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Abstract—Hyperspectral images (HSIs) have been used in a
wide range of fields, such as agriculture, food safety, mineralogy
and environment monitoring, but being corrupted by various
kinds of noise limits its efficacy. Low-rank representation (LRR)
has proved its effectiveness in the denoising of HSIs. However,
it just employs local information for denoising, which results
in ineffectiveness when local noise is heavy. In this paper, we
propose an approach of group low-rank representation (GLRR)
for the HSI denoising. In our GLRR, a corrupted HSI is divided
into overlapping patches, the similar patches are combined into
a group, and the group is reconstructed as a whole using LRR.
The proposed method enables the exploitation of both the local
similarity within a patch and the nonlocal similarity across the
patches in a group simultaneously. The additional nonlocally-
similar patches can bring in extra structural information to the
corrupted patches, facilitating the detection of noise as outliers.
LRR is applied to the group of patches, as the uncorrupted
patches enjoy intrinsic low-rank structure. The effectiveness of
the proposed GLRR method is demonstrated qualitatively and
quantitatively by using both simulated and real-world data in
experiments.

Index Terms—Denoising, hyperspectral image, low-rank rep-
resentation, nonlocal similarity.

I. INTRODUCTION

N recent years, hyperspectral images (HSIs) have been

widely used in various fields, such as agriculture, envi-
ronment monitoring, food safety, medicine and mineralogy.
However, corruption of HSIs by various type of noise, in-
cluding Gaussian noise, salt-and-pepper noise, stripe noise
and deadlines, degrades the image quality greatly, leading to
low accuracy in classification, object segmentation, unmixing
and subpixel mapping, among others. Therefore, the denoising
process is an essential preprocessing step before the following
analysis and applications of HSIs.

Over the past several decades, many denoising methods
have been proposed under different frameworks, including
wavelet filtering, principal component analysis (PCA), total
variation, tensor analysis, sparse representation (SR) and low
rank representation (LRR). Othman and Qian [1f] reduced the
noise using a wavelet-shrinkage filter in the hybrid spatial-
spectral derivative domain. Maggioni et al. [2] employed three-
dimensional collaborative filtering in a nonlocal transform
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domain. Tensor analysis was employed in [3] and [4] for HSI
denoising, with the former using the Tucker decomposition
and the latter using rank-1 decomposition. Zhang et al. [5]]
proposed a cubic total variation (CTV) regularization and
Yuan et al. [6] extended CTV to be spectral-spatial adaptive.
Sparse representation has been widely used in natural image
denoising [[7]-[9]] and has been introduced into HSI denoising
with different types of regularization. Qian et al. [|10] proposed
a 3-D nonlocal sparse (3D-NLS) denoising method with
effective utilization of the nonlocal spatial similarity under
the SR framework. Lu et al. [11]] improved the performance
by simultaneously employing the high spectral correlation
redundancy. The spectral correlation property has also been
regularized by a low-rank constraint in [12]. Furthermore,
several algorithms have been proposed by using combinations
of the methods mentioned above [13[]-[15]].

Low-rank representation has been explosively used in image
processing [[16]-[26]], as well as in HSI analysis [21]]-[26] in
recent years. Lu et al. [22] introduced LRR for the removal
of stripe noise in HSI based on the high correlation between
different bands, and a graph regularization is constructed to
consider the local geometrical structure. Zhang et al. [23]]
proposed an HSI denoising method based on low-rank matrix
recovery (LRMR). LRMR achieves outstanding performance
as the uncorrupted HSIs comply highly with the low-rank
assumption. He et al. [26] improved LRMR by using total-
variation regularization. However, the methods in [23], [26]
just employ the local similarity within patches of HSIs, while
within some corrupted regions the patches may have heavy
noise, which makes the local image structure be corrupted
heavily and leads to an ill-posed problem for the structure
restoration without introducing extra information.

In this paper, we propose a novel method for HSI denoising
using group low-rank representation (GLRR), in which the
local and nonlocal similarity of HSIs can be simultaneously
considered under a unified framework of LRR. In GLRR,
similar patches are combined into a group, and the recon-
structed unit by LRR is the group of patches instead of
the individual patches. Incorporating the nonlocally similar
patches into LRR will bring in extra structural information to
help the reconstruction of the corrupted structure. Experiments
are conducted on both simulated and real-world data, and
results show that our GLRR method outperforms the state-
of-art methods. Extensive analysis and discussion is also
conducted for the parameters involved in GLRR.

