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Abstract—Here we present a method for extracting urban areas 

from X-band fully polarimetric synthetic aperture radar (SAR) 
data by reducing the effects of polarization orientation angle 
(POA). The proposed classifier performs two classifications 
utilizing characteristics of X-band scattering in land cover. One 
classification uses total power of scattering and volume scattering 
derived by using four-component decomposition methods with 
correction for the POA effect. The other classification uses 
polarimetric coherence between SHH and SVV. The two results are 
intersected and final urban areas are extracted after 
post-classification processing. We applied the proposed method to 
airborne X-band fully polarimetric SAR data of the Polarimetric 
and Interferometric Airborne Synthetic Aperture Radar System, 
developed by the National Institute of Information and 
Communications Technology, Japan. Validation of the results for 
three Japanese urban areas shows that the proposed method 
provides an acceptable overall accuracy of approximately 80–
90% at a 100-m spatial scale. It is also shown that texture-based 
classifiers using single polarimetric data have accuracy limitations 
when applied to extracted urban areas where the POA of objects 
is not uniform.  

 
Index Terms— Urban areas, X-band fully polarimetric SAR, 

Polarization orientation angle effect, Deorientation.  

I. INTRODUCTION 

rban monitoring is an important application of satellite 
and airborne remote sensing. Both urban area mapping 

for urban planning and continual map updates are required. 
Whereas optical sensors are capable of delineating urban areas, 
optical images are vulnerable to cloudy conditions. Synthetic 
aperture radar (SAR) has potential for monitoring urban areas, 
because man-made structures return relatively strong 
backscattering that distinguishes them from other objects. SAR 
is also much less sensitive to cloud contamination than optical 
sensors. However, backscattering detected by SAR is sensitive 
to the orientation angle (OA) of man-made structures. This OA 
effect is critical in analyzing urban areas from SAR images. 
Land cover classification without considering OA effects may 
lead to parts of urban areas being omitted due to fluctuating 
backscattering. Reduction of OA effects through “deorientation” 
has thus been investigated over the past decade. 

Xu and Jin [1] proposed deorientation theory, in which the 
parameters for the deoriented state are derived by rotating 
target scattering vectors and minimizing cross-polarization. 
This idea has been applied in other research, such as Kimura [2], 
An et al. [3] and Yamaguchi et al. [4]. Hereafter, we call the 
OA effect the polarization orientation angle (POA). As An et 
al. [3] pointed out, Yamaguchi decomposition [5,6] suffers 
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from the problem that volume scattering may be overestimated 
due to POA effects, soon after which Yamaguchi et al. [4] 
presented an improved four-component decomposition method. 
The methods presented by both parties essentially follow the 
work of Xu and Jin [1] from the viewpoint that the coherence 
matrix should be rotated. Lee and Ainsworth [7] reported the 
POA effect on the coherency matrix and that neither the 
Freeman–Durden three-component decomposition [8] nor the 
Yamaguchi decomposition utilizes the full polarimetric 
information. 

Following these works, several improvements were achieved 
via analysis. Chen et al. [9] showed that the POA effect in 
scattering for large POA may not be corrected even after 
deorientation. This is because model-based decomposition 
assumes that only volume scattering contributes to the 
cross-polarization term. We also reported the results of 
experiments performed in an anechoic room, which showed 
that the total powers of backscattering and the four components 
derived from fully polarimetric scattering are highly dependent 
on the orientation angles [10]. With these findings, we have 
already reported a method for extracting urban areas by using 
Advanced Land Observing Satellite (ALOS) / Phased Array 
type L-band Synthetic Aperture Rader (PALSAR) 
imagery [10] and another method for estimating urban densities 
by using a single fully polarimetric SAR (PolSAR) 
image [11,12].  

