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Abstract—In this paper, we consider the problem of remote
sensing image classification, in which feature extraction and
feature coding are critical steps. Various feature extraction meth-
ods aim at an abstract and discriminative image representation.
Most of them are either theoretically too complex or practically
infeasible to compute for large datasets. Motivated by this
observation, we propose a simple yet efficient feature extraction
method within the Bag-of-Words (BoW) framework. It has two
main innovations. Firstly and most interestingly, this method
does not need any complex local feature extraction; instead, it
uses directly the pixel values from a local window as low level
features. Secondly, in contrast to many unsupervised feature
learning methods, a random dictionary is applied to feature
space quantization. The advantage of a random dictionary is
that it does not need the time-consuming process of dictionary
learning yet without a significant loss of classification accuracy.
These two novel improvements over state-of-the-art methods
significantly reduce the computational time and enable it scalable
to a large data volume. An extensive experimental evaluation
has been performed and compared with other feature extraction
methods. It is demonstrated that our feature extraction method is
quite competitive and can achieve rather promising performance
figures for both optical and SAR satellite images.

Index Terms—Bag-of-words (BoW), Dictionary learning, Fea-
ture extraction, Image classification, Unsupervised feature learn-
ing.

I. INTRODUCTION

THE exponential growth in the amount of data in various
fields has given rise to the era of Big Data. Every day,

2.5 quintillion bytes of data are created and 90 percent of
the data in the world today were produced within the past two
years [1]. The data volume is certainly beyond the capabilities
of users and systems to access the information content of the
data. The fundamental challenge is to explore the large volume
of data and the extraction of useful information.

In the context of earth observation, remote sensing image
classification plays an important role, which since years has
been an active field of research. In image classification, feature
extraction is a critical step. Traditionally, feature extraction
methods are being selected manually, based on domain knowl-
edge. In this paper, we focus on feature extraction for optical
and SAR satellite image classification. First, we give a brief
survey of related work about image feature extraction.

From the beginning of the twenty-first century, prominent
advances in texton and local feature extraction have been wit-
nessed, leading to the Bag-of-Words (BoW) method for feature
extraction. Based on previous research results, the theory of
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texton states that textures can be characterized efficiently by
filter responses and texton distributions. Current texton theory
is able to find a theoretically sound image description based
on unsupervised learning of filter responses. Some filter banks,
such as the Leung-Malik [2] and the Maximum Response
filter set, can be applied to texture analysis using a texton
learned by clustering. A texton histogram can be generated
for texture description of an image. Thus, the most important
problem is to select a good filter bank. For example, 48 filters
were proposed by [2], which are the first and second order
derivatives of a set of Gaussian filters with 6 orientations
and 4 scales, 8 Laplacian of Gaussian filters, and 4 Gaussian
filters. 38 filter banks were developed in [3], which include
a Gaussian filter, a Laplacian of Gaussian filter, edge filters
with 6 orientations and 3 scales, and a set of bar filters with
6 orientations and 3 scales.

Although various filter banks have played an important
role in texture analysis, they were challenged by some patch-
based methods [4], [5]. A prominent patch-based texture
synthesis was proposed in [4]. Here, texture is synthesized
by stitching together a number of well selected patches. The
synthesized textures are far superior to the ones obtained by
filter banks. The idea behind this method is that the local image
patches contain enough information about the texton. Thus,
this method had a profound influence on texture synthesis.

Besides patch-based methods, local feature descriptors have
received a lot of attention since the invention of the scale
invariant feature transform (SIFT) [6]. Local discriminative
features have promoted obvious advances in image matching
and object recognition. Currently, the SIFT detector is one of
the most widely used methods for feature detection, which
detects sparsely distributed key points for local feature ex-
traction. Partially inspired by SIFT, the Speeded Up Robust
Feature detector (SURF) [7] was proposed, which can be
computed faster and is more robust against image transforms.
In addition, there are some publications [8], [9] showing
that dense sampling or even random sampling are able to
achieve better performance than the SIFT detector as long as
the number of patches is sufficiently high [8], [9]. Different
sampling strategies are compared in [10] and it is concluded
that a simple variance-based point selection method can be
more effective than regular grid sampling, random sampling,
or SIFT. Many local feature descriptors have been proposed,
like SPIN Image, Rotation Invariant Feature Transform (RIFT)
proposed in [11], Census Transform Histogram (CENTRIST)
[12], and Local Binary Pattern (LBP) [13], [14].

Inspired by the texton image representation and the dis-
crimination power of local features, the BoW technique was
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proposed in [15] for video search. Since then, within this
framework, a large variety of methods have been proposed for
solving various problems, for instance, image classification,
image retrieval, and object recognition. The BoW technique
has been recently introduced also to the remote sensing
community for image annotation [16], object classification
[17], target detection [18] and land use classification [19]
and it has already proven its discrimination power in image
classification. The original BoW framework consists of four
main components: feature detection, local feature extraction,
dictionary learning, and word assignment. Later it was ex-
tended to five components; feature coding was included after
dictionary learning. All elements have been investigated with
a lot of effort. In the BoW method, a dictionary (or codebook)
is usually learned by clustering. Based on the codebook, the
feature space is quantized using a nearest neighbor assignment.
Two problems appear in this step: the first one is that vector
quantization loses some information; the second one is that
nearest neighbor feature assignment is problematic in the case
of equal distances. To reduce the information loss, supervised
codebook learning [20] was proposed and a Gaussian mixture
model was applied to it [21]. As for feature assignment,
there are two kinds of methods: hard assignment and soft
assignment. Hard assignment is to assign a feature vector to
its nearest element in the dictionary. However, it has been
claimed that soft assignment [22] can improve the accuracy
by assigning multiple code words with weighting. In order to
reduce the loss of spatial information in the BoW method,
the Spatial Pyramid Match (SPM) was developed by [23] to
incorporate weak spatial information. In this method, an image
is divided into a series of multi-scale patches where a patch
comprises a window of 3× 3, 6× 6, or 12× 12 pixels and a
local word histogram of each region is computed. Then all the
word histograms from all regions are concatenated to form a
vector representation of the image.

