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Remote Sensing of Terrestrial Rainfall From
Ku-Band Scatterometers
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Abstract—Rainfall is the most fundamental variable of the ter-
restrial hydrological cycle. However, in many regions of the world,
ground observations are still very scarce or even missing. Recently,
a bottom-up approach, named SM2RAIN, for terrestrial rainfall
estimation from satellite soil moisture (SM) products was pro-
posed and successfully applied to C- and L-band products from
scatterometers and radiometers. Thanks to the multiple Ku-band
scatterometers launched in the recent years and a number of
new sensors expected in the near future, accurate rainfall estima-
tion at subdaily time scale could be obtained. We present here a
first attempt to estimate terrestrial rainfall from Ku-band scat-
terometers using SM2RAIN. To this end, backscattering data
(sigma-0) collected in central Italy from the RapidScat instru-
ment on board the International Space Station are compared with
the Advanced SCATterometer (ASCAT, C-band) SM product and
in situ observations for assessing its sensitivity to SM variations.
Then, RapidScat sigma-0 is used for rainfall retrieval and com-
pared with ground observations over a regular grid of 15-km
spacing. The 8-month period from Nov 2014 to Jun 2015 is con-
sidered. Results show a very good agreement between ASCAT
SM and RapidScat SM index with a median temporal correla-
tion coefficient R of ~0.9 and a reasonable performance (R >
0.52) against in situ data. More interestingly, the performance
of RapidScat in 1-day rainfall estimation is found to be satisfac-
tory with median R-values equal to ~0.6. These promising results
highlight the large potential of using the constellation of scat-
terometers for providing an accurate rainfall product with high
spatial-temporal resolution.

Index Terms—Hydrology, rain, soil

measurements.

radar applications,

I. INTRODUCTION

AINFALL is the main driver of the hydrological cycle,

and its quantification in space and time is needed for
many applications, such as flood modeling [1], [2], landslide
prediction [3]-[5], drought monitoring [6], and crop produc-
tion [7], to cite a few.

The most common method for estimating rainfall is using
rain gauges that, however, are experiencing a strong decline
in the recent years and suffer from scale representative issues
[8]. Due to the strong space—time variability of rainfall, ground
(meteorological radar) and satellite remote sensing techniques
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are suitable for providing area-averaged estimates. However,
being indirect measurements, both radar and remote sensing
techniques are affected by large uncertainties [9]-[12], mainly
in areas not covered by ground observations.

Recently, some researchers suggested to use satellite soil
moisture (SM) data for correcting [1]-[16] and estimating [8],
[17], [18] rainfall. Specifically, Brocca et al. [8] developed
a bottom-up approach, named SM2RAIN, for the estima-
tion of rainfall directly from SM measurements. SM2RAIN
was successfully applied to satellite products from L- and C-
band radiometers (SMOS—Soil Moisture and Ocean Salinity,
AMSR-E—Advanced Microwave Scanning Radiometer Earth
Observing System) and from C-band (ASCAT—Advanced
SCATterometer) scatterometer [17], with the latter provid-
ing the best performance. More recently, Ciabatta et al. [19]
demonstrated that the integration of the bottom-up and top-
down (state-of-the-art products) approaches could provide a
significant improvement in rainfall estimation. Despite these
good results, obtaining rainfall products at high temporal res-
olution (daily, subdaily) through the SM2RAIN approach is
still difficult if 4-8 overpasses per day of satellite observations
are not available. This configuration can be achieved only by
considering multiple sensors.

Currently, a constellation of scatterometers is being coor-
dinated for the near future (next 5 years), where C- and Ku-
band scatterometers are considered together (http://ceos.org/
ourwork/virtual-constellations/osvw/). As shown in Fig. 1, it is
foreseen that more than 8 scatterometers (starting from the end
of 2015) will be in orbit at the same time thus allowing to have
very frequent measurements, potentially every 2-3 h (depend-
ing on the overpass time of the different sensors). Concerning
Ku-band scatterometers, Mladenova et al. [20] and Oveisgharan
et al. [21] demonstrated the good sensitivity of QuikSCAT Ku-
band backscattering data (sigma-0) to SM variations, with the
better results over scarcely vegetated areas. Moreover, Turk
et al. [22] have shown very recently that sigma-0 s from the
Oceansat-2 Scatterometer (OSCAT) are sensitive to fallen rain
and can be employed for tracking previous-time precipitation
in view of improving satellite rainfall products from the Global
Precipitation Mission (GPM, [12]). Notwithstanding the long-
term availability of Ku-band scatterometers (e.g., QuikSCAT
was launched in 1999), to our knowledge, the previously cited
studies are the only ones using these measurements for detect-
ing SM and rainfall, and only a limited number of studies have
used these data in land applications (e.g., [23]).