For detailed urban monitoring, very high resolution (VHR) 
SAR has been examined because it has potential for mapping 
urban areas on a per-district or per-building basis. Esch et 
al. [13] proposed a method for extracting human settlements by 
using backscatter amplitude and speckle divergence obtained 
from single-polarization TerraSAR-X and TanDEM-X data. 
Ferro et al. [14] studied the relationship between the 
double-bounce effect of buildings and the orientation angle in 
SAR images. Most of these studies assume single polarimetric 
SAR images, and pay little attention to the above-mentioned 
POA effects. Therefore, these methods are not guaranteed to 
effectively extract urban areas, even those with heterogeneous 
POA distributions. Therefore, in this paper we propose an 
urban-area classifier that is applicable to X-band PolSAR 
images by extending our previous work [10]. 

The remainder of this paper is organized as follows: Section 
II explains the indices used in the proposed algorithm. The 
location and data collected from the site are described in 
Section III. Section IV explains the proposed method and 
reports the experimental results. The implications of these 
results and the validity of the algorithm are then discussed in 
Section V. Finally, Section VI concludes the paper.  
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II. INDICES USED 

A. Coherency Matrix 

PolSAR data consist of complex scattering values, which can 
be represented by the 2 × 2 scattering matrix shown in (1): 
 

(1) 
 

 
For mono-static radar imaging of a reciprocal medium, we have 
SHV = SVH. In a PolSAR image, each pixel is represented by a 3 
× 3 coherency matrix 
 
 

(2) 
 
 
 
 
 
 
where * denotes the complex conjugate operation.  

 

B. Four-component Decomposition with Rotation of 
Coherency Matrix 

From the coherency matrix, four-component decomposition 
decomposes the observed backscattering into the surface 
scattering power (Ps), the double-bounce scattering power (Pd), 
the volume scattering power (Pv), and the helix scattering 
power (Pc) [6]. The coherency matrix is decomposed into four 
components as follows: 

 

 ccvvddss TfTfTfTfT
.
   (3) 

 
Here, fs, fd, fv, and fc respectively denote coefficients of the 
surface, double-bounce, volume, and helix scatterings, and Ts, 
Td, Tv, and Tc respectively denote coherency matrices of the 
surface, double-bounce, volume, and helix scatterings. The 
four-component decomposition method calculates the four 
coefficients, and thus the contribution of each scattering is 
determined. 

Yamaguchi et al. [7] proposed an algorithm that rotates the 
coherency matrix by the polarization orientation angle (POA) 
to reduce the dependence of the components on the relative 
azimuth. The rotated coherency matrix T() is derived by 
rotating the original coherency matrix in (2) by POA :  

 
 

(4)    
 
 

Here, †  denotes complex conjugation and transposition, and 

)(pR  is the rotation matrix given by 

 
 
 

 
 

(5) 
 

 
The POA is reported to estimate the orientation angle of the 

target [1,2].   is obtained by minimizing )(33 T  in (3) and 

estimated as  
 
 

 (6) 
 
 
The   is determined by requiring that the wall normal be 
parallel to the sensor’s ground range direction.  

C.  Magnitude balance of HH and VV 

In four-component decomposition, Yamaguchi et al. [5] 
employed the magnitude balance of  2|| HHS  and  2|| VVS  for 

classifying volume scattering type: 
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 The larger (7) is, the more vertical dipoles are dominant in 

the pixel. After the coherency rotation, (7) is modified as 
(8) [4]: 
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D.  Polarimetric Coherence 

Polarimetric coherence between two polarimetric data is a 
coefficient of scattering values of the two polarimetric data in a 
certain window. We can calculate polarimetric coherence of 
any combination of different polarimetric data. For example, 
the polarimetric coherence between SHH and SVV can be 
expressed in (9) as 

     
 (9) 

 
 

III. DATA USED AND STUDY AREA 

In this research, we used airborne X-band fully polarimetric 
SAR images. The National Institute of Information and 
Communications Technology (NICT) developed the X-band 
fully polarimetric Polarimetric and Interferometric Airborne 
Synthetic Aperture Radar System (Pi-SAR2). The slant range 
resolution has been improved to 0.3 m. The specification of 
Pi-SAR2 is listed in Table I [15]. The system has been used to 
monitor damage caused by disasters such as earthquakes [16] 
and volcanic eruptions [17]. 