Recently, sparse coding [24] instead of vector quantization
has been applied to dictionary learning, which is claimed
to give better performance for image classification. It is an
iterative algorithm alternating between dictionary learning and
sparse decomposition. The algorithm includes feature pooling,
such as max, sum, and average pooling, to compute the image
representation. A theoretical analysis of feature pooling is
given in [25]. Unfortunately, sparse coding is computationally
expensive. Based on the observation that non-zero coefficients
are often assigned to nearby elements in the dictionary,
Locality-constrained Linear Coding (LLC) was proposed by
[26] and [27]. In contrast to soft feature assignment, LLC
assumes that a feature point for coding can be reconstructed
using its k nearest neighbors in the dictionary. The reconstruc-
tion coefficients can be computed by solving a least squares
problem. The weights for the remaining clusters are set to
zero. Therefore, sparsity is replaced with locality.

As the BoW feature vector is an intermediate feature de-
pending on low level features, distinctive local features should
be carefully designed. In general, local rotation-invariant fea-
tures are preferable for image classification. Pixel values in
a local patch instead of the filter responses are proposed
for texture classification in [28] claiming that compact lo-

cal patches can achieve better performance than a texton
distribution of the filter responses. Based on this work, a
random projection [29] was applied to reduce the dimension
of the local feature vectors and a significant improvement in
classification accuracy was shown. However, it was observed
that the random projection of the local features is not rotation-
invariant; thus, a sorted random projection of five local features
[30], [31] was developed by the same authors, who claimed
to achieve significant improvements compared with the the
method of [29].

In this paper, we do not propose a universal method that
works well for all kinds of data. Instead, we present a simple
yet efficient method thin the Bag-of-Words (BoW) framework
that can achieve very good accuracy for remote sensing
image classification. This method does not need any complex
local feature extraction and any time-consuming unsupervised
method for dictionary learning. We show that very small patch-
es have sufficient information for classification and challenge
the role of dictionary learning. A random dictionary gives
superior performances in our cases. The major contributions
of this paper are as follows:
• Without any complex local feature extraction, we use the

pixel values in a very compact local neighborhood,e.g.,
taken from a 3×3 window and a column-wise conversion
into a vector of elements (“Vectorized Patch”), as low
level features for the BoW method.

• Instead of unsupervised dictionary learning, we randomly
select some feature points and use them as our dictionary.

• We did an extensive evaluation of the effects of different
parameters in BoW and drew a comparison among several
options. All the questions listed in Section II-B could be
clearly answered experimentally.

The rest of the paper is organized as follows. In Section
II, we first present the framework of BoW feature extraction
and then, we propose our methods for feature extraction and
dictionary learning. In Section III, we present three datasets
that have been used for evaluation. A detailed evaluation
and comparison on the SAR dataset is given in Section IV.
Experimental results using an open optical dataset is shown in
Section V. Finally, a conclusion is drawn in Section VI.

II. BOW FEATURE EXTRACTION

In this section, we first present the general framework of
BoW feature extraction and then, we propose our method for
feature extraction and dictionary learning.

A. BoW Feature Extraction Framework

The framework of BoW feature extraction shown Fig. 1
is composed of five steps, which are patch sampling, local
feature extraction, dictionary learning, feature coding, and
feature pooling. Assume we have a dataset of N images
Ii, i = 1, ..., N , the first step is to sample a collection of
patches from the images in the database. This can be done
by dense sampling or sparse detection. The second step is
to extract local descriptor vectors xj

i ∈ RD, j = 1, ...,M
from all patches. The third one is learning a dictionary D =
(d1, ...,dK) ∈ RD×K with K words using all local features.
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Fig. 1. The framework of the Bag-of-Words model consists of five steps: patch sampling, local feature extraction, dictionary learning, feature coding, and
feature pooling.

Normally, this is done by a time consuming unsupervised
learning method, such as k-means clustering or a Gaussian
mixture model. The elements di in a dictionary are the centers
of the clusters. The next step is to find a dictionary-based
representation v = [v1, ..., vK ] for each previously extracted
local descriptor x. This can be done using hard feature
assignment or soft assignment. Hard assignment assigns a
single label, i.e., the index of the nearest neighbor in the
dictionary, to each local descriptor x. Formally, it is defined
as:

vk(x) =

{
1 if k = argmini ‖x− di‖2
0 otherwise (1)
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Fig. 2. Soft feature assignment using a kernel codebook: A local descriptor
denoted by a green square is assigned to three nearest neighbors. So the
final coded feature vector of this local descriptor has three non-zero values.
In contrast, hard assignment attributes a local descriptor only to its nearest
neighbor.

Thus, the final descriptor representation v = [v1, ..., vK ] has
only one non-zero element. The last step is to do the sum-
pooling 1 of all local descriptors extracted from one image
vi = sum(vj

i , ...,v
j
i ). In contrast, soft assignment tries to

assign a descriptor to multiple elements in the dictionary by
proportionally weighting the distances to the nearest neighbors
(cf. Fig. 2). Mathematically, the final descriptors are computed
as follows:

vk(x) =
exp (‖x− dk‖22/σ)∑P
k=1 exp (‖x− dk‖22/σ)

(2)

1Sum-pooling is equivalent to computing the histogram in the case of hard
feature assignment.

where dk, k = 1, .., P are the P nearest neighbors of a local
descriptor x in the dictionary and σ is the smoothing parameter
of a kernel function.