On this basis and in view of the near future availability of a
constellation of scatterometers, for the first time, we tested here
the capability of sigma-0 from RapidScat for estimating both
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Fig. 1. Constellation of Ku- and C-band scatterometers from 2000 and (currently) planned for next 10 years (see also http://ceos.org/ourwork/virtual-
constellations/osvw/).
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Fig. 2. Comparison of relative SM data by RapidScat (HH and V'V polarizations), ASCAT, and in situ observations for the period November 2014—June 2015 in
central Italy (lon, lat = 12.5°, 43.0°); daily rainfall data are also shown.

SM and rainfall (through SM2RAIN) in Umbria region (central ~ before. Specifically, the SM product obtained from ASCAT is
Italy). We underline that it is the first study in which RapidScat used for analyzing the sensitivity of RapidScat to SM varia-
data are used over land and, remarkably, for a new applica- tions. Ground rainfall observations from a dense network of rain
tion for which Ku-band sigma-0 measurements were never used  gauges are employed for the validation of the estimated rainfall
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data from RapidScat. Due to its recent launch, only 8-month
period from November 2014 to June 2015 is investigated.

II. STUDY AREA AND DATASETS

The Umbria region (~8500 kmz), located in central Italy, is
considered as a case study for the high quality and quantity of
rainfall (and SM) observations, the low probability of having
frozen soil conditions associated with a small amount of moun-
tainous areas. The region is characterized by a Mediterranean
climate with annual rainfall ranging between 700 and 1500 mm
and mean annual temperature of 13.1 °C. In the area, a dense
hydrometeorological network is operating since 1990 in real
time for civil protection purposes, i.e., mainly, the mitigation of
the hydrogeological risks (floods and landslides). For this study,
quality-checked half-hourly rainfall data from 90 rain gauges
are aggregated at daily time scale in the period from November
2014 to June 2015 and interpolated (through inverse distance
weighting) over a regular grid with spacing of about 15 km
(53 pixels). Additionally, in situ SM observations at 10-cm
depth (Cerbara station) are used for a qualitative assessment of
ASCAT and RapidScat SM estimates.

Satellite SM data are obtained from ASCAT, which is a
C-band (5.255 GHz) scatterometer currently operating on the
Metop-A and Metop-B satellites. SM is retrieved from ASCAT
sigma-0 using a change detection algorithm developed by
Wagner et al. [24]. In central Italy, the ASCAT SM product
is available nearly every day with a spatial resolution of 25 km
(sampling of 12.5 km). The product is used here as benchmark
since 1) good performances were found in the study area in the
comparison between ASCAT and ground SM observations [25],
and 2) it allows us to compare directly Ku-band and C-band
observations that, potentially, can be merged for deriving an
advanced product with higher temporal resolution.

The RapidScat scatterometer (http://winds.jpl.nasa.gov/
missions/RapidScat/) is a swift and cost-effective replace-
ment for the National Aeronautics and Space Administration
(NASA) QuikSCAT satellite mounted on the International
Space Station. The instrument is a conically scanning pencil-
beam scatterometer (Ku-band, 13.4 GHz) with two “spot”
beams on the ground: a horizontal polarization beam (HH)
and a vertical polarization beam (VV) at incidence angles of
49° and 56°, respectively. Due to the conical scanning, a mea-
surement is generally viewed when looking forward (fore) and
a second time when looking backward (aft). As such, up to
four measurement classes (called “beam’) emerge for each
sampling point, i.e., HH fore, HH aft, VV fore, and VV aft.
For this study, sigma-Os from fore and aft beams are aver-
aged together. Therefore, HH and VV polarization data are
extracted and regridded over a regular grid with spacing of
about 15 km using the nearest neighboring method and select-
ing the 8 measurements nearest to the centroid of each grid
point (53 pixels).

