
High Dimensional Data Modeling Techniques for

Detection of Chemical Plumes and Anomalies in

Hyperspectral Images and Movies

Yi (Grace) Wang∗, Guangliang Chen†, and Mauro Maggioni‡§

Abstract

We briefly review recent progress in techniques for modeling and ana-
lyzing hyperspectral images and movies, in particular for detecting plumes
of both known and unknown chemicals. For detecting chemicals of known
spectrum, we extend the technique of using a single subspace for modeling
the background to a “mixture of subspaces” model to tackle more com-
plicated background. Furthermore, we use partial least squares regression
on a resampled training set to boost performance. For the detection of
unknown chemicals we view the problem as an anomaly detection prob-
lem, and use novel estimators with low-sampled complexity for intrinsi-
cally low-dimensional data in high-dimensions that enable us to model
the “normal” spectra and detect anomalies. We apply these algorithms
to benchmark data sets made available by the Automated Target Detec-
tion program co-funded by NSF, DTRA and NGA, and compare, when
applicable, to current state-of-the-art algorithms, with favorable results.

Keywords. Remote sensing, mixture models, robust modeling chemical
plumes, automated detection.

1 Introduction

The ability to remotely sense and analyze chemical plumes has become increas-
ingly important in many civilian and military applications. Hyperspectral imag-
ing sensors that operate in the long-wave infrared (LWIR) part of the spectrum
are particularly well suited for these chemical-sensing tasks, because their wide
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fields of view and high spectral resolutions allow many square kilometers to be
imaged almost simultaneously and even optically thin chemical clouds to be
detected. Data collected by these sensors has the form of m × n × p arrays,
where m,n are the spatial dimensions and p is the spectral dimension. Under
physically reasonable assumptions and simplifications [1], the following linear
mixing model is obtained:

x =
∑

1≤i≤N

gisi + v, (1)

where x ∈ Rp represents the radiance spectrum in the scene, N the number of
chemicals of interest, si ∈ Rp the signature spectrum for the i-th chemical of
interest, gi ≥ 0 the amount of chemical i, and v the radiance spectrum of the
background. In practice, it is usually assumed that N ≤ 3. In this paper, due
to the data under consideration, we consider the case N = 1 (thus, x = gs+v).
However, the methods discussed in this paper can be naturally extended to the
cases where N > 1.

To effectively separate the chemical clouds from the background clutter,
one needs to choose a proper model for the background radiation v. Current
approaches (e.g. [2, 3]) often represent the background by a single Gaussian dis-
tribution or subspace and then derive corresponding statistical estimators which
assign detection scores to each spectrum (see the review [1]). These detection
algorithms have shown their effectiveness in many applications, but there is
room for improvement. In particular, background often consists of heteroge-
neous regions (such as sky, mountain, desert; see e.g. [1, Fig. 9]) which may
require separate subspaces to better capture the complexity of the background.
Some other methods tackle the problem alternatively [4, 5, 6, 7], including the
case when the target plume is unknown [8].

Our contributions in this work are threefold: (a) we extend the single-
subspace model [3] for modeling the background to a “mixture of subspaces”
model; (b) we propose techniques to enhance the detectability of the chemical
plume region, moving beyond classical least squares and using resampling tech-
niques to boost detection; and (c) when detection of chemicals with unknown
signature is of interest, we propose a flexible anomaly detection procedure which
efficiently constructs an empirical model of “normal” spectra and flags anoma-
lous ones according to likelihood assigned by the empirical model. In particular,
(c) is achieved by applying an efficient multiscale transform [9] to the hyperspec-
tral spectra of a training frame and then model the density of the transformed
pixels for computing the likelihood of each spectrum in any testing frame: if the
testing frame contains gas, then the gas region will be flagged as an anomaly if
it is assigned low likelihood values.