B. Methodology

During our investigations, we encountered a number of rel-
evant questions that had to be addressed. The most important
potential problem areas are summarized below:

1) What are the best local patch size and the best patch
sampling strategy?

2) What local features should be extracted?
3) What is the strategy of dictionary learning within the

BoW framework? A universal dictionary or multiple
class-specific dictionaries?

4) Involved sparse coding or simple vector quantization?
5) Nearest neighbor assignment or multiple assignments?

All these problems have to be tackled with care. Detail
analysis of critical parameters is very important for a well
understanding of the BoW method; this has been observed
in previous work. If we optimize all these components, a
simple unsupervised feature learning algorithm could be able
to achieve state-of-the-art accuracy. This has been observed by
Coates and Ng in [32]. In the following, we try to circumvent
a joint overall optimization and we decompose the overall
optimization into individual steps that can give us some hints
about what causes some algorithms to perform well and others
to perform poorly.

The first problems are the patch size and the patch sampling
strategy, which are practically related. If the patch size is quite
large, the dimensionality of the local features is very high [29],
which makes a subsequent unsupervised dictionary learning
time-consuming, and thus infeasible for large scale databases.
In addition, there would be large overlaps among patches if the
patch size is large. This could potentially degrade the feature
space. As for the patch sampling strategy, we will compare
regular dense sampling and random sampling in Section IV.

Another important problem is what local features can
be extracted with minimum computational effort. There are
many local features that have been proposed, as outlined in
Section I. We analyzed several discriminative local features
and will show that the vectorized pixel values of very small
patches, e.g., defined by windows of 3 × 3 pixels, provide
enough information for discrimination. We demonstrate that
this simple local feature vector can achieve a rather promising
performance for image classification. The main advantages are
its simplicity and the low computational cost.
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Fig. 3. Comparison of vector quantization using a random dictionary and k-means clustering on the UC Merced Land Use Dataset (see Section III-B).
Three examples are given for each of the 21 classes. The first color image is an example from each class. The second and third images in each group are the
dictionary entries using a random dictionary and a k-means dictionary. Both dictionaries have the same size of 200 entries. The semantic labels are given in
Section III-B.

The third problem is about the role of the dictionary that is
usually learned by various unsupervised clustering algorithms.
Dictionary learning is always taken for granted. However, in
the BoW method, this step is most time consuming. In the
case of large datasets, it is prohibitively time consuming to
learn a dictionary. The goal of dictionary learning is to find a
universal reference for feature coding. This universal reference
is not necessarily coincident with the actual cluster centers. We
show that a random dictionary, collected by a random selection
of some local descriptors in the feature space, is similar to one
that is carefully learned by an unsupervised clustering method.
Typical examples are given in Fig. 3. Here, we use the pixel

values of a 3 × 3 vectorized patch as a local feature vector;
the patches are sampled regularly from the given images.
Then we compare the results of vector quantization using
k-means with the results of a random dictionary. From the
results of vector quantization, we see that a random dictionary
can achieve similar performance as k-means. For the purpose
of quantitative analysis, the vector quantization errors using
both k-means and a random dictionary with the same size
of 200 entries are shown in Fig. 4. Although the quantization
error using a random dictionary is larger than for k-means, the
computational cost is significantly reduced without incurring
a loss in classification accuracy (see Section IV-F). Thus, the
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Data: A database of images Ii, i = 1, 2, N and the size of dictionary K.
Result: Feature vector of all images Ii Feat Matrix(K,N) in the database.
// initialization ;
D = zeros(9, K), IDs = [ ], nb patches = zeros(1, N), idx = 1;;
for i← 1 to N do

// compute the number of patches ;
nb patches(i)← CompNbPatches(Ii) ;
IDs← [IDs 1 : nb patches(i)] ;
idx← idx + nb patches(i)− 1 ;

end
// sampling a random dictionary;
randIDs← randperm(idx) ;
dictIDs← randIDs(1 : K) ;
cum nb patches← cumsum(nb patches) ;
for i← 1 to K do

ID ← dictIDs(i) ;
for j ← 1 to N do

if cum nb patches(j) > ID then
im id← j ;
break;

end
end
D(:, i)← readPatch(Iim id, IDs(ID)) ;

end
// loop over all the images and extract feature ;
for i← 1 to N do

patches← im2patches(Ii) ;
assign← zeros(1, nb patches(i)) ;
for j ← 1 to nb patches(i) do

k ← NearestNeighbor(patches(:, j), D) ;
assign(j)← k ;

end
fv ← zeros(1, K) ;
for j ← 1 to nb patches(i) do

fv(assign(j))← fv(assign(j)) + 1 ;
end
Feat Matrix(:, i) = fv ;

end
Algorithm 1: The proposed algorithm.

final feature vectors of an image are similar. This point is
pivotal, because time consuming clustering is avoided. Thus,
it makes BoW applicable and scalable for large databases.
Similar observations have been presented by Coates and Ng
in [33]. Another advantage of this method is that we do
not have to load all the features into memory. Only the
random dictionary is needed to be loaded into memory. Thus,
the memory requirements are significantly reduced. This is
very important for large datasets because they probably will
not fit into memory in many cases. The entire algorithm is
summarized in Alg. 1. In this pseudo code, Feat Matrix is
the final feature matrix, in which each column are the BoW
features; CompNbPatches(Ii) is a function to calculate the
number of patches that can be sampled from the image Ii,
cumsum(x) is a function to compute the cumulative sum of
vector x.