IIT. METHODS

In the following, the procedure used for retrieving a SM
index and, then, rainfall from RapidScat sigma-0 is outlined.

We note that the SM retrieval algorithm is taken as simple as
possible as our purpose is to demonstrate the sensitivity of the
signal seen from RapidScat to SM and not to develop a retrieval
algorithm. The latter will be the object of future investigations
that will exploit the multiple incidence angles and polarizations
of Ku-band scatterometers.

According to Mladenova er al. [20], sigma-0 measure-
ments from QuikSCAT were found linearly related to change
in SM. Moreover, as for each polarization, the incidence
angle of RapidScat is constant, the normalization of sigma-0
with respect to incidence angle, as performed in the ASCAT
change detection algorithm, is not needed. Therefore, a simple
approach for deriving a SM index from RapidScat is normaliz-
ing the log-scale sigma-0 between its maximum and minimum
values for each pixel. Here, a linear normalization approach is
used. However, due to the limited time length of the availability
of sigma-0 from RapidScat, the minimum and maximum val-
ues are expected to be not representative of dry and saturated
conditions. Therefore, the linear normalization is carried out by
considering the maximum and minimum SM values obtained
from ASCAT (9-year data period) in the same period of obser-
vation of the two sensors. For each pixel, the normalization is
not made between zero and one but between the maximum and
minimum SM values given by ASCAT.

The SM2RAIN method is based on the inversion of the water
balance equation and, by assuming that during rainfall, the sur-
face runoff and the evapotranspiration rates are negligible, the
rainfall rate p(z) is obtained as

p() =20 4 astoy” m

where s(t) is the relative SM, Z* is the soil water capac-
ity, and @ and b are the two parameters of the drainage rate
(more details can be found in [17] and [18]). In this study, the
SM2RAIN algorithm is applied to RapidScat SM data using
the same approach as described in [19]. Specifically, the cali-
bration of SM2RAIN parameter values is performed pixel by
pixel. No validation periods are considered due to the lim-
ited period in which RapidScat measurements are available.
Indeed, we would like to remark that the main purpose of this
letter is to make the scientific community aware of the possi-
bility of using Ku-band sigma-0 to estimate rainfall, and that
multiple Ku-band scatterometers—that will be available in the
near future—may constitute a new and independent source of
terrestrial rainfall measure worldwide. Since backscatter mea-
surements are characterized by considerable high frequency
noise, the exponential filter proposed by [24] is firstly applied to
RapidScat SM data and the calibration of the T-parameter (char-
acteristic time length) is performed together with SM2RAIN
parameters. The minimization of the root-mean-square error
(RMSE) for 1-day rainfall is considered as objective func-
tion, and as performance scores, we used the latter and the
correlation coefficient R.

IV. RESULTS

As a first step, SM time series obtained from RapidScat,
expressed in relative terms between 0% and 100%, are
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TABLE 1
MAIN STATISTICS, FOR THE WHOLE UMBRIA REGION TERRITORY, OF THE PERFORMANCE OF RAPIDSCAT
IN ESTIMATING SOIL MOISTURE AND RAINFALL

; < Rainfall
. Soil moisture 1-Day 5-Day
Statistics
R RMSE R RMSE R RMSE
[-] [mm] [mm]
HH polarization
Mean 0.86 0.15 0.58 5.06 0.76 12.41
Median 0.90 0.14 0.58 5.05 0.75 12.69
Maximum 0.95 0.25 0.73 5.67 0.89 14.62
Minimum 0.60 0.11 0.42 4.19 0.62 8.53
90° percentile 0.94 0.19 0.67 535 0.87 14.15
10° percentile 0.69 0.12 0.50 4.70 0.66 10.17
VYV polarization
Mean 0.86 0.16 0.62 4.84 0.80 11.73
Median 0.89 0.16 0.65 4.78 0.80 11.42
Maximum 0.93 0.24 0.77 5.94 0.89 15.55
Minimum 0.63 0.11 0.35 4.04 0.61 9.24
90° percentile 0.92 0.22 0.71 5:53 0.88 13.85
10° percentile 0.73 0.13 0.44 4.33 0.71 9.56