We selected three observed cities as study areas—Kobe 
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(study area 1), Kyoto (study areas 2), and Tokyo (study area 
3)—because they have several categories of land cover, 
including urban, mountainous, and aquatic. Fig. 1 shows 
Advanced Land Observing Satellite (ALOS)/Advanced Visible 
and Near Infrared Radiometer type 2 (AVNIR-2) optical 
images of the three study areas. All three study areas have a 6 × 
6 km area. Pi-SAR2 images were projected to the WGS 1984 
coordinate system with a universal transverse Mercator 
projection. Quegan's polarimetric calibration procedure [18] 
was used for polarimetric calibration. 
 
 

TABLE I. Specification of Pi-SAR2 [15]. 
 

Center frequency 9.55 / 9.65 GHz 
Bandwidth 500 / 300 / 150 MHz 
Slant-range resolution 0.3 / 0.5 / 1.0 m 
Azimuth resolution 0.3 (1 look) / 0.6 m (2 look)
Swath width  
(grand range) 

> 10 km 

NESZ < -23 / -27 / -30 dB 
Data rate 200 MB/s × 4 ch 

 
 

   
(a) 

 

   
(b)                                          (c) 

 
Fig. 1. Study areas in the research. (a), (b), and (c) respectively 
show ALOS/AVNIR-2 images of study areas 1, 2, and 3. Each 
panel has an area of 6 km × 6 km. 
 
 

IV. EXISTING ALGORITHMS 

A. Texture-based Classifier for Single Polarimetric Data 

Here, we briefly introduce the work by Esch et al. [13], a 

texture-based classifier. First, local image heterogeneity H is 
calculated for each pixel as 

 
H = A / A.                                   (10) 

 
Here, A and A are the mean and standard deviation of the 
amplitude image A in 9 × 9 local pixels. They assume that the 
relationship in (11) exists between the image heterogeneity H, 
the true image T, and the fading texture F: 

 
H2 = T2F2 + T2 + F2.                           (11) 

 
T2, defined as the speckle divergence S, is derived from (11): 
 

T2 = S = (H2 - F2)(1 + F2)-1.                       (12) 
 

F can be calculated as 5.05233.0ˆ  NF , where N denotes the 
number of looks of a SAR image. 
 Then, classification is implemented. They empirically set 
backscattering amplitude for non-urban areas ThA = 100. 
Changing the threshold for S, the urban and non-urban 
candidates are generated by thresholding. The Jensen–Shannon 
divergence is calculated to measure the distance of two 
probability distributions in terms of amplitude. The optimal 
threshold with minimum divergence is selected. 

The most serious concern is that the method is not designed 
to compensate for POA effects. The probability distributions of 
amplitude directly suffer from the amplitude decrease caused 
by the POA effect. Because the Jensen–Shannon divergence 
uses the probability distributions without any compensation, 
districts having heterogeneous POAs may be omitted. We 
examine the performance of the method in Section V. 

B. Kajimoto–Susaki Classifier for Fully Polarimetric Data 

The classifier proposed by Kajimoto and Susaki [10] is based 
on experimental results using ALOS/PALSAR images. They 
showed that the POA dependence of four components and total 
power (TP) decreases as a result of POA correction. After the 
correction, Pv is almost constant regardless of POA, whereas 
the other components still depend on POA. This fact was also 
supported by experiments conducted in an anechoic radio wave 
chamber in 2011 [11]. In those experiments, they measured 
X-band (10 GHz) fully polarimetric backscattering reflected by 
concrete rectangular blocks arranged at several spacings and 
orientation angles. As a result, Pv had the smallest difference in 
terms of POA effect. 