The last two problems involve feature coding methods,
which try to make the features more discriminative. There are
a number of different feature coding methods [34]. Although
a comparison has been done in [34], they are compared using
photos, not remote sensing images. Remote sensing images
are quite different from photos, such as no discrimination
between background and foreground. In addition, given a
remote sensing image, it is hard to tell about the what objects
present in the image. Thus, we compare vector quantization
and sparse coding as well as nearest neighbor assignment and
multiple assignments in Section IV.
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Fig. 4. Vector quantization error of a k-means and of a random dictionary
after 20 test runs of k-means clustering. The average distance of all feature
vectors to their nearest neighbors is computed as a measure of the quantization
error.

Fig. 5. Example images of 160 × 160 pixels from 15 classes of 3434
TerraSAR-X images being used for evaluation. They comprise 7 classes
derived from urban areas. The number of images in each class range form
118 to 430.

III. DATASETS

For a detailed quantitative evaluation of the proposed op-
tions, two databases were prepared. The first one is a database
of space-borne SAR images, while the second one contains
optical satellite images. These two databases are introduced
in the following sections.

A. SAR Images

The first database is composed of 15 classes of altogether
3434 TerraSAR-X sub-scenes [35] with a size of 160 × 160
pixels and a pixel spacing of about 3 m (cf. Fig. 5). These 15
class are representative classes that are often seen from remote
sensing images. The sub-scenes are cut from radiometrically
enhanced high resolution Stripmap TerraSAR-X images with
good signal-to-noise ratios. This dataset was interactively com-
piled from 100 TerraSAR-X images covering many countries
over the world using an active learning system [36]. We could
discriminate 15 classes; among them there are 7 classes of
urban areas, which is sufficient to evaluate the methods for
urban area classification. In addition, there are 3 classes related
to agricultural fields. The remaining classes contain grassland,
forest, mountain areas, railway tracks, and ocean water.
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B. Optical Images

The second database we used is the UC Merced Land Use
Dataset [19]2, which is publicly available and served as a test
bed for several publications. Thus, we can easily compare
our results with other methods that have been applied to this
dataset. The data contain manually extracted sub-scenes from
large images existing in the USGS National Map Urban Area
Imagery collection covering various urban areas around the
United States. The pixel spacing of this public domain imagery
is 1.0 foot. The database comprises 21 classes and each class
contains 100 scenes. Example scenes from each class are
shown in Fig. 3. The semantic labels of the 21 classes are
’agricultural’, ’airplane’, ’baseball diamond’, ’beach’, ’build-
ings’, ’chaparral’, ’dense residential’, ’forest’, ’freeway’, ’golf
course’, ’harbor’, ’intersection’, ’medium residential’, ’mobile
home park’, ’overpass’, ’parking lot’, ’river’, ’runway’, ’sparse
residential’, ’storage tanks’, and ’tennis court’. A quantitative
evaluation on this dataset is described in Section V.

IV. EXPERIMENTS AND RESULTS ON THE SAR IMAGES

In this section, we investigate the five problems listed in
Section II-B based on our SAR dataset. A series of experi-
ments are performed where we evaluate the effects of varying
one BoW parameter while keeping the other parameters fixed.
In addition, we compare our BoW results with other methods.
In all the following evaluations, 30 training samples are
randomly selected from each class and used for classification
training and the remaining images are used as test data. The
classifier used by us is a one vs. one C-SVM [37] with a χ2

kernel function. The parameter C is empirically set to 1000.
The five problems listed in Section II-B are analyzed. The
classification performance is measured in 20 test runs and we
show their average accuracy.

A. Patch Size

In this experiment, different window sizes (from 3 × 3
to 21 × 21 pixels) are used for patch sampling and cutting.
The local feature vector is a column-wise vectorization of all
pixel values within the local window. Then k-means clustering
is applied to learn a dictionary with a size of 200 entries.
Three evaluations are carried out. In the first evaluation, we
do not consider overlapping patches; thus, the number of
patches decreases as the patch size increases. The classification
accuracy versus patch size is shown as the red curve in Fig.
6. The number next to each point on the curve is the number
of patches having been sampled from an image. Obviously,
the accuracy decreases as the patch size increases. Here, the
shrinking number of selectable patches may be a reason for
the decreasing accuracy, rather than the patch size. Therefore,
in the second evaluation we allow overlapping patches in
order to increase the number of patches that can be sampled
from an image. The resulting accuracy versus patch size is
plotted as the green curve in Fig. 6. Similarly to the first
evaluation, the accuracy decreases as the patch size increases.
This is consistent with the observation in the first evaluation.

2http://vision.ucmerced.edu/datasets/landuse.html

However, it is worth to note that increasing the number of
patches will increase the accuracy for a given patch size.
Although we allow overlaps between adjacent patches, the
number of patches still decreases as the patch size increases,
which can be seen from the number next to the plotted points.
In the last evaluation, we keep the number of patches fixed;
we randomly sample a constant number of 2704 patches from
each image, which is the total number of 3× 3 patches in the
case of no overlap. The resulting accuracy is shown as the blue
curve in Fig. 6. Apparently, the accuracy still decreases as the
patch size increases. In addition, the blue curve is very similar
to the green curve in Fig. 6. We can see that increasing the
number of large patches will not lead to improved accuracies.

Therefore, we can conclude that a compact neighborhood
size of 3× 3 pixels is better than a large patch size, which is
not consistent with the claim by [30] that the patch size must
be large enough to encompass the dominant texture variations.
This is probably because the images used for evaluation are
different. With a smaller patch size, the image content variation
can still be captured by the word histogram in the BoW
framework, because the word histogram counts the number of
clusters that occur in the image. The reason that the accuracy
for a large patch size is worse can be explained by the feature
space that cannot be well separated. In addition, there is a
large overlap between adjacent patches for large patch sizes.
Although the number of patches is sufficient due to their large
overlap, the patches might not be representative enough to
learn clusters in the feature space. Consequently, the final word
histogram has less discrimination power.
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Fig. 6. Patch size evaluation: The red curve is the classification accuracy
versus patch size using regular patch sampling without overlap. The number
next to each point on the curve is the number of patches being used. The
green curve is the case with a 3 pixel shift along both dimensions. The blue
curve is the classification accuracy versus patch size using random sampling
with 2704 patches.