Soil moisture data are compared with the ASCAT soil moisture product (note that data are filtered
with t-values equal to 4 and 2 days for RapidScat and ASCAT, respectively).
Rainfall estimates are compared with ground observation for 1-day and 5-day accumulated

values.

compared with ground rainfall, ground SM, and satellite SM
data from ASCAT. Fig. 2 shows the SM timeseries from
RapidScat, ASCAT, and ground observations for the pixel
including the in situ station (longitude, latitude = 12.5°,
43.0°). For reducing noise, SM data from RapidScat and
ASCAT are filtered using a T-value equal to 4 and 2 days,
respectively. The higher T-value for RapidScat is selected due
to the thinner soil depth sensed at Ku-band with respect to
C-band, thus requiring higher T-values. By a simple visual
inspection of Fig. 2, it is evident the strong agreement between
RapidScat and ASCAT SM time series except for the period
from April to June 2015 likely due to the vegetation effect
that is correctly removed in the ASCAT SM retrieval algorithm
and not for RapidScat. For better investigating this aspect, we
analyzed the monthly—0.1 ° resolution—leaf area index (LAI)
values in the study area from October 2014 to June 2015 using
the MOD15 product from moderate resolution imaging spectro-
radiometer [26]. A clear increase of the mean LAI values from
~1 m?/m? in the winter period to ~3 m?/m? in May and June
2015 is observed, which explains the lower agreement between
RapidScat and ASCAT toward the end of the period. In addi-
tion, the pattern obtained from the RapidScat data acquired in
the two polarizations HH and VV is very similar. The sensitivity
of RapidScat-implied SM to rainfall is evident with signifi-
cant positive variations associated with each rainfall event. The
quantitative comparison between RapidScat and ASCAT fil-
tered SM data is reported in Table I in which the statistics of the
temporal R- and RMSE-values for each grid point are reported.
As it can be seen, an overall good agreement is obtained with
median R-values equal to ~0.89 and RMSE lower than 0.25
(in relative terms). The comparison with in sifu observations
also provides satisfactory results (considering the differences in
the spatial scale and soil layer depth between in sifu and satel-
lite data). The temporal R-values are equal to 0.62 (0.52) and

0.71 for RapidScat HH (VV) polarization and ASCAT, respec-
tively. The corresponding RMSEs are equal to 0.33 (the same
value for both the polarizations) and 0.17 for RapidScat and
ASCAT, respectively. As mentioned above, the good agreement
here obtained for RapidScat is favored from the analysis period
(winter and spring) in which vegetation density is quite low.

Based on the good performance in reproducing SM data,
RapidScat data are then employed for rainfall estimation over
the entire Umbria region. Specifically, as mentioned above, the
SM2RAIN parameter values plus the T-value of the exponential
filter (not a constant as in the ASCAT vs RapidScat comparison)
are calibrated point by point in order to minimize the RMSE
between observed and estimated rainfalls. Note that the cali-
bration carried out point by point is not strictly required for
obtaining reasonable rainfall estimation since an alternative cal-
ibration using constant parameter values (not shown) provided
similar performance scores. However, to be more realistic, we
preferred to allow parameters to vary in space.

Fig. 3(a) and (b) shows the map of the temporal R-value
for the comparison of RapidScat rainfall data with observa-
tions at daily time scale and for HH and VV polarizations.
The statistics of the performance scores are given in Table I.
Unexpectedly, the performance for 1-day temporal resolution
is quite good with median R equal to 0.58 and 0.65 for HH
and VV polarizations, respectively. If compared with results
given in [19], who estimated rainfall from ASCAT throughout
ITtaly and found 1-day R equal to ~0.44, then the local perfor-
mance here is much better. This improvement can be attributed
to the short period (8 months vs 2 years), the lower topographic
complexity (e.g., not including Alps and Gran Sasso), and
the noise filtering applied in this study. Indeed, by perform-
ing the same analysis with ASCAT SM data (not detailed here
for brevity), a median R-value equal to 0.69 is obtained. As
expected, the performance scores increase for the estimation of
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HH polarization, median R=0.58