The remainder of this paper is organized as follows. Sec-
tion [l gives the proposed method in detail. Experimental
results and discussion are shown in Section Section



draws the conclusion.

II. PROPOSED METHOD: GLRR
A. Low-rank property of HSIs

Given a cube of HSIs D € RM*NXB  where M and N
are the spatial dimensions of an image and B is the number
of bands, we can reformulate it as an M N x B matrix D =
[dy,...,dyn]", in which d; € RE denotes the B-variate
spectral vector representing the ith pixel.

The low-rank property of HSIs can be described as

rank (D) < min {M N, B} , (1)

where rank (-) denotes the rank of a matrix.

The property (I) can be illustrated by using the linear mix-
ing model (LMM) [27]]. Due to the limited spatial resolution of
HSIs, within a pixel there is always multiple distinct materials
(endmembers). Endmembers usually have relatively stable
spectral characteristics termed signatures. Thus a spectrum of
HSIs can be expressed as a mixture of a limited number of
signatures. According to LMM, the systematic combination of
signatures can be assumed to be linear:

dzzajej:Ea, )
j=1

where e; € RE is the signature of the jth endmember, r
denotes the number of endmembers, all signatures together
constitute a B X r signature matrix E = [eq,...,e,], q;
denotes the abundance of the jth endmember, and all abun-
dances together constitute an abundance vector of r elements,
a=lay,...,a. )7, for the spectrum d.

As E is a B x r matrix, the rank of E is smaller than r:

rank (E) <r . 3)

It follows that the whole HSI cube, as the matrix D, can be
represented as

D= [dl,. ..7d1L[N]T = [Eal,...,EaMN]T

“)
. ,aMN]T ET = AET s

= [al, ..
where A is an M N x r matrix of abundance. Therefore, the
rank of D has the following property:

rank (D) < rank (E) <r < min{MN, B} , ®)

which means that matrix D is of low rank, or say the
dimension of the spectral space spanned by the columns (i.e.
the spectral bands) of D is low, lower than the number of
endmembers.

B. LRR-based denoising

The matrix D is of low rank, thus the restoration of noisy
HSIs can be modelled as a low-rank matrix representation
and recovery problem, for which the LRR-based denoising
approach has achieved excellent performance [23]], [26].

In an observed HSI cube X € RM*XNXB the ¢ x ¢
patch centred at (i, j) is denoted by X;; € R?*?%5 and its
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corresponding 2D matrix is denoted by X;; & R *B_ This
matrix can be decomposed as

Xij =D +E;5 , (6)

where D;; is the clean patch and E;; denotes the noises.

The noises can be divided into two classes according to the
density of their distributions: sparse noise and dense noise, in
which the sparse noise mainly contains stripe noise and salt-
and-pepper noise, and the dense noise is typically Gaussian
noise. Thus (@) can be further modelled as

Xij = Dij + 8 + Ny; , (7

where S;; models the sparse noise and N;; is the dense noise.
They are denoted by X, D, S, N in the following for brevity.

As often only few bands were corrupted by stripe or salt-
and-pepper noise, there should be just a limited number of
nonzero elements in S (the pseudo-norm ||| is used here
with ||S]|o denoting the number of nonzero elements in S).
Based on the low rank of D and the sparsity of S, in LRR
the restoration of D can be achieved by solving the following
optimization problem:

{f),S} = argmin||X — D —S||z2 + Arank(D)+~|/S|lo , (8)
DS

where )\ and ~ are the parameters for the trade-off between
sparsity and low rank. We can alter the optimization problem
as
{f), S} = argmin[|X — D — S||2
D,S 9)
s.t. rank(D) <r, |Sllo <ks,

in which r, the number of endmembers, is the rank constraint
on D, and kg, an index of the amount of sparse noises,
is the sparse constraint on S. As r and kg have natural
physical interpretation, they can be determined based on the
characteristics of the HSIs. Problem (9) can be solved using
bilateral random projection (BRP) [28], [29].

C. GLRR-based denoising

Group

A

(a)

©)

Fig. 1. Noise detection mechanisms in LRR and GLRR: (a) group patches
in HSIs, (b) LRR-based denoising and (¢) GLRR-based denoising.

1) Grouping nonlocally similar patches: The traditional
LRR-based denoising method deals with the patches individ-
ually. However, for a heavily corrupted patch (which has too
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much noise), its spatial structure information may have been
lost, leading to difficulty in recovering D from X in if no
auxiliary information is introduced.