 The classifier performs a two-stage classification. The first 
classification uses POA-corrected Pv and TP data, because 
classification using only Pv cannot extract urban areas. TP was 
the power second-least affected by POA among the four 
components and TP [10]. Principal components of Pv and TP 
are generated, and pixels are categorized into five POA 
categories. A different classification threshold is set for each 
category to reduce POA effects.  

In the first stage, urban areas can be discriminated from other 
land covers except mountains. Because Pv – TP scattergrams of 
urban and mountain areas mostly overlap, these two land 



covers cannot be clearly classified by setting a threshold. 
Therefore, in the second classification stage POA randomness 
is calculated. The majority of buildings in an urban area are 
aligned in the same direction, so POAs in a given district will 
be nearly homogenous. In contrast, mountain areas are covered 
by natural vegetation, so POAs randomly differ, providing a 
good indicator for discriminating urban areas from mountains. 

Note that the classifier is a kind of semi-supervised classifier 
requiring training data for urban areas, mountains, and 
farmland in the study area. The areas of training data are 
manually selected from an image. When classifying multiple 
images, optimal thresholds used in first-stage classification of 
the study area are automatically updated by referring to the 
Pv – TP scattergram of the study area. The threshold used in the 
second-stage classification is fixed. 

We confirmed that the first-stage classifier using Pv – TP 
principal components can perform for X-band data even when 
we change the image pixel spacing. However, the second-stage 
classifier may not work for X-band data. Fig. 2 shows the POA 
randomness in L-band and X-band SAR images. Whereas 
L-band results have a clear contrast of POA randomness 
between urban areas and mountains, X-band results have no 
significant contrast. Therefore, the second-stage classifier 
proposed by Kajimoto and Susaki [10] should be replaced by 
another classifier that can effectively discriminate mountains. 

 

C. Indices Extracting Vegetation by Using Fully 
Polarimetric Data 

We examined the performance of extracting vegetation by 
using (8) to exclude mountains remaining after the classifier 
described in the previous subsection. We calculated (8) and set 
the threshold to –21.419 dB. We took samples of urban areas 
and forests and calculated the weighted mean of the two means, 
where the standard deviations were used as weights. The results 
show that higher values of (8) correspond to vegetation in 
general. However, it was found that simple thresholding of the 
value derived by (8) overestimates vegetation. For example, 
urban areas near the boundaries between urban areas and 
mountains, and urban areas having heterogeneous POA 
distributions were misclassified as vegetation. The results are 
shown in Section V. This finding is consistent with Chen et 
al. [9], which showed that model-based decomposition may 
overestimate volume scattering.  

We next focused on (9) for extracting vegetation. The results, 
shown in Fig. 3, indicate that vegetation can be accurately 
extracted. As a result, we determined that (9) is a good indicator 
for extracting vegetation. 

 

V. METHOD AND RESULTS 

A. Proposed Method 

From the previous results shown in Section IV, we propose a 
classification method for extracting urban areas. Fig. 4 shows a 
flowchart of the proposed method. We set five land cover 
categories: urban, forest, other vegetation, water body and 

 

   
(a)                                          (b) 

 

   
(c)                                          (d) 

 

   
(e)                                          (f) 

 
 
Fig. 2. Difference in POA randomness between L-band and 
X-band images. (a)(c)(e) and (b)(d)(f) are related to study areas 
1 and 2, respectively. (a)(b) ALOS/AVNIR-2 images, (c)(d) 
POA derived from ALOS/PALSAR images, and (e)(f) POA 
derived from Pi-SAR2 images. 
 
 
others. As preprocessing, multilooking is first implemented and  
the four components are generated with correction of the POA 
effect. The multilooked images had 2.5-m pixel spacing. Next, 
the first classification using Pv and TP principal components is 
implemented. As described in Subsection IV B, the method 
proposed by Kajimoto and Susaki [10] set different thresholds 
based on POA space. However, the dependency of Pi-SAR2 
data on POA was not significant. That is, scattergrams of Pv and 
TP in different POA subspaces are almost same.  Therefore, we 
applied the method without dividing POA space into subspaces.  