B. Patch Sampling Strategy

In this experiment, we compare regular dense patch sam-
pling (with and without overlap) with random sampling of
differently sized patches while keeping the number of patches
fixed. In case of random sampling, the row and column
positions of the patches are determined by drawing random

http://vision.ucmerced.edu/datasets/landuse.html
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Fig. 7. Evaluation of patch sampling: (a) Comparison of regular sampling and random sampling with the same number of patches; (b) Impact of the number
of patches sampled from an image with a patch size of 11 × 11 pixels; (c) Impact of the number of patches sampled from an image with a size of 3 × 3
pixels. The first abscissa point corresponds to the maximum number of 3041 patches that we can obtain by regular sampling from an image. When we increase
the number of patches by irregular random sampling, the accuracy reaches a peak near 4 times the maximum number of patches for regular dense sampling,
which is much less than the maximum number of patches that can be sampled from the image. This implies that increasing the number of patches in random
sampling can increase the accuracy slightly; however, it is not necessary to use all patches from an image.

samples from a uniform distribution. The regular dense sam-
pling with overlap is the same as the case corresponding to the
green curve in Fig. 6. The number of patches is the same as in
the case of regular sampling with overlap, but now the sam-
pling strategy is replaced with random sampling. The resulting
classification accuracy versus patch size is plotted as the blue
curve with squares in Fig. 7(a). It can be clearly seen that,
although regular dense sampling is slightly better than random
sampling, there is no big difference as long as the number
of patches remains the same and the entire image is fully
covered. In a second evaluation, we compare random sampling
with regular dense sampling without overlap while keeping the
number of patches fixed. The classification accuracy versus
patch size is shown as the blue curve with superimposed circles
in Fig. 7(a). In this case, regular sampling is also slightly
better than random sampling because, in practice, random
sampling will not fully cover the entire image. To obtain a
definite answer to the influence of the sampling strategy, we
verify the impact of increasing the number of patches that are
randomly sampled for small and large patch sizes. The effect
of increasing the number of patches with random sampling
is shown in Fig. 7(b) for a patch size of 11 × 11 pixels
and in Fig.7(c) for 3 × 3 pixels. For a large patch size of
11 × 11 pixels, the classification accuracy initially increases
as the number of patches grows. However, the attainable
accuracy becomes stable beyond 4000 patches, which means
there is no substantial gain in accuracy by increasing the
number of patches, because a large number of patches will
be duplicated, which can prohibit good clustering. On the
other hand, an excessive number of patches will increase the
computational burden. For smaller patches, the relationship
between classification accuracy and the number of patches is
shown in Fig. 7(c). It can be seen that increasing the number
of small patches can lead to a slight increase in accuracy.
However, even increasing the number of large patches in
random sampling cannot reach the accuracy of regular dense
sampling with small patches. Therefore, we conclude that
two conditions have to be satisfied for patch sampling: The

first one is that the entire image needs to be covered by the
patches. The second one is that the number of patches has to
be sufficiently high such that the statistics can be accurately
estiamted. Regular dense sampling with small patches has
a slightly better accuracy than random sampling with the
same number of patches. For large patch sizes, increasing the
number of patches with random sampling can improve the
accuracy, but this approach is inferior to regular sampling with
small patches, which confirms the conclusion of the previous
evaluation.

C. Dictionary Size

The classification accuracy may also depend on the dictio-
nary generated by k-means clustering. We tested a range of
dictionary sizes to evaluate their impacts. In the case of 3× 3
patches, the classification accuracy versus dictionary size is
shown in Fig. 8(a). It can be clearly seen that the accuracy
initially increases with a growing dictionary size because a
small dictionary cannot capture the full distribution of the
feature space and is thus underfitting the model. However,
the accuracy reaches its peak when the dictionary size reaches
around 250 entries. Beyond that point, the accuracy decreases
again because the feature space suffers from overfitting by a
large dictionary. In addition, the required computation time
on a standard PC versus different dictionary sizes is plotted
in Fig. 8(b). The time increases linearly with dictionary size.
Therefore, for a practical application, one should select an
appropriate dictionary size with respect to both classification
accuracy and computing time. In our case, a value of 250
seems to be a good choice.

D. Universal Dictionary or Class Specific Dictionary

An important issue in dictionary generation is either to
construct a universal dictionary for all occurring classes,
or a class specific concatenated dictionary. Fig. 8(c) shows
the classification accuracy versus dictionary size. It becomes
evident that a universal dictionary always performs better than
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Fig. 8. Impact of the dictionary size on the accuracy and the computational cost: (a) Dictionary size; (b) Computational cost; (c) Comparison of universal
and class-specific dictionaries.

a concatenation of class specific sub-dictionaries. The reason is
that different classes may have some clusters in common. The
universal dictionary can capture the global feature distribution
without considering the distributions of individual classes.
In contrast, class specific sub-dictionaries may have some
common clusters but they are considered separately; thus, the
feature space is prone to underfitting. However, the computa-
tional effort to obtain a universal dictionary is much higher
than generating a class specific dictionary as, in addition to
the curse of dimensionality, a large volume of feature vectors
is involved in the clustering.