We consider two different scenarios, depending on whether we are given only
a single hyperspectral cube or a time series of them. In Scenario (I), we use the
available cube both for learning an empirical model for the background and for
chemical detection, while in Scenario (II) we use the first few frames (assumed
to be without chemical plume) for background modeling and any subsequent
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frame for testing for anomalies based on the learned background model. If
the sensor is assumed stationary, one could use the temporal variation of the
spectrum at each location to detect changes and detect anomalies: we do not
assume that the sensor is stationary (albeit it is such in most of the data we
consider) and therefore we do not use spatial coherence information across the
images. This makes the problem harder, but the proposed solution applicable
in a wider variety of settings.

2 Previous Work for Known Target Signature

Based on different assumptions on the background radiation v, different detec-
tion algorithms have been proposed for the setting when the signature of the
target plume is known. In this section we review some of the existing approaches
following the presentation of [1].

2.1 Gaussian Models

The simplest and most practical algorithm for chemical gas detection uses the
linear model in (1) and assumes normally distributed background clutter with
known covariance, that is,

x = sg + v, v ∼ N (µ, σ2Σ)

where the plume spectral signature s is also assumed to be known. The coef-
ficients g and σ2 can be estimated by maximizing the likelihood from a given
sample. The gas detection problem can be formalized as that of testing the
hypotheses

H0 : Plume absent (g = 0); H1 : Plume present (g > 0).

By applying the generalized likelihood ratio test (GLRT) one obtains the fol-
lowing detector:

TNMF(x | µ,Σ, s) =
(sTΣ−1x̃)2

(sTΣ−1s)(x̃TΣ−1x̃)
, x̃ = x− µ (2)

This is known as the normalized matched filter (NMF) and also the adaptive
cosine or coherence estimator (ACE) [2]. Since the NMF requires estimation
and inversion of the background covariance matrix Σ, they are approximated in
the following way in order to avoid numerical instability and to obtain robust
detectors:

Σ̂ =

p∑
k=1

λkqkq
T
k + δI, Σ̂−1 =

p∑
k=1

1

λk + δ
qkq

T
k

where λk and qk (k = 1, · · · , p) are the eigenvalues and eigenvectors of the
sample variance, δ is a regularization parameter and can be chosen as certain
percentile of the values of {λk}. For the data of our interest in this paper, the
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performance of ACE is not sensitive to the choice of δ as long as it is moderate,
say between 30 and 80 percentiles of {λk}. In the experiments of this paper, we
choose δ as the median of {λk}.

2.2 Subspace Models

Another category of approaches for chemical plume detection assumes that the
background clutter can be well represented by a low-dimensional subspace. In
that case, the signal model becomes

x = sg + µ+Bc + ε, ε ∼ N (0, σ2I)

where µ,B represent a fixed point and a basis for the background subspace
and ε is the additive noise. To find µ,B, principal component analysis (PCA)
is applied to the background spectra. Similarly to before, the quantities g, c
and σ are estimated by maximizing the likelihood. Due to the assumption of
normally distributed error ε, the maximum likelihood estimators (MLE) of g
and c may be computed by least squares.

The GLRT approach yields the following detector [3]:

TNSS(x | µ,B, s) =
‖P⊥b x‖2

‖P⊥tbx‖2
(3)

where P⊥b and P⊥tb are projection matrices:

P⊥b = I −B(BTB)−1BT ;

P⊥tb = I −A(ATA)−1AT , A = [sB].

Note that ‖P⊥b x‖ and ‖P⊥tbx‖ are respectively the orthogonal distances from the
background and target-background subspaces.

2.3 Multiple Plumes

These algorithms can be naturally extended to the case where N > 1, i.e., there
are more than one chemical plumes. The corresponding detectors can be written
as:

TNMF(x | µ,Σ, S) =
(x̃TΣ−1S)(STΣ−1S)−1(STΣ−1x̃)

x̃TΣ−1x̃
, x̃ = x− µ

where S = [s1, · · · , sN ] and si ∈ Rp is the signature spectrum for the ith chem-
ical plume, and

TNSS(x | µ,B, S) =
‖P⊥b x‖2

‖P⊥tbx‖2

where P⊥b and P⊥tb are projection matrices:

P⊥b = I −B(BTB)−1BT ;

P⊥tb = I −A(ATA)−1AT , A = [S B].
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3 Mixture models and Enhancement with Known
Target Signature

In this section, we describe both the mixture models and some techniques to
enhance the detection. Our algorithm is presented at the end of this section.