To solve this problem, we proposed a novel denoising
method termed GLRR, in which nonlocally similar patches
are assembled into a group and the group is collaboratively
represented by using LRR. As shown in Fig[I(a) and (c),
the patch represented by the red rectangle is the to-be-
reconstructed patch, and the patches represented by the green
rectangles are the most similar patches found in the image.
The benefits from introducing the “group” concept here are
twofold. Firstly, the addition of similar patches will bring
in extra spatial information to help reconstruct the corrupted
spatial structure in the to-be-reconstructed patch shown by the
red rectangle. Secondly, the stripe noise will be more sparse
over the whole group of patches than over the noisy patch itself
(which is much smaller than the whole group), as shown by
the comparison between Fig[I[c) and (b), and the improved
sparsity can help S more easily to be separated from X in
model (7).

In the grouping process of GLRR, the Euclidean distance
is employed as the measure of similarity: for a total of K
matrices (patches) X, € R™*", for £k = 1,..., K, the
Euclidean distance between matrices X; and X; is defined

as
1/2
(J) > , (10)

where 7 and 7 are the indices of the matrices, and x&g and :c%)

are the entries of X; and X; located at (u,v), respectively.
Then the group G (Xy) for patch Xy is formed using its [
nearest patches.

dij = d(Xi, X;) <Z > =) -

u=1v=1

Algorithm 1 GLRR-based HSI Denoising

Input:
Corrupted HSI X € RM*NxB

Output:
Reconstructed HSI D € RMXNxB
Step 1: Divide X' into patches {X;}r_, and, for each
patch X, form a group matrix X’ ) for the group G (Xy,)
constructed by using (I0);
Step 2: Restore the low-rank structure Dég) from X,(Cg)
using the LRR framework described in (9);
Step 3: Reconstruct the HSI as D € RMXNxB by weighted

averages using and (12).

2) The GLRR framework of denoising: The framework of
the proposed GLRR-based denoising method is described in
Algorithm [1| The method can be decomposed into three steps:
data arrangement, LRR of the group, and HSI reconstruction.

Firstly, an HSI X ¢ RM *NxB js divided into K overlap-
ping patches {X;, € R? *BYK | (reshaped from the 3D cube)
with spatial size ¢ x ¢ and sliding step s (set as s = ¢/3 in
this paper), thus we can get that K = | 73 JIpe= 273 |» where
|| is the downward rounding operator. Each patch {Xy} is
assembled with its [ most similar patches, according to the
distance defined in , into a matrix group G (Xy), which

is then rearranged into a bigger matrix X,(cg) € R™*B with

=(1+1)x

Secondly, low-rank structure D(g) of X(g) is reconstructed
by using LRR as with (9). Then the low- rank matrix group
G (Dy,) corresponding to G (Xj,) can be extracted from D(g)

Finally, the denoised HSI is reconstructed by a two-
stage average of the restored patches. At the first stage,
each patch is reconstructed by the weighted average of
multiple reconstruction results. As each patch may be in-
cluded in different groups, e.g. X, may be covered by C
groups {G (Xg,),-..,G (Xke)}, there will be multiple re-
constructed patches for X, denoted as {D(}“) . ,Dékc)},
where k; (i = 1,...,C) is the group index. The reconstructed
matrix for the kth patch Xy is therefore estimated by the
following weighted average:

c c
k= ZwiD;ki)/Zwi ;
i=1 i=1

w; = 1/(]—+7—dkk,;) R

where 7 is an inverse parameter from distance measurement
to similarity measurement and dyy, is the distance between
patches X, and Xy,. At the second stage, the denoised HSI
D is obtained as the average of the overlapped patches.

(1)

(12)

III. EXPERIMENTAL RESULTS AND DISCUSSION

Both simulated data and real-world data are employed in
our experiments. To evaluate the effectiveness of our GLRR
method, BM4D [2]] and LRMR [23] are used as benchmark
methods in the experiments. BM3D [30] has reached the
state-of-art performance in the natural image denoising to
our knowledge, and BM4D is an extension of BM3D to
volumetric data. LRMR is actually an LRR-based denoising
method, with only the local similarity of HSIs considered. In
addition, further experiments and discussion are conducted on
the impact and determination of the parameters involved in
our method.

A. Experimental results on simulated data

Reflective optics system imaging spectrometer (ROSIS) im-
ages of the Pavia University, Italy is used for our experiments
on the simulated data. The spatial size of the data is 610 x 340,
and there are 103 bands in the spectral range of 0.43um to
0.86um.

