained DInSAR products have
been geocoded and imported, for representation purposes, in
Geographic Information System (GIS). For a correct pixel geo-
localization procedure, both the residual topography and the
SAR image Doppler centroids information [24], [28] have prof-
itably been exploited. Fig. 6 shows a false color map of the
detected mean deformation velocity of the city of Rome, which
extends over an area of about 300 km2, where only points
with high temporal coherence values (as said, we assumed a
threshold γ = 0.8) are included. This comprehensive view of
the velocity map highlights significantly larger deformation
phenomena in the southern part of Rome along the Tevere
River as compared to the northern sector of Rome. From pre-
vious works [57]–[60], performed with data collected by the
first-generation SAR sensors ERS-1/2 and ENVISAT, it has
already been examined that the predominant pattern of the dis-
placement phenomena is due to the alluvial deposits along the
Tevere river, which are responsible for a deformation with a
rate of 1 cm/year or greater, and are associated with the com-
paction of more flexible soils in that zone. Moreover, in order
to further investigate the effectiveness of the proposed C-NetP
scheme, as compared with respect to the use of the conven-
tional two-scale SBAS-DInSAR approach [13], we focused on
a few selected areas over the city of Rome, highlighting specific
infrastructures where several deformation signals are present.
Accordingly, we display in Figs. 7 and 8 zoomed views of the
mean displacement velocity maps as retrieved by the conven-
tional (left side) and improved (right side) SBAS approaches,
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respectively. In particular, in Fig. 7, three specific areas located
on the northern side of Rome and their respective line-of-sight
velocity maps are shown. The pictures highlight the deforma-
tion signals inferred by the C-NetP method corresponding to
two street roads located in Via del Foro Italico [see Fig. 7(a)
and (b)] and in Via dei Monti Tiburtini [see in Fig. 7(c) and (d)],
respectively, as well as over one building [see Fig. 7(e) and (f)]
located in the proximity of Via di Tor di Quinto. It is evident
that the improvement in terms of density of detectable well-
analyzed SAR pixels is drastic, allowing us to make it emerge
deformation patterns that were hidden, or only in part visible,
in the “conventional” SBAS velocity map. To further validate
our analysis, we provide in Fig. 8 additional examples showing
the distribution of detected coherent pixels related to one build-
ing located in Via Raiano [Fig. 8(a) and (b)], a baseball stadium
located in the area of Via dei Campi Sportivi [Fig. 8(c) and (d)],
and an isolated infrastructure in Viale dei Carabinieri a Cavallo
[Fig. 8(e) and (f)]. Hence, from the above considerations and
examples, it is clear that the application of the proposed C-
NetP scheme has guaranteed a very significant improvement on
the number of detectable radar targets w.r.t. the traditional full
resolution two-scale SBAS method.

To complete our analysis and emphasize the robustness of the
C-NetP approach in investigating the time evolution of defor-
mation affecting targets on the ground, we finally selected three
additional structures in the urbanized area of Rome, located
nearby Viale Giustiniano imperatore [Fig. 9(a)], Via Mario
Ageno [Fig. 9(b)] and Via Salvatore Pincherle [Fig. 9(c)], and
we plotted their respective deformation time series correspond-
ing to selected pixels laying on the imaged buildings, as shown
in Fig. 9(a’)–(c’). From the deformation time-series plots, it is
noticeable that the subsidence pattern, for building in Fig. 9(a),
is reaching up to 1 cm/year; similarly, buildings displayed in
Fig. 9(b) and (c) have characterized by mostly linear trends
in time reaching up cumulative displacements less than 2 cm
in about the 2-year period of observation. These cases are
important to further highlight how DInSAR-based approaches
can be successfully used in urbanized areas to also monitor
intra-buildings movements, which can cause severe stresses to
load-bearing structures [28], [60].

V. CONCLUSION

In this paper, a solution to improve the retrieval capa-
bility of conventional two-scale SBAS-DInSAR approach,
for the generation of deformation time series at full spa-
tial resolution scale, has been proposed. The newly devel-
oped DInSAR scheme, referred to as Constrained-Network
Propagation (C-NetP), is based on the analysis of a sequence
of multitemporal SAR interferograms performed by solving a
two-stage constrained-network optimization problem. The first
step of the approach involves the knowledge of displacement
time series in correspondence to a cluster of very coherent
radar pixels, retrieved by applying the two-scale SBAS tech-
nique. The second step of the C-NetP method takes profit from
the displacement values at such very coherent target location
(SPs) to figure out which are the displacement time series at
their neighboring locations by “propagating” the solution from

highly to moderately coherent radar pixels (TPs). To preserve
the high quality of DInSAR products corresponding to SPs,
a constrained problem is casted. It relies on the computation
of a CDT in the azimuth/range spatial domain, whose con-
strained edges connect one another previously identified SPs,
and unconstrained edges are relevant to both SPs and TPs. Over
these pixels, a constrained Lp minimization PhU procedure
is properly applied, which is capable to retain the displace-
ment time series at SPs location and to successfully propa-
gate high-quality DInSAR measurements to their neighboring
TPs. The reconstruction quality of displacement time series is
checked, pixel-by-pixel, by computing the value of the tem-
poral coherence, which is widely adopted for SBAS-DInSAR
analyses.

The implemented C-NetP optimization scheme has primarily
been developed as an extension of the two-scale full-resolution
SBAS-DInSAR method; however, it can naturally be extended
to work with other general-purpose SB- and PS-based DInSAR
approaches. This can be done by simply modifying the way
displacement time series are retrieved at SPs location (during
the first stage of the algorithm), and at TPs ones (following
the solution of the constrained optimization problem), without
requiring any particular additional modifications on the adopted
constrained-network optimization procedure used to “propa-
gate” high-quality solutions from SPs to TPs. Furthermore,
the method is able to easily incorporate in the optimization
procedure displacement measurements coming from external
sources, such as the ones inferred by GPS/leveling measure-
ment campaigns. It is also worth remarking that the imple-
mented constrained-network optimization relies on a very
general constrained PhU strategy, giving potential users the
possibility to adapt the algorithm to work with any of the
existing PhU algorithms, with a limited number of adjust-
ments. Accordingly, the specific characteristics of the proposed
C-NetP method make it an effective and general tool for the
estimation of displacement time series to be used in a wide
spectrum of DInSAR-based applications, and for a very large
set of SAR sensors and deformation scenarios. The achieved
results demonstrate the C-NetP technique is competent for the
mapping of displacement phenomena, especially in densely
urbanized area. In this framework, it will not only play a key
role for monitoring the individual physical process, which are
responsible for the deformation phenomena, but will also act as
a new advance operational tool in risk management as well as
mitigation scenarios.
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