VV polarization, median R=0.65
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Fig. 3. Top panels [(a) and (b)]: map of the correlation coefficient between observed and estimated 1-day rainfalls from RapidScat for HH (a) and VV (b) polariza-
tions. The dotted pixels are excluded from the spatial average in the bottom panels (see text for details). Bottom panels [(c)—(f)]: time series of spatially averaged
observed and RapidScat-derived rainfall data cumulated over (c) and (d) 1 day and (e) and (f) 5 day for (c) and (e) HH and (d) and (f) VV polarizations in the

period November 2014—June 2015 (R: correlation coefficient).

5-day rainfall, with R-values ranging between 0.61 and 0.89 and
median RMSE less than 12.69 mm. By analyzing the spatial
pattern of R-values shown in Fig. 3(a) and (b), worse perfor-
mance is obtained, as expected, in the south-eastern part of the
region characterized by complex topography and denser vege-
tation (similar results, not shown, are obtained in terms of SM
reproduction).

Fig. 3(c)—(f) shows the observed and estimated time series
of rainfall averaged over the whole study area, but excluding
the “complicated” 10 pixels in south-eastern part of the region
[Fig. 3(a) and (b)], for 1-day and 5-day accumulations and for
HH and V'V polarizations. As expected, the spatially averaging
further improves the agreement between satellite and observed
rainfall data with R-values for HH (VV) polarization equal to
0.70 (0.75) and 0.86 (0.88) for 1-day and 5-day cumulated
rainfalls, respectively. Overall, VV polarization is found to per-
form better than HH polarization, in accordance with [20], even
though it is well known that the SM signal should be stronger in
the HH-polarized data (as we obtained in the comparison with
in situ observations). This aspect needs an in-depth analysis that
will be carried out in future studies in which the performance
of the two polarizations in areas characterized by different soils,
vegetations, and climate conditions will be analyzed.

V. CONCLUSION

Results obtained in this study with Ku-band scatterometer
data, along with those already published in [17] and [19] with

C-band sigma-0 observations, have very interesting and excit-
ing implications for remote sensing of rainfall over land. The
performance obtained using RapidScat data in rainfall retrievals
[Fig. 3] is found satisfactory and very similar to those of
ASCAT, despite the substantial increase in the electromagnetic
frequency. The low vegetation density in the study period might
be surely responsible for the good performance obtained, and it
will be further investigated. Moreover, by working on polar-
ization and incidence angle differences, it is expected that SM
retrieval from Ku-band scatterometers will be improved.

In the near future, the merging of Ku- and C-band scat-
terometer data is expected to be achievable thus increasing the
number of satellite sensors that can be employed in this appli-
cation [Fig. 1]. Consequently, the application of SM2RAIN to
these observations will provide a rainfall estimate with finer
spatial (~10km) and temporal (~4 hours) resolution. In addi-
tion, if SM products from C- and L-band radiometers would
be included, the use of the bottom-up approach could become
quickly a well-established technique for estimating terrestrial
rainfall on a global scale.

ACKNOWLEDGMENT

The authors acknowledge Umbria region (http://www.
cfumbria.it/) for providing the data and the support by
the EUMETSAT Satellite Application Facility on Support
to Operational Hydrology and Water Management (H-SAF,
http://hsaf. meteoam.it/) and the National Department of Civil



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Protection. The RapidScat scatterometer data were provided
by the EUMETSAT Ocean and Sea Ice Satellite Application
Facility (OSI SAF, http://www.osi-saf.org/). They also thank
the Editor and two anonymous reviewers who helped us to
improve this paper significantly.

REFERENCES

[1] B. Wake, “Flooding costs,” Nat. Clim. Change, vol. 3, p. 778, 2013.

[2] C. Massari, L. Brocca, A. Tarpanelli, and T. Moramarco, ‘“Data

assimilation of satellite soil moisture into rainfall-runoff modelling:

A complex recipe?,” Remote Sens., vol. 7, no. 9, pp. 11403-11433,

2015.