In the simulation experiment, the original data is added
with Gaussian noise, salt-and-pepper noise and stripe noise,
of which the last one is typical in the HSIs acquired by
pushbroom sensors. Gaussian noise is added to all the bands
with ¢ = 5%; salt-and-pepper noise and stripe noise are
randomly added to 10 bands; the percentage of salt-and-pepper
noise is 20%; and the number of stripe lines is 10 in each band.
Additionally, there are 2 bands that are added with all the three
kinds of noises, one of which is shown Fig[2(b), with Fig[2[a)
denoting the original clean band.

Experimental results of band 83 in the Pavia University
using BM4D, LRMR and our GLRR method are shown in
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(d

Fig. 2. Results of band 83 in the Pavia University data: (a) original band; (b) noisy band (PSNR=11.02 dB, SSIM=0.1006); (c) BM4D result (PSNR=22.49
dB, SSIM=0.7234); (d) LRMR result (PSNR=27.27 dB, SSIM=0.8460); (¢) GLRR result (PSNR=35.68 dB, SSIM=0.9458). Upper row: whole band; lower

row: closeup.

Fig[2Jc)-(e), respectively. In GLRR, the parameters are set as:
blocksize ¢ = 30, rank constraint » = 20 and sparsity ks =
12000 (See section for analysis of the determination of
these values). The source code of BM4D can be obtained
from [2] which uses adaptive estimated noise variation o, and
the parameters of LRMR are set according to the discussion
in [23].

It can be observed in Fig[2{(c) that BM4D cannot remove
the stripe noise and the salt-and-pepper noise thoroughly from
the images, as this method was intuitively proposed for the
removal of Gaussian noise and Rician noise. Moreover, it
tends to over-smooth the denoised area due to the collaborative
Wiener filtering procedure, which can be shown in the closeup
in Fig[2c). LRMR performs much better than BM4D, however
it cannot remove the Gaussian noise and the salt-and-pepper
noise totally, leading to failure in the reconstruction of some
fine structures, as indicated by the red arrows in Fig[2(d). This
is because that within the local area the noise is so much as to
heavily corrupt the local spatial structure, resulting in difficulty
in restoration of matrix D from X in (/) if there is no auxiliary
information to be exploited. Our GLRR method combines
similar patches into a group and the nonlocal similar patches
can bring in extra spatial information to help reconstruct better
the corrupted structure in the noisy patch. Fig[2fe) shows the
denoised result by GLRR. We can see that GLRR outperforms
BM4D and LRMR, removing all the noises and reconstructing
the fine spatial structures simultaneously.

To further and quantitatively evaluate the effectiveness of
our method, the peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) [31]] are adopted, with higher

PSNR(dB)

——BM4D
-=-=-LRMR
——GLRR
10 I I I I I I I I i i )
0 10 20 30 40 50 60 70 80 90 100 110

band

0.8

04 ——BM4D
---LRMR
—GLRR

0.2t L L L L L L L L )
0 10 20 30 40 50 60 70 80 90 100 110
band

Fig. 3. Quantitative evaluation results of the three denoising methods (BM4D,
LRMR and GLRR).

PSNR and SSIM indicating better denoising and reconstruc-
tion performance. Both PSNR and SSIM indices are calculated
band-by-band between the reconstructed HSIs and the original
clean data. Fig[3] shows the evaluation results, from which
it can be observed that: our method achieves superior im-
provement to the other two methods; BM4D shows very poor
performance on some bands, as it fails to remove salt-and-
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pepper noise and stripe noise; and LRMR shows instability
on bands 75-103. The average improvement of our method
upon BM4D and LRMR is 5.81dB and 3.77dB in PSNR, and
0.0861 and 0.0361 in SSIM, respectively.

TABLE I
CLASSIFICATION RESULTS (%) FOR THE THREE DENOISING METHODS
(BM4D, LRMR AND GLRR) USING SVM

class training / test sample size | BM4D | LRMR | GLRR
asphalt 50/ 6631 59.69 74.91 86.01
meadows 50 / 18649 67.60 87.85 90.92
gravel 50 /2099 64.70 77.10 92.52
trees 50 / 3064 88.67 95.16 94.50
metal sheets 50 / 1345 99.52 99.72 98.30
bare soil 50/ 5029 63.38 89.92 93.38
bitumen 50/ 1330 69.15 91.89 98.01
bricks 50/ 3682 58.03 78.15 90.50
shadows 50 /947 99.80 76.02 89.96
OA - 68.19 85.48 91.77
AA - 74.51 85.63 93.23