E. Extraction of Local Features

From the previous sections, we know that the pixel values
taken from a compact neighborhood can achieve very promis-
ing classification accuracy with a medium size dictionary.
Therefore, we compare our vectorized patch baseline method
with six other pixel sorting methods proposed in [11], [30]
and [31]. These are RIFT and five Sorted Random Projection
(SRP) methods that differ in how to sort the pixel values or
sorted pixel differences taken from a local window, namely
SRP Global, SRP Square, SRP Circular, SRP Radial-Diff, and
SRP Angular-Diff. The reason why we compare our method
with these pixel sorting alternatives is that they are quite
competitive. In the following three evaluations, we vary one
parameter while keeping the other ones fixed.

In the first evaluation, a dictionary with a size of 200
elements is learned using k-means. We evaluate the impact
of local feature sorting with patch sizes ranging from 3× 3 to
21 × 21 pixels with a 3 pixel shift in two directions. The
resulting classification accuracy when using different patch
sizes is shown in Fig. 9(a). It is interesting to see that a sorting
of the pixel values may have a considerable impact for large
patch sizes, but the improvement remains slight for smaller
patch sizes. Three sorting options, namely, SRP Global, SRP
Square, and SRP Circular rank on top and exhibit similar
behavior when the patch size increases. In these cases, the
accuracy decreases as the patch size increases, which confirms
our conclusion drawn previously in Section IV-A. In contrast,
the SRP Radial-Diff option shows an increasing accuracy
when the patch size increases but its initial accuracy is lower
than that of our vectorized patch method. SRP Radial-Diff

reaches its peak accuracy for a patch size of 7 × 7 pixels.
Beyond that point, the classification accuracy decreases again
and is similar to our vectorized patch method. SRP Angular-
Diff has a sharp improvement in accuracy when changing
from 3 × 3 to 5 × 5 pixels. For patch sizes between 7 × 7
and 13× 13 pixels, its performance is inferior to the baseline
vectorized patch method. However, for smaller patch sizes, the
baseline vectorized patch method performs much better than
SRP Radial-Diff and SRP Angular-Diff. On the other hand,
RIFT ranks last when compared with the other options. From
this evaluation, we can conclude that using all pixel values in
a patch gives good accuracies.

In the second evaluation, we use fixed patch sizes of
3 × 3, 5 × 5, and 7 × 7 pixels and vary the dictionary
size from 50 to 500 entries. In this comparison, the baseline
method is a vectorized patch of 3 × 3 pixels. The resulting
classification accuracy versus dictionary size is shown in Fig.
9(b). Generally, the accuracy is higher for large dictionaries but
stabilizes for sufficiently large dictionaries, which is consistent
with the conclusion drawn previously in Section IV-C. It can
be clearly seen that for a sufficiently large dictionary and a
small patch size the performances of the SRP Global, SRP
Square, and SRP Circular options are not much different from
our baseline method. However, the baseline method performs
much better than the SRP Radial-Diff and SRP Angular-Diff
options for all dictionary sizes.

In the third evaluation, we vary the number of training
samples while keeping fixed the dictionary size and the patch
size. The accuracy of all five options when varying the number
of training samples is shown in Fig. 9(c). Obviously, SRP
Angular-Diff and Radial-Diff perform worse than all other four
options. The common characteristic of all these four options
is that they use all pixel values in their local neighborhood.
Another observation is that the accuracy differences are negli-
gible for very small patch sizes. As the patch size increases, the
advantage of a sorting operation becomes obvious. However,
the accuracy decreases as the patch size increases. Therefore,
aiming at the best accuracy, we should use all pixel values of
a very small patch as low level feature vector.

We conclude that the vectorized pixels from a very small
neighborhood perform quite well in the BoW model for
SAR image classification. Sorting the pixel values in the
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Fig. 9. Evaluation of pixel sorting options: (a) Comparison of vectorized patches with six other feature sorting options using a fixed dictionary size of 200
entries; (b) Comparison using different dictionary sizes with a patch size of 3 × 3 pixels; (c) Comparison using a different number of training samples, a
patch size of 3× 3 pixels, and a dictionary size of 200 entries.
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Fig. 10. Comparison of a random dictionary with a dictionary learned using k-means: (a) Comparison using different dictionary sizes; (b) Comparison using
different patch sizes; (c) Comparison using different numbers of training samples.

compact patch performs slightly better but does not give much
improvement for small patch sizes. However, SRP Angular-
Diff and SRP Radial-Diff always perform worse than the
vectorized pixels for small patches. On the other hand, in
terms of computational effort, SRP Circular, SRP Angular-
Diff and SRP Radial-Diff options are more time consuming
than our vectorized baseline because they involve interpolation
at non-integer positions. From a practical point of view, our
vectorized baseline is preferable in the case of large scale
applications.

F. Learned Dictionary or Random Dictionary

In this experiment, we compare random dictionary learning
and k-means dictionary learning in terms of classification
accuracy. Three evaluations are performed. In the first eval-
uation, we use the vectorized patch of a 3 × 3 pixel window
as a low level feature vector. The elements in the random
dictionary are randomly selected from all the local feature
vectors. The classification accuracy versus dictionary size is
shown in Fig. 10(a). We can clearly see that there is not
much difference between a random dictionary and the one
learned using k-means. In the case of large dictionaries, a
random dictionary is even better. This is very important for
practical applications as dictionary learning using k-means is
usually quite time consuming and may become prohibitively

slow for large datasets. From this evaluation, we see that it
is not necessary to spend time for learning a dictionary using
unsupervised learning methods. As long as the elements in the
dictionary can provide full support for the data points in the
feature space, even a random dictionary can give very good
accuracy.