In this experiment, the areas of interest (AOIs) of urban 
areas and forests were manually selected from study area 1. 
Each AOI has an area of 750 m × 750 m, equivalent to 300 pixel 
× 300 pixel.  In [10], training data for urban areas and 
  

-π/4 π/4 



   
(a)                                          (b) 

 

   
(c)                                          (d) 

 
 

 
Fig. 3. Indices for extracting vegetation from X-band PolSAR 
images. (a)(c) and (b)(d) are related to study areas 1 and 2, 
respectively. (a)(b) show ALOS/AVNIR-2 images, and (c)(d) 
polarimetric coherence between SHH and SVV, expressed in (9). 

 
 

farmlands were selected, but we could not find homogeneous 
large farmlands in these study areas. This was also the case in 
many other study areas. Therefore, we propose that the method 
requires training data for urban areas and forests. First, we 
generate a line for discriminating urban areas from forests in 
the plane of TP and Pv principal components using training data. 
The difference between the means of the first principal 
components of urban areas and forests is divided in proportion 
to the standard deviations, and a break point is obtained. As a 
result, a line is determined that is parallel to the second 
component axis and passes through the break point. The value 
of the first principal component of this break point can be 
regarded as a threshold for discriminating urban areas from 
forests. 

This line is then applied to another study area to generate the 
line that is optimal to the new study area without training data. 
Tentative urban areas in the new study area are obtained by 
applying the line of the initial study area to the plane of TP and 
Pv of the new study area. The gravity point of the tentative 
urban areas is determined by using the values of TP and Pv. The 
difference is calculated between the first principal components 
of the urban gravity points in the new study area and in the 
initial study area. The threshold and line are shifted by this 
difference. The updated line is again applied to the new study 
area, and the gravity point difference is calculated. Iteration of 

this process is terminated when the change in the threshold is 
within a predefined limit. We set the limit to 0.01 dB. In short, 
the line is updated so that the gravity point of the urban areas in 
the new study area should be accordance with that of the initial 
study area. As a result, the line of the new study area is 
determined. 

In this research, three lines for discriminating urban areas 
from forests were obtained. They can be expressed by using 
original TP and Pv instead of principal components of TP and 
Pv: 

 
Study area 1: TP = –0.902 Pv – 69.89 
Study area 2: TP = –0.902 Pv – 42.10                             (12) 
Study area 3: TP = –0.902 Pv – 54.68 

 
Units for TP and Pv are dB. They have the same slope. 

The result generated at this stage includes urban areas and 
part of the forests. The forests included in the result correspond 
to ridges that return strong backscatter. In addition, the 
extracted urban areas mainly correspond to isolated buildings. 
To generate an urban area map, but not a building distribution 
map, we applied closing processing (dilation and erosion). The 
results of this stage are shown in Figs. 5(b), 6(b), and 7(b). In 
the closing, a 3×3 window was applied for dilation twice, and 
then, the same size of window was applied for erosion twice. 

The second classification uses (9) for extracting vegetation. 
In the experiment, the ensemble average was calculated within 
a 5 × 5 window, and the threshold for (9) was set to 0.80. This 
value was determined as follows: we calculated classification 
accuracy as a function of polarimetric coherence by using the 
AOIs of urban areas and forests. The accuracy was defined as 
(tp –fp) / (tp + fp + tn + fn). Here, tp, fp, tn and fn denote true 
positive (pixels those were correctly classified as forests), false 
positive (pixels those were falsely classified as forests), true 
negative (pixels those were correctly classified as urban areas) 
and false negative (pixels those were falsely classified as urban 
areas), respectively. The increment of polarimetric coherence 
was set to 0.01. Finally, we determined the best threshold that 
gave the best accuracy among the interval of [0, 1]. 