Y. Hong, R. F. Adler, and G. J. Huffman, ““An experimental global predic-

tion system for rainfall triggered landslides using satellite remote sensing

and geospatial datasets,” IEEE Trans. Geosci. Remote Sens., vol. 45,

no. 6, pp. 1671-1680, Jun. 2007.

[4] F. Guzzetti, S. Peruccacci, M. Rossi, and C. P. Stark, “The rainfall
intensity-duration control of shallow landslides and debris flows: An
update,” Landslides, vol. 5, no. 1, pp. 3—17, 2008.

[5] L. Brocca, F. Ponziani, T. Moramarco, F. Melone, N. Berni, and
W. Wagner, “Improving landslide forecasting using ASCAT-derived soil
moisture data: A case study of the Torgiovannetto landslide in central
Italy,” Remote Sens., vol. 4, no. 5, pp. 1232-1244, 2012.

[6] K. E. Trenberth et al., “Global warming and changes in drought,” Nat.
Clim. Change, vol. 4, no. 1, pp. 17-22, 2014.

[7] J. Ramarohetra, B. Sultan, C. Baron, T. Gaiser, and M. Gosset, “How

satellite rainfall estimate errors may impact rainfed cereal yield sim-

ulation in West Africa,” Agric. For. Meteorol., vol. 180, pp. 118-131,

2013.

L. Brocca, F. Melone, T. Moramarco, and W. Wagner, “A new method

for rainfall estimation through soil moisture observations,” Geophys. Res.

Lett., vol. 40, no. 5, pp. 853-858, 2013.

M. Borga, “Accuracy of radar rainfall estimates for streamflow simula-

tion,” J. Hydrol., vol. 267, no. 1, pp. 26-39, 2002.

[10] G. Villarini and W. F. Krajewski, “Sensitivity studies of the models
of radar-rainfall uncertainties,” J. Appl. Meteorol. Climatol., vol. 49,
pp- 288-309, 2010.

[11] E. E. Ebert, J. Janowiak, and C. Kidd, “Comparison of near real time

precipitation estimates from satellite observations and numerical models,”

Bull. Amer. Meteorol. Soc., vol. 88, pp. 47-64, 2007.

A. Y. Hou et al., “The Global Precipitation Measurement (GPM) mis-

sion,” Bull. Amer. Meteorol. Soc., vol. 95, pp. 701-722, 2014.

[13] W. T. Crow, M. J. van Den Berg, G. F. Huffman, and T. Pellarin,
“Correcting rainfall using satellite-based surface soil moisture retrievals:
The Soil Moisture Analysis Rainfall Tool (SMART),” Water Resour: Res.,
vol. 47, p. W08521, 2011.

[14] F. Chen, W. T. Crow, and T. H. Holmes, “Improving long-term, retro-
spective precipitation datasets using satellite-based surface soil moisture
retrievals and the soil moisture analysis rainfall tool,” J. Appl. Remote
Sens., vol. 6, no. 1, p. 063604, 2012.

[15] T. Pellarin, S. Louvet, C. Gruhier, G. Quantin, and C. Legout, “A simple
and effective method for correcting soil moisture and precipitation esti-
mates using AMSR-E measurements,” Remote Sens. Environ., vol. 136,
pp. 28-36, 2013.

[16] N. Wanders, M. Pan, and E. F. Wood, “Correction of real-time satel-
lite precipitation with multi-sensor satellite observations of land surface
variables,” Remote Sens. Environ., vol. 160, pp. 206-221, 2015.

[17] L. Brocca et al., “Soil as a natural rain gauge: Estimating global rainfall
from satellite soil moisture data,” J. Geophys. Res. Atmos., vol. 119, no. 9,
pp. 5128-5141, 2014.

[18] L. Brocca et al., “Rainfall estimation from in situ soil moisture observa-
tions at several sites in Europe: An evaluation of SM2RAIN algorithm,”
J. Hydrol. Hydromech., vol. 63, no. 3, pp. 201-209, 2015.

[19] L. Ciabatta et al., “Integration of satellite soil moisture and rainfall
observations over the Italian territory,” J. Hydrometeorol., vol. 16, no. 3,
pp. 1341-1355, 2015.