3.1 Mixture Models

Gaussian mixture models v ∼
∑
j πjN (µj ,Σj), where N represents the Normal

distribution, may be used to capture complex backgrounds. We are particularly
interested in the case where Σj is rank-deficient, and therefore N (µj ,Σj) is
supported on an affine subspace spanned by cols(Bj), the columns of a matrix
Bj . More generally, in a subspace mixture model v ∼

∑
j πjS(µj , Bj) where

S(µj , Bj) is a probability measure with mean µj and support contained in the
subspace spanned by the columns of Bj .

The model parameters πj and Θj ((µj ,Σj) or (µj , Bj)) in each case can be
estimated by K-means, K-means-like subspace clustering algorithms (e.g. [10,
11, 12]), fast multiscale techniques [13], or Expectation-Maximization (EM)
methods, through iterations between updating cluster assignments and model
parameters.

The signal x is then assigned to the cluster that maximizes the estimation
of πjp(x|Θj):

ĵ = arg max
j
πjp(x | Θj).

Given a target plume signature s, the mixture versions of the two estimators,
NMF (also known as ACE) and NSS, are given by

TmixNMF(x | s, {πj , Θj}) = TNMF(x | s, µĵ ,Σĵ);
TmixNSS(x | s, {πj , Θj}) = TNSS(x | s, µĵ , Bĵ).

(4)

Alternatively, for the subspace mixture model, we may simply use the coef-
ficient g as the detector and solve for it by least squares. Specifically, letting ĵ
be defined as above, it is easy to show that the least squares estimator ĝ of g is
the first entry of

β̂ = (AT
ĵ
Aĵ)
−1AT

ĵ
(x− µĵ), Aĵ = [sBĵ ].

This yields the mixture Linear Coefficient (LC) estimator

TmixLC(x | s, {πj , Θj}) = max{ĝ, 0}.

The knowledge about the background complexity can be used to choose the
appropriate number of Gaussians (or subspaces), e.g., for the data in Section 5.2,
we use three components since the scene has sky, mountain and ground areas.
In practice, the detection performance is not sensitive when this number is
overestimated and there are enough sample spectra. These mixture models can
also be applied with the detectors that handle multiple plumes.
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Finally, in section 4 we consider a related but different family of multiscale
models for background spectra, in the context of anomaly detection in hyper-
spectral movies, in the setting when the spectral signature s of the chemical of
interest is not given, nor the frames in the movies are assumed to be registered.

3.2 Enhancement Techniques

We propose a few enhancement techniques for background estimation to reduce
the affects of the contamination:

3.2.1 Outlier Removal

We detect and remove a small fraction of the spectra that are dissimilar to the
main part of the data, in terms of magnitude or connectivity (in this paper
we simply compute the sum of squares of each spectrum as its magnitude and
classify those spectra with largest magnitudes as outliers).

3.2.2 Resampling Enhancement

This technique is relevant only when we are in Scenario (I). For this goal we
utilize an iterative scheme. We first choose a few likely background spectra
based on a reliable detection score (output of a detection algorithm, e.g. ACE),
and then select their spatial neighbors as well, since adjacent pixels are very
likely to be of the same category. Using these selected spectra, the background
model parameters are re-estimated and the detection statistics are re-deduced
accordingly.

Algorithm 1 Resampling Enhancement

Input: {xi}mni=1 ⊂ Rp: spectra; {Ti}mni=1 ⊂ R: detection score; s ∈ Rp: plume
signature; τ1 ∈ (0, 1): portion.

Output: {yi}mni=1 ⊂ R: enhanced detection score.
1: Sort Ti s.t., T(1) ≤ · · ·T(mn).
2: Choose δ1 = T([τ1mn]). Let A1 := {xi : Ti ≤ δ1}.
3: Let B be the union of A1 and the 4 (above, below, left and right) spatial

neighbors of xi ∈ A.
4: Re-estimate model parameters Θj ’s from B.
5: Compute the statistic (detection score) based on the updated model.