 In the same manner as classification using TP and Pv, we 
applied closing processing. The results are shown in Figs. 5(c), 
6(c), and 7(c). After both results are intersected, urban area 
candidates are extracted. These intersected images, shown in 
Figs. 5(d), 6(d), and 7(d), show that urban areas are well 
extracted, but roads and radar shadow are not extracted. 
Therefore, we applied filtering, closing, and labeling to the 
urban candidate image. Filtering examined the percentage of 
candidate urban pixels within a window. We set the window 
size to 5 × 5, and the minimum percentage for urban areas to 
20%. Labeling is implemented to remove small areas. The 
minimum urban area was set to 2,500 pixels, equivalent to 
15,625 m2. Figures 5(e), 6(e), and 7(e) show the urban areas 
finally extracted by the proposed method in the three study 
areas.  

We applied the methods of Esch et al. [13] and Kajimoto and 
Susaki [10] as references. Figs. 5(f), 6(f), and 7(f) show the 
urban areas extracted by using the method in [13]. Figs. 5(g),  

0 1.0 



 

 
 
Fig. 4. Flowchart for extracting urban areas using X-band 
PolSAR images. 

 
 
6(g), and 7(g) show the urban areas extracted by using the 
method in [10]. In addition, we extracted urban areas by 
replacing the second-stage classifier of the proposed method 
with (8). The results are shown in Figs. 5(h), 6(h), and 7(h).  

 

B. Accuracy Assessment 

Urban area data were obtained from Zmap-TOWN II 
(ZENRIN) data, which are residential maps of Japan [19]. First, 
building polygon data were intersected by a mesh. Buildings 
lying across the mesh border were divided into pieces by 
borderlines. The mesh size was set to 100 m × 100 m. Then, the 
mesh was classified into urban or non-urban categories. The 
minimum percentage of buildings within a mesh for classifying 
into urban category was set to 20%, thus generating a reference 
map for the urban area. Finally, the urban areas extracted from 
Pi-SAR2 images were compared with the reference map. Table 
II shows accuracy assessment results for the three study areas 
when using the method of Esch et al. [13] and the proposed 
method. 

VI. DISCUSSION 

A. Comparison with Existing Method 

Table II shows that accuracy of the proposed method is 

higher than that of Esch et al. [13] and that of Kajimoto and 
Susaki [10]. As shown in Fig. 5(e), (f) and (g), in study area 1, 
the method proposed by Esch et al. [13] and that of Kajimoto 
and Susaki [10] cannot remove forests in areas of layover to the 
extent of the proposed method. Because of off-nadir angle 
differences, airborne SAR often suffers from layover more than 
spaceborne SAR does. The method of Esch et al. [13] thus 
omitted hilly urban areas in study area 2, whereas the proposed 
method extracted them.  

In terms of discriminating forests from mixed urban and 
forest areas, we examined the feasibility of using (8). The intent 
of (8) is to classify a pixel of interest into one of three scattering 
types: scattering where vertical dipoles are dominant, scattering 
where horizontal dipoles are dominant, or scattering where 
random dipoles are available. We found that classification 
using (8) can work in study area 1, where the boundaries 
between forests and urban areas are clear—in other words, the 
case where there are few areas of mixed urban and mountainous 
areas. In study area 2, which has mixed areas in the skirts of 
forests, the method overestimated vegetation areas. Thus, the 
final urban areas shown in Fig. 6(h) were underestimated. 

In addition, Fig. 7(h) shows that the method using (8) 
omitted urban areas in the right part of study area 3. An optical 
image of that area (Fig. 8(d)) reveals that the omitted areas have 
small districts with different POA distributions. This defect is 
similar to the results when using the method of Esch et al. [13]. 
More districts in urban areas (Fig. 8(b)) are omitted than in the 
results obtained by using (8) (Fig. 8(c)). As described in 
Subsection IV.A, the method of Esch et al. [13] is found to be 
sensitive to POA effects. As a result, the proposed method is 
more effective than the method of Esch et al. [13] for extracting 
urban areas by using X-band fully polarimetric SAR data. 