In the second evaluation, we investigate the performance of
a random dictionary versus patch size. We fix the dictionary
size to 200 entries and vary the patch size from 3 × 3 to
21× 21 pixels with a 3 pixel window shift in two directions.
The classification accuracy versus patch size is shown in Fig.
10(b). It becomes evident that a random dictionary is superior
to dictionaries learned by k-means. In the last evaluation, we
change the number of training samples while keeping fixed
the patch size of 3 × 3 pixels and the dictionary size of
200 entries. The classification accuracy versus the number of
training samples is shown in Fig. 10(c). We can clearly see
that they are almost the same. Through these three evaluations,
we conclude that a random dictionary can achieve a good
performance and, in some cases, an even better accuracy than
k-means.

G. Sparse Coding or Vector Quantization

In this section, we compare different feature coding meth-
ods. Vector quantization (hard feature assignment) [15] is
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used as a baseline for comparison with Fisher Vector (FV)
[38], Kernel Codebook Encoding (KCE) [22], and Locality-
constrained Linear Coding (LLC) [27]. To demonstrate the
advantage of a random dictionary, its classification accuracy
is also plotted as a reference in Fig. 11.

In this evaluation, the patch size used by us is 3× 3 pixels
and the dictionary sizes vary from 50 to 500 entries. Three
local feature extractors, namely SRP Global, SRP Angular-
Diff, and vectorized patches, are chosen for evaluating the
feature coding methods.

All results are shown in Fig. 11. Obviously, vector quanti-
zation using a random dictionary has very good performance.
Although the use of a kernel codebook was proposed to
overcome the drawback of vector quantization, its actual
improvement is negligible. It is only slightly better than vector
quantization for the less discriminative feature sorting option
SRP Angular-Diff. Therefore, it seems that there is no gain
in accuracy by assigning a local feature vector to multiple
neighbors. The performances of both vector quantization and
kernel codebook are quite stable with respect to the dictionary
size. It is interesting to see that both LLC and FV perform
worse than vector quantization. FV performs even worse
but its accuracy remains quite stable versus dictionary size.
The most devastating characteristic of FV is that it is very
time consuming to learn a mixture model in the case of a
large dictionary. The least performing method is LLC, whose
performance improves with increasing dictionary size. From
the accuracies shown in Fig. 11, we can see that both the
local feature descriptor and the feature coding method are
very important. Bad choices of these components will reduce
the overall performance. We conclude that although there
are many methods trying to improve vector quantization by
reducing the information loss, we do not observe much gain
in accuracy.

H. Comparison with Other Methods

In the last experiment, we compare the BoW method using
vectorized pixels of a 3 × 3 patch and a random dictionary
with state-of-the-art feature extraction methods, namely Gabor
feature extraction, GLCM feature extraction, wavelet feature
extraction, and feature extraction based on Short-Time Fourier
Transform (STFT), Quadrature Mirror Filters (QMF) and
Fractional Fourier Transform (frFT).
• Gabor texture features are the statistics of Gabor filter

responses. A Gabor filter is characterized by its scale and
orientation. We compare two sets of statistics: The first
set consists of the mean and the variance of the sub-bands
[39], while the second set contains the log-mean and the
log-variance of the sub-bands; this combination has been
demonstrated as a good choice for SAR image retrieval
in [40]. The number of scales and orientations are set to
4 and 6, respectively. Thus, the dimension of the feature
vector is 48.

• GLCM texture features [41] are the statistics of the so-
called co-occurrence matrix, which is defined by the
second order statistics of a pair of pixels being offset from
each other by a given number of horizontal and vertical

pixel shifts. To reduce the computational complexity, a
coarse quantization of the image gray levels is usually
applied prior to calculating the co-occurrence matrix. As
suggested by [42], setting the number of levels to a
value of less than 24 can produce unreliable classification
results, while a large number of levels (greater than 64)
are deemed unnecessary since they do not improve the
classification accuracy and are computationally costly.
Therefore, we set the number of quantization levels to
32. The number of orientations is set to 4 and the
number of shifts ranges from 1 to 4. The statistics we
compute are autocorrelation, contrast, correlation, cluster
prominence, cluster shade, dissimilarity, energy, entropy,
homogeneity, maximum probability, sum of squares, sum
average, sum variance, sum entropy, difference variance,
difference entropy, information measure of correlation,
inverse difference, normalized inverse difference, normal-
ized inverse difference moment [41], [42]. Then, the total
dimension of the corresponding feature vector becomes
20× 4× 4 = 320.

• Alternatively, the texture features based on a wavelet
transform are the mean and variance of the filter bank
responses. In our case, an image is decomposed into 3
levels using both a non-decimated 2D wavelet transform
(NDWT) and a dual tree complex wavelet transform
(DTCWT) [43]. Similar to the Gabor case, two set-
s of features are computed. In the non-decimated 2D
wavelet transform, a Daubechies filter is applied, while
in DTCWT, near-symmetric 13,19-tap filters are being
used for the first level and Q-Shift 14,14-tap filters are
employed for all higher levels. The dimensions of the two
feature vectors are 18 and 36 respectively.

• The extracted STFT features [44] are 6 parameters based
on a short-time Fourier transform, which include the
mean and variance, the spectral centroid and the spectral
flux in horizontal and vertical direction. The spectral cen-
troid is the centroid of the short-term Fourier transform;
it is a measure of spectral brightness.

• The QMF features [45] we computed are the mean and
variance of all the sub-bands in the pyramid. The number
of levels is set to 3, thus, the sub-band pyramid comprises
1 low pass band, 3 horizontal sub-bands, 3 vertical sub-
bands, and 3 diagonal sub-bands. The corresponding
feature vector contains 20 elements.

• Finally, the use of Fractional Fourier transform (frFT)
features was proposed by [40] and [46] for SAR image
classification. Here, the log-moment and log-variance of
all sub-bands are used as a feature vector to characterize
a SAR image patch. The only free frFT parameter is the
number of angles, which is assumed to be 18. Therefore,
the feature vector dimension is 36 elements.