3.2.3 Partial Least Squares Regression (PLSR) Enhancement

PLSR [14] reduces the dimensionality of the data in the way that the covariance
between predictors and responses is maximized. The response is re-estimated
on the reduced predictors. In our problem, PLSR is applied so that the ra-
diance data is projected to a subspace that is most relevant to the detection
score (output of a detection algorithm, or enhanced detection score resulted
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from resampling). A new and enhanced detection score is computed from the
projected radiance data. In fact, we select a certain amount of spectra which
are most likely to be background as well as chemical clouds and apply PLSR on
the selections.

Algorithm 2 PLSR Enhancement

Input: {xi}mni=1 ⊂ Rp: spectra; {Ti}mni=1 ⊂ R: detection score; s ∈ Rp: plume
signature; τ2, τ3 ∈ (0, 1): portions.

Output: {yi}mni=1 ⊂ R: enhanced detection score.
1: Sort Ti s.t., T(1) ≤ · · ·T(mn).
2: Choose δ2 = T([τ2mn]) and δ3 = T([(1−τ3)mn]). Let A2 := {xi : Ti ≤ δ2} and
A3 := {xi : Ti ≥ δ3}.

3: Apply PLSR on the selected pairs (xi, Ti) with xi ∈ A2

⋃
A3 to obtain

parameters β ∈ Rp and β0 ∈ R.
4: yi = βTxi + β0, i = 1, · · · ,mn.

3.3 Algorithm for Plume Detection in Hyperspectral Im-
ages or Movies

We propose a unifying algorithm (see Algorithm. 3) that can detect chemi-
cal plumes in both scenarios: in Scenario (I) when we have only a single hy-
perspectral cube, we incorporate the enhancement techniques proposed in the
previous section to learn the background via mixture modeling; in Scenario
(II) where we are given a time series of hyperspectral cubes, we assume that
the first few frames were collected before the chemical release so we may use
their spectra for background modeling. Afterwards, we select a detector (from
TmixNMF, TmixNSS, TmixLC)) and apply it to the given cube(s).

Algorithm 3 Chemical plume detection through mixture background modeling
in hyperspectral images or movies

Input: {x(`)
i }mni=1, 1 ≤ ` ≤ L: L hyperspectral frame(s); s ∈ Rp: plume signa-

ture, and detector (one of the TmixNMF, TmixNSS, TmixLC).

Output: {T (x
(`)
i )} ⊂ R: detection score

1: Fit a mixture model {Θj} to the given cube (when L = 1) or the first few
clean frames (when L > 1). Apply the enhancement techniques if relevant.

2: for each frame ` = 1, . . . , L,
(1) Assign spectra of the `-th frame to nearest component models by maxi-
mizing the estimator of πjp(x|Θj)
(2) Evaluate the given detector for all spectra of the frame (within the
corresponding clusters) to produce detection scores
end for
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4 Anomaly Detection in hyperspectral movies
with Unknown Target Signature

In this section we consider the problem of anomaly detection instead of detec-
tion of known chemicals. In particular, we are interested in the application to
hyperspectral movies, where at unknown time and location a gas is released
and the gas plume needs to be tracked. We think of the chemical plume re-
gion, once released, as a set of anomalous spectra, when compared against the
background clutter, and thus we base detection on accurately estimating the
probability measure modeling the space of the background spectra and comput-
ing the likelihood scores of every spectrum in any testing frame relative to the
density model.