[20] I. Mladenova, V. Lakshmi, J. P. Walker, D. G. Long, and R. D. Jeu, “An

assessment of QuikSCAT Ku-band scatterometer data for soil moisture

sensitivity,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 640-643,

Oct. 2009.

S. Oveisgharan, Z. Haddad, J. Turk, L. Li, and E. Rodriguez, “Soil mois-

ture and vegetation water content retrieval using QuikSCAT data,” in

AGU Spring Meeting Abstr., vol. 1, 2013, p. 02.

[3

—

[8

—

[9

—

[12]

[21]

[22] F. J. Turk, R. Sikhakolli, P. Kirstetter, and S. L. Durden, “Exploiting
over-land Oceansat-2 scatterometer observations to capture short-period
time-integrated precipitation,” J. Hydrometeorol., vol. 16, pp. 2519-2535,
2015.

[23] C. Prigent, F. Aires, C. Jimenez, F. Papa, and J. Roger, “Multiangle
backscattering observations of continental surfaces in Ku-Band (13 GHz)
from satellites: Understanding the signals, particularly in arid regions,”
1IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1364—1373, Mar.
2015.

[24] W. Wagner, G. Lemoine, and H. Rott, “A method for estimating soil
moisture from ERS scatterometer and soil data,” Remote Sens. Environ.,
vol. 70, no. 2, pp. 191-207, 1999.

[25] L. Brocca et al., Soil moisture estimation through ASCAT and AMSR-E
sensors: An intercomparison and validation study across Europe,” Remote
Sens. Environ., vol. 115, pp. 3390-3408, 2011.

[26] Y. Knyazikhin er al. (1999). MODIS Leaf Area Index (LAI) and Fraction
of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR)
Product (MODI15) Algorithm Theoretical Basis Document [Online].
Available: http://eospso.gsfc.nasa.gov/atbd/modistables.html

Luca Brocca was born in Genoa, Italy, in 1978.
He received the M.S. degree in environmental engi-
neering and the Ph.D. degree in civil engineering,
both with excellence, from the University of Perugia,
Perugia, Italy, in 2003 and 2008, respectively.

Since 2009, he has been a Researcher with the
Research Institute of Geo-Hydrological Protection
(IRPI), National Research Council (CNR), Perugia,
Italy. He is involved in teaching and tutorial activity
with the University of Perugia. He has authored or
co-authored 70 journal papers and 69 papers in con-
ference proceedings. His research interest include the development innovative
methods for exploiting satellite observations (soil moisture, rainfall, discharge)
in hydrological applications (flood, landslide, drought, etc).

Dr. Brocca serves as Reviewer for more than 30 international journals and
as Associate Editor for Geoderma and Hydrology journals. He actively par-
ticipates in several research project in the frame of Italian and European
programs (LIFE+, HORIZON2020), and funded by Space Agencies (ESA,
EUMETSAT), in collaboration with Italian and international institutions. He
is the Italian National Correspondent of the Euromediterranean Network of
Experimental and Representative Basins (ERB) and is a member of IAHS, SII,
GII, iEMSs, and EGU.

Christian Massari was born in Cascia (Perugia),
Italy, in 1981. He received the M.S. degree in
environmental engineering and the Ph.D. degree in
hydraulic engineering, both with excellence, from the
University of Perugia, Perugia, Italy, in 2008 and
2012, respectively.

In support of his Ph.D., he received fellowships to
carry out research at the Department of Hydrology
and Water Resources, University of Arizona, Tucson,
AZ, USA, where he has worked in the field of
hydraulic groundwater and hydraulic tomographic
techniques. From November 2011 to February 2013, he has been a Research
Fellow with the “Dipartimento di Ingegneria Civile ed Ambientale,” University
of Perugia, where he has worked in the development of data fusion tech-
niques for the diagnosis of pressurized pipe systems. Since February 2013,
he has been a Post-Doctoral Researcher with the Research Institute for Geo-
Hydrological Protection, National Research Council, Perugia, Italy, where he
has been working in the field of hydrology and remote sensing. His research
interests include data fusion and data assimilation of hydrological variables
(e.g., soil moisture and rainfall), hydro-validation of satellite soil moisture and
rainfall observations, filtering of satellite soil moisture, flooding risk analysis,
and flood frequency assessment. In addition, he is involved in the validation
activities of 1) the Global Precipitation Measurement (GPM) mission products;
2) the European Space Agency Climate Change Initiative (CCI) soil mois-
ture product; 3) the rainfall and soil moisture products of the H-SAF project
of EUMETSAT; and 4) Soil Moisture Active and Passive (SMAP) product of
NASA.