B. Post-classification and Spatial Resolution 

In terms of mapping urban areas, classification using VHR 
X-band SAR images requires multiple processing steps. Figs. 
5(b), 6(b), and 7(b) show clear contrast between buildings and 
roads. This indicates that VHR X-band images can extract 
buildings, but that mapping of urban areas should include other 
objects in urban areas. To deal with this issue, we took the 
approach that tentative urban areas should be extended by 
applying filtering and closing. Such approaches can 
compensate for areas where radar shadow occurs. We suggest 
that extraction of urban areas using VHR X-band SAR images 
should be accompanied by such algorithms to extract widely 
homogeneous areas. 

The original Pi-SAR2 images have very high slant-range (0.3 
m) and azimuth (0.3 m) resolutions. In this research, we applied 
multilooking process to the images to reduce the speckle noise 
and save computation time. The multilooked images had 2.5-m 
pixel spacing, so to examine the pixel spacing effect we 
classified 0.5-m pixel spacing images. We confirmed that the 
extracted urban areas had no significant difference with those 
using 2.5-m pixel spacing images. However, urban areas 
extracted by using 25-m pixel spacing images had worse 
accuracy than those extracted using 2.5-m pixel spacing images. 
This was partly because the polarimetric coherence of urban 
areas increases with pixel spacing, so thresholding falsely  
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Fig. 5. Urban areas extracted from Pi-SAR2 images in study area 1. (a) ALOS/AVNIR-2 image; (b) result of the first-stage 
classification of the proposed method; (c) result of the second-stage classification of the proposed method; (d) intersected image of 
(b) and (c); (e) urban areas finally extracted by using the proposed method by applying post-processing to (d); (f) urban areas 
extracted by using the method in [13]; (g) urban areas extracted by using the method in [10]; (h) urban areas obtained by applying 
the method that replaces the second-stage classifier of the proposed method with (8). Each panel has an area of 6 km × 6 km.  
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Fig. 6. Urban areas extracted from Pi-SAR2 images in study area 2. See Fig. 5 for a description of each panel.  
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Fig. 7. Urban areas extracted from Pi-SAR2 images in study area 3. See Fig. 5 for a description of each panel. 
  



TABLE II. Accuracy of extracted urban areas in study area 1, area 2, and area 3. “Proposed”, “Esch (2013)” and “Kajimoto (2013)” 
denote the results obtained by using the proposed method, the method in [13] and the method in [10], respectively. “Classified using (8)” 
denotes the results obtained by replacing the second-stage classifier of the proposed method with (8).  

Study area 1 (Kobe) 
Actual (pixels) User’s 

accuracy Urban Non-urban Total 

Estimated 
(pixels) 

Urban 

Proposed 1520 753 2273 66.9% 
Esch (2013) 1514 847 2361 64.1% 

Kajimoto (2013) 1518 1278 2796 54.3% 
Classified using (8) 1509 698 2207 68.4% 

Non-urban 

Proposed 9 1318 1327 99.3% 
Esch (2013) 15 1224 1239 98.8% 

Kajimoto (2013) 11 793 804 98.6% 
Classified using (8) 20 1373 1393 98.6% 
Total 1529 2071 3600  

 
Producer’s 
accuracy 

Proposed 99.4% 63.6% 
Overall 

accuracy 

78.8% 
Esch (2013) 99.0% 59.1% 76.1% 

Kajimoto (2013) 98.6% 38.3% 64.2% 
Classified using (8) 98.7% 66.3% 80.1% 

 

Study area 2 (Kyoto) 
Actual User’s 

accuracy Urban Non-urban Total 

Estimated 

Urban 

Proposed 2495 231 2726 91.5% 
Esch (2013) 2186 140 2326 94.0% 

Kajimoto (2013) 2531 297 2828 89.5% 
Classified using (8) 2439 221 2660 91.7% 

Non-urban 

Proposed 175 699 874 80.0% 
Esch (2013) 484 790 1274 62.0% 

Kajimoto (2013) 139 633 772 82.0% 
Classified using (8) 231 709 940 75.4% 
Total 2670 930 3600  