K - 59.90 81.15 89.34

Table [[ lists the classification results of the Pavia Uni-
versity data after denoising by BM4D, LRMR and GLRR,
respectively. In our experiments the support vector machine
(SVM) is used as the the classification method and 50 samples
of each class are randomly selected as the training samples.
The classification experiments are repeated for ten times
and the mean results of the overall accuracy (OA), average
accuracy (AA), the kappa coefficient (x) and the classification
accuracies for each class are shown in Table [I] in which the
best result among the three methods are shown in bold. We can
observe that the AA, OA and x of our GLRR method achieve
great improvement upon both BM4D and LRMR. This is also
true for the classification accuracies of most of the classes.
We note that the accuracies of LRMR and GLRR for the
class of shadows are both worse than that of BM4D. This
is mainly because that the light to the shadow area is from the
light scattered by other materials rather than from the sunlight
directly, which means that the spectral vector of shadows is
not ideally consistent with the LMM in[2) and therefore leads
to not as high accuracy in reconstruction of shadows as that
of the other land-covers.

In summary, the experiments on the simulated data show
that GLRR performs much better than BM4D and LRMR both
qualitatively and quantitatively.

B. Experimental results on real-world data

Experiments on real-world data are conducted in a hy-
perspectral digital collection experiment (HYDICE) dataset,

Urban of Copperas Cove, Texas [32], denoted by “Urban”
in the following. The spatial size of Urban is 307 x 307;
the spatial resolution is 4m/pixel. There are 210 bands in
the original dataset; however, considering the pollution by
atmosphere and water absorption, bands 104-108, 139-151 and
207-210 are removed from the data. Therefore a dataset with
size of 307 x 307 x 188 is actually used in our experiments.
Several bands of the data is polluted by heavy Gaussian noise,
as well as by stripe noise due to the detector-to-detector
difference in pushbroom sensors. Figfd[a) shows an example
of the noisy bands.

(d) GLRR result

(c) LRMR result
Fig. 4. Experimental results of band 188 in Urban.

Reconstruction results by BM4D, LRMR and GLRR are
shown in Fig[4(b)-(d), respectively. It can be observed that, as
with the simulated data in section [[lIZA] BM4D oversmoothes
the denoised area and LRMR fails in the thorough removal of
stripe noise and Gaussian noise. Fig[4(d) shows that our GLRR
method outperforms the other two methods greatly, eliminating
most of the noises and reconstructing the spatial details.

C. Analysis of the parameters

There are five parameters involved in GLRR: blocksize g,
inverse parameter 7 in (@, number of similar patches [, rank
constraint r and sparsity constraint k, in (9). To evaluate and
discuss the impact and optimal values of these parameters,
we conduct more experiments and use the average PSNR
(APSNR) as the evaluation measure, which is defined as

B
1
APNSR = — ) PSNR; , 13
Ve ; (13)



where PSNR; is the PSNR of band i. The data used for the
analysis and discussion in this section is the same as the
simulated data used in Section

TABLE 1I

APSNR (IN DB) AT DIFFERENT INVERSE PARAMETERS 7 IN @])

T 10 102 103 10
APSNR | 35.040 35.035 35.030 35.030
TABLE III

APSNR (IN DB) AT DIFFERENT NUMBERS [ OF SIMILAR PATCHES

l 0 1 2 3 4 5 6 7 8
APSNR| 31.25 32.92 34.96 34.98 35.02 34.93 34.94 3491 34.02

The best way to determine the optimal values for these
five parameters is to search for a global optimum in a five-
dimensional parameter space of the values of all the parame-
ters simultaneously. However, this will inevitably require vast
if not infeasible computation for HSIs. To avoid this, our
strategy is to adopt a greedy method to decide the values of the
parameters one by one and iteratively. Although this strategy
may lead to a local optimum, it is more computationally effi-
cient and applicable, and it can produce acceptable denoising
performance, as shown in sections and

1) 1 and 7: Table [[l|and Table [IT]] describe the relationship
between APSNR and the inverse parameter 7 and the number
of similar patches [, respectively, with the other parameters
are fixed at the optimal levels. From Table it can be
observed that APSNR is rather stable with different values
of 7, with the standard deviation being only 0.005dB. From
Table we can observe that APSNR achieves remarkable
improvement when [ is increased from O to 2. (Note that
when | = 0, GLRR actually degenerates to LRMR.) This
improvement can be attribute to the introduction of nonlocal
similar patches into a group, which helps the reconstruction
of patches with corrupted structures. We can also observe that
APSNR encounters a decline when [ is increased from 7 to
8. This is mainly because that the similarity within a group
cannot be guaranteed high when [ is big. However, it can be
observed that APSNR is quite stable when [ is between 2 and
7, with the standard deviation just 0.03dB. Therefore we can
see that GLRR is robust with 7 and a reasonable range of /.
That is, suboptimal 7 and [ would not decrease the denoising
result much. In this paper ! and 7 are fixed at/ = 4 and 7 = 10
for all the experiments.