Dr. Massari is a member of SII, GII, and EGU.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BROCCA et al.: REMOTE SENSING OF TERRESTRIAL RAINFALL

Luca Ciabatta was born in Perugia, Italy, in 1985.
He received the M.S. degree in geological sci-
ences and technologies, with excellence, from the
University of Perugia, Perugia, Italy, in May 2012.

Since February 2013, he has been a Research
Fellow with the Research Institute for Geo-
Hydrological Protection (IRPI) of the National
Research Council (CNR), Perugia, Italy. His research
interests include the use of satellite data for
hydrological applications and geo-hydrological risk
assessment.

Wolfgang Wagner (M’98-SM’07) was born in Wels,
Austria, in 1969. He received the Dipl.-Ing. (M.Sc.)
degree in physics and the Dr.techn. (Ph.D.) degree
in remote sensing, both with excellence, from the
Vienna University of Technology (TU Wien), Vienna,
Austria, in 1995 and 1999, respectively.

In support of his Master and Ph.D. studies,
he received fellowships to carry out research at
the University of Bern, Atmospheric Environment
Service Canada, NASA Goddard Space Flight
Centre, European Space Agency, and the Joint
Research Centre of the European Commission. From 1999 to 2001, he was
with the German Aerospace Agency (DLR), Cologne, Germany. In 2001, he
was an Appointed Professor of remote sensing with TU Wien. Since 2012,
he has been the Head of the Department of Geodesy and Geoinformation, TU
Wien. He is the Co-Founder and Head of Science of the Earth Observation Data
Centre for Water Resources Monitoring (EODC), Vienna, Austria. His research
interests include geophysical parameter retrieval techniques from remote sens-
ing data and application development, and active remote sensing techniques, in
particular scatterometry, SAR, and full-waveform airborne laser scanning.

Dr. Wagner is a member of the Science Advisory Groups for Sentinel-1
(ESA), METOP ASCAT, and METOP-SG SCA (EUMETSAT and ESA), and a
member of the GCOS/GTOS/WCRP Terrestrial Observation Panel for Climate
(TOPC). From 2008 to 2012, he served as ISPRS Commission VII President,
and from 2009 to 2011 as Editor-in-Chief of the Open Access Journal “Remote
Sensing.”

Ad Stoffelen was born on February 25, 1962, in
The Netherlands. He received the M.Sc. degree in
physics from the Technical University of Eindhoven,
Eindhoven, The Netherlands, in 1987 and the Ph.D.
degree in meteorology on scatterometry from the
University of Utrecht, Utrecht, The Netherlands.

He leads a Research Group in Active Satellite
Sensing in the Earth Observation Department of
KNMI, Utrecht, The Netherlands. He is moreover
responsible for scatterometer wind data processing
research and development and initiated methods for
NWP ocean calibration, calibration, and error estimation by triple collocation,
the development of geophysical model functions, and Bayesian retrieval tech-
niques. Currently, he manages both the EUMESAT Ocean and Sea Ice and
NWP Satellite Application Facilities at KNMI with its prime responsibility in
ASCAT data and software products and to this end also manages the satel-
lite wind services in the Copernicus Marine Environment Monitoring Services.
He is a Member of the ESA/EUMETSAT ASCAT SAG, Co-Organizer of the
International Ocean Vector Winds Science Team, Advisor of the CEOS Ocean
Vector Winds Virtual Constellation Coordination Group, and EUMETSAT’s
Post-EPS Mission Expert Team. He is further involved in EU and ESA projects
on waves, storm surges, and ocean currents, focusing on new user requirements.
Another area of involvement in satellite wind data interpretation is Doppler
Wind Lidar (member of the ESA AEOLUS Mission Advisory Group).