 
Producer’s 
accuracy 

Proposed 93.4% 75.2% 
Overall 

accuracy 

88.7% 
Esch (2013) 81.9% 84.9% 82.7% 

Kajimoto (2013) 94.8% 68.1% 87.9% 
Classified using (8) 91.3% 76.2% 87.4% 

 

Study area 3 (Tokyo) 
Actual User’s 

accuracy Urban Non-urban Total 

Estimated 

Urban 

Proposed 2861 490 3351 85.4% 
Esch (2013) 2764 433 3199 86.5% 

Kajimoto (2013) 2843 116 2957 85.8% 
Classified using (8) 2737 422 3159 86.6% 

Non-urban 

Proposed 98 151 249 60.6% 
Esch (2013) 195 208 403 51.6% 

Kajimoto (2013) 116 172 288 59.7% 
Classified using (8) 222 219 441 49.7% 
Total 2959 641 3600  

 
Producer’s 
accuracy 

Proposed 96.7% 23.6% 
Overall 

accuracy 

83.7% 
Esch (2013) 93.4% 32.4% 82.6% 

Kajimoto (2013) 96.1% 26.8% 83.8% 
Classified using (8) 92.5% 34.2% 82.1% 

 

 

   



extracts urban areas as vegetation. Therefore, we found that 
over-multilooking lowers the accuracy of urban area 
classification. 

C. Sensitivity Analysis 

Finally, we discuss the sensitivity of the parameters used in 
the proposed method. The threshold for the first-stage 
classification using Pv and TP principal components is 
optimized. Once an a priori threshold for a study area is 
available, the optimal threshold for another study area is 
automatically generated without obtaining training data. In this 
sense, we regard the proposed method as a semi-supervised 
classifier. The classification results may depend on selection of 
the training data obtained in the first study area. 

The threshold for the second-stage classification was found 
to affect the final classification results more than did the 
threshold for the first-stage classification. In this research, we 
determined the threshold for HH,VV as 0.8 by taking samples 
from Pi-SAR2 images. This value may be dependent on the 
study area and the data, and thus users should determine the 
optimal threshold by taking samples. While (8) is corrected in 
terms of POA effects, (9) is not. Therefore, after thresholding 
some districts in urban areas—those with high-amplitude HV 
scattering—were classified as vegetation. By intersection, such 
districts were tentatively classified as non-urban areas. 
However, as mentioned in the previous subsection, the tentative 
urban areas are extended by filtering and closing. As a result, 
the omitted urban areas are reclassified as urban areas if they 
are close to areas tentatively classified as urban areas. 
Therefore, due to its image processing technique, the proposed 
method is designed so that threshold errors have less effect in 
the second-stage classification. 
 

VII. CONCLUSIONS  

We presented a method for extracting urban areas from 
X-band PolSAR data. The proposed method is based on two 
classifications: classification using a combination of TP and Pv, 
and classification using polarimetric coherence of SHH and SVV. 
The two results are intersected and final urban areas are 
extracted after post-classification processing. We applied the 
proposed method to airborne X-band Pi-SAR2 images of Kobe, 
Kyoto, and Tokyo. Validation showed that the results of the 
proposed method are acceptable, with an overall accuracy of 
approximately 80 to 90% at a 100-m spatial scale. Whereas 
sensitivity analysis revealed that the most sensitive threshold 
for extracting urban areas was that for polarimetric coherence 
of SHH and SVV, we confirmed that the extracted results were 
stable in most cases. We conclude that the proposed method can 
be applied to X-band PolSAR images for robustly extracting 
urban areas. 
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Fig. 8. Urban areas omitted via classification. (a) Result 
obtained by using the proposed method, (b) result obtained by 
using the method in [13], (c) result obtained by using the 
classification method with (8), and (d) optical image from 
Google Earth. In (d), the districts surrounded by yellow solid 
lines are areas having homogeneous POA.  
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