2) r: FigPplots the experimental results of APSNR versus
the low-rank constraint r, under different values of blocksize
q and with other parameters fixed. Different curves show
results under different blocksizes ¢. It can be observed that
the optimal low-rank constraint is often approximately at
r = 20, even with different spatial sizes of the patches
(g X @). This result complies with the intuition that the low-
rank constraint is related to the number of endmembers and
thus has little to do with the spatial structure. In practice, we
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can determine r as follows: if the number of endmembers in
our target data is known, then r can be chosen approximately
the number (typically slightly bigger with consideration of the
precision of sensors in reality, the absorption and scattering
by the atmosphere, and the quantization error); otherwise r
is chosen between 0-20 as the endmember number within an
HSI is typically less than 20, and then we can use subjective
evaluation to determine the optimal value.

357

34

APSNR(dB)

335

33 . . .
10 15 20 25 30
r

Fig. 5. The relationship between APSNR and the low-rank constraint 7.

35} : . ' ]
!/'_—_‘\‘\:
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Fig. 6. The relationship between APSNR and the blocksize g.

3) g: The experimental results of APSNR versus the block-
size ¢ are depicted in Fig[f] with the other parameters fixed.
It can be observed that when ¢ = 30 the proposed method
achieves the best APSNR. The variation of APSNR is slight
(between 34dB and 35dB), indicating that with a suboptimal
choice of ¢ the denoising result can still be reasonably good.

4) ks: The regression of the optimal sparsity constraint kg
on the blocksize ¢ is depicted in Fig[7] with other parameters
fixed. In Fig the horizontal axis is ¢2, the number of pixels
in a patch. It can be observed that the optimal sparse constraint
k, is approximate linear to ¢2. That is to say, the optimal k,
is proportional to the number of pixels in a patch. This is in
accordance with the principle that S models the sparse noise
in HSIs and k; is the constraint on nonzero elements in S, as
in (9), so the amount of sparse noise should be approximately
proportional to the number of pixels.

In short, from all the evaluation results above, we can
suggest that: 1) the blocksize ¢ can be set at a moderate level
(see Figlo); 2) the proposed method is insensitive to 7 and [ in
a reasonable range (see Table [[I| and Table ; 3) the optimal
rank constraint r and sparsity constraint kg can be estimated
based on the characteristics of the HSIs to be denoised, while
r can be chosen based on the information of the endmember
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Fig. 7. The relationship between the optimal sparse constraint ks and the
blocksize q.

number and k, can be determined based the noise amount in
the HSIs.

D. Computational complexity

According to the analysis in [29], for a matrix
with size (I+1)¢> x B, the computational cost
of the BRP-based Ilow-rank matrix recovery is

O(T(r*(2B+r)+4(1+1)¢*Br)), where T (typically
set as 50 in our method) is the iteration number within
BRP. Considering the fact that » < min {(l + 1) ¢? B},
the complexity is reformed to O (7' (I + 1) ¢* Br). Therefore
the computational complexity for the whole K patches is
O (KT (l+1)¢*Br).

IV. CONCLUSION

In this paper, we have proposed a group low-rank repre-
sentation (GLRR) denoising method for the reconstruction of
corrupted HSIs. The grouping strategy of GLRR takes the
nonlocal similarity into consideration during the reconstruc-
tion. The nonlocal similar patches can introduce extra spatial
structure information to help reconstruct the spatial structure
in the corrupted patches. The use of LRR by GLRR enjoys
the intrinsic low-rank structure of HSIs. Both subjective quali-
tative and objective quantitative evaluations, including PSNR,
SSIM and classification accuracies, of the experiments have
demonstrated that the proposed GLRR method can detect and
remove the corrupting noise effectively, as well as retaining
fine features of the HSIs.

An extensive discussion has also been conducted on the
impact of the parameters involved in our method and its
computational complexity, and the experimental results show
that GLRR performs relatively stably within a reasonable
range of the parameters.
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