The classification accuracies of our feature extraction meth-
ods (including some logarithmic versions of known methods)
for all 15 SAR image classes are shown in Fig. 12. It can
be clearly seen that the BoW method using vectorized patch
pixels and a random dictionary performs significantly better
than all other methods and has an average accuracy of more



11

50 100 150 200 250 300 350 400 450 500
60

65

70

75

80

85

90

95

Dictionary size

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 [%

]

 

 

VQ
RandDict_VQ
LLC
FV
KCE

(a) Vectorized pixels

50 100 150 200 250 300 350 400 450 500
65

70

75

80

85

90

95

Dictionary size

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

VQ
RandDict_VQ
LLC
FV
KCE

(b) SRP Global

50 100 150 200 250 300 350 400 450 500
45

50

55

60

65

70

75

80

85

Dictionary size

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 [%

]

 

 

VQ
RandDict_VQ
LLC
FV
KCE

(c) SRP Angular-Diff

Fig. 11. Evaluation of feature coding methods using three different local feature vectors and different dictionary sizes: (a) Vectorized patch; (b) SRP Global;
(c) SRP Angular-Diff.
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Fig. 12. Comparison of the BoW method with state-of-the-art feature
extraction methods.

than 90%. In contrast, the average accuracies of all the other
methods are lower than 90%. Log-Gabor and log-DTCWT
have similar performances next to BoW, followed by frFT that
performs better than all the remaining methods. In addition,
we can see that the logarithmic versions of Gabor, NDWT,
and DTCWT perform better than their linear counterparts. The
STFT method lies far behind; the reason for it could be the
lower dimension of its feature vector.

I. Scalability of the method

Since the selected data is indeed not very big, in this section
we demonstrate the scalability of this method. We compare the
scalability of the proposed method with conventional BoW
method. To this end, we increase gradually the data volume
that have been selected for feature extraction and measure the
processing time. The results are shown in Fig. 13. From this
figure, we can see that the proposed method performs much
faster than conventional BoW and it can be easily applied
to a large data without much need for processing time. In
addition to the processing time, the memory consumption is
significantly reduced because conventional BoW method needs
to load all the data into memory in order to learn a dictionary.
Thus the memory requirement is linearly increasing as the data

100 200 300 400 500 600
0

50

100

150

200

250

300

350

Data volume [MB] 

C
P

U
 ti

m
e 

[s
]

Scalability of the proposed method

 

 

Conventional BoW
Our method

Fig. 13. Scalability of the proposed method.

volume increases. In contrast, our method do not need such
a large memory because the entries of the dictionary in our
method are randomly selected from the data that can be stored
on disk.

V. EXPERIMENTS AND RESULTS ON THE UC MERCED
LAND USE DATASET

In this section, we evaluate our proposed method on the UC
Merced land use dataset and compare our method with other
state-of-the-art methods that have been evaluated with the UC
Merced dataset.

The two methods we choose for comparison are spatial
pyramid co-occurrence [19] [47] and the unsupervised fea-
ture learning method [48]. The spatial pyramid co-occurrence
method extends the spatial pyramid kernel, which is a con-
catenation of the BoW feature vectors of all patches on a
multi-resolution grid. The idea is to consider the co-occurrence
of a pair of words in each multi-resolution patch where
the resulting feature vector contains their concatenation. In
contrast, the unsupervised feature learning method follows
a conventional procedure of unsupervised feature learning,
which comprises two steps, namely dictionary learning and
feature coding. The dictionary size is 500. An additional final
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Fig. 14. Classification results on the UCMerced landuse dataset: (a) classification confusion matrix of our proposed method; (b) average accuracy of each
class after 20 test runs; (c) legend of the classes.

TABLE I
ACCURACY COMPARISON WITH PREVIOUSLY REPORTED ACCURACIES ON THE UCMERCED DATASET.

Method BOVW [47] SPMK [23] SPCK [47] SPCK+ [47] SPCK++ [47] UFL [48] Color Histogram [19] Our Method
Accuracy 71.86% 74.00% 73.14% 76.05% 77.38% 81.67% 81.19% 87.67%

step is feature pooling, i.e., histogram generation. Both the
pyramid co-occurrence and the feature learning method have
been evaluated on the UC Merced dataset. We follow the same
experimental setup for both methods. 80 images from each
class of the dataset are randomly selected as training data and
the remaining data are used as test data. For our method, we
employ the vectorized pixel values from a 3×3 local window
as low level feature vectors and use a random dictionary. All
classifications are performed in 20 test runs and we present
their average accuracy. Then we compared our results with
other methods. The corresponding confusion matrix is shown
in Fig. 14(a). The average accuracy for each class after 20 test
runs is shown in Fig. 14(b). The average accuracy of all classes
is 86.42%, as shown in Table. I. The accuracy of our method
is 5% better than the best one reported in [48]. In addition, our
method is much simpler in terms of both computational effort
and memory requirements compared with other methods.

VI. CONCLUSION

In this paper, we focus on remote sensing image classifi-
cation, including both optical and SAR images. We propose
a simple yet quite effective method in the BoW framework.
It has two main contributions. The first contribution is that
our method does not need to extract any complex low level
feature during a pre-processing step, which normally requires
a certain amount of computational effort; instead, vectorized
pixel values from a very small local window yield a superior
BoW performance. The second contribution is that a random
dictionary can achieve the same performance as one learned
via clustering, which is usually a very time consuming step.
In the case of large datasets, this clustering step can make
a method infeasible. We performed an extensive investigation
of the BoW method and these two contributions have been
clearly demonstrated. In addition, we give clear answers to
some other relevant but critical questions about BoW feature
extraction. These two advantages over conventional methods
not only significantly reduce the computational burden but

also decrease the memory requirements, thus making the BoW
method applicable and scalable to large databases.
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