In the original paper on Geometric Multi-Resolution Analysis (GMRA) [9],
an approach for approximating probability distributions in high-dimensions us-
ing the intrinsically low-dimensional GMRA structure was suggested, and those
ideas were further developed in [13, 17]. In this case we are not given sig-
natures of spectra to detect; instead we are given one or more hyperspectral
scenes defined “normal” (a training set), and given a new hyperspectral scene
we are interested in deciding if its spectra are normal or present “anomalies”.
We model this problem as follows: we assume that there is an unknown prob-
ability measure ν in Rp from which “normal” spectra are drawn. The training
set X := {xi}Ni=1 ⊆ Rp consisting of all the spectra in the training hyperspec-
tral scenes is modeled as n i.i.d. samples from ν.1 We use these n samples to
learn a probability measure ν̂X approximating, in a suitable sense, ν. Given a
new scene, i.e. a new set of samples Xnew = {xnew

i }, we could ask what is the
probability of seeing xnew

i if it was sampled from ν, and call xnew
i an anomaly if

this probability is below a certain threshold. Unfortunately this does not make
sense since typically ν (and our estimator ν̂X) do not assign positive probabil-
ity to any point. Often one then replaces probabilities by probability densities
and associated likelihoods. An alternative is to replace the question above by
evaluating the probability (according to ν̂X) of seeing a point within distance r
from xnew

i , and decide whether xnew is an anomaly or not based on a threshold
on such probability, i.e. we declare xnew

i an anomaly if Pν̂X (Br(x
new
i )) < η.

The values of η and r tune the sensitivity of the anomaly detection. We may
choose them by first fixing η, then choosing r minimizing type I or type II er-
ror (or other similar criterion), or by choosing r to be smallest value such that
Pν̂X (Br(x

val
i )) > η for all i’s, where {xval

i } is a validation data set (possibly
extracted and excluded from a training set). Then as we vary η we obtain a
ROC for the anomaly detector (assuming we know the ground truth).

The key problem here is to efficiently construct an estimator ν̂X : this is a
challenging task, since ν is in Rp, with p typically large (p > 100 is common).
This is accomplished by using techniques based on GMRA, originally suggested
in [9], and further developed and analyzed in [13, 18]. We have no space to

1Clearly, independence is a rather strong assumption, but could be relaxed with only rather
minor technical difficulties to more general settings that accommodate mild dependencies.
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describe the details of these constructions. At a high level, one can think of
GMRA as a principled and efficient way of encoding a data set that, while high-
dimensional, is intrinsically low-dimensional, at different levels of accuracy, by
first constructing a multiscale tree decomposition of the data, and then in each
node of the tree, corresponding to a portion of the data, construct a data-
driven low-dimensional projection of the data, and further compressing these
projections by encoding the difference between the projection at one node and
those of children nodes in the tree [9]. The results in [18] guarantee that under
suitable geometric assumptions about the data – essentially the data should
be close to an (unknown) low-dimensional manifold – GMRA run on the data
will efficiently construct sparse representations of the data. In order to extend
this construction to the estimation of probability measure, at each node of the
GMRA tree we estimate a simple probability measure (e.g. a low-rank Gaussian)
and combine these measures appropriately to construct a probability measure
ν̂X approximating ν. The results in [13, 17] guarantee that – under suitable
geometric assumptions on the data and on the regularity of νX – the estimator
ν̂X gets increasingly closer to ν (in Wasserstein distance) with high probability
as N increases, and with a rate that depends only on the intrinsic dimension d of
the data and not on the ambient dimension p. Furthermore, these constructions
are yielded by efficient algorithms, having complexity essentially linear in the
training data size pN , with a constant depending essentially on the intrinsic
dimension of the data d. In the setting of hyperspectral images considered here,
N = mn is the number of pixels in an image. The intrinsic dimension of the
data, measured by Multiscale SVD [19, 21] is often very small in hyperspectral
data, between 1 and 5. Moreover, these algorithms [13]-[17] easily allow to
quickly (in Od(logN)) incorporate new samples in an online fashion, in both
the GMRA construction and the estimator ν̂X . Finally, the underlying GMRA
construction, simultaneously to the above, yields a dictionary that sparsifies
the data (in our case the spectra) [18, 21], enabling the compression of the
data. These representations also lead to a variation of Compressed Sensing
where the data model is that of a nonlinear manifold, with extremely efficient
inversion algorithms that do not require the solution of high-dimensional convex
optimization problems [13].

5 Experimental Results

In this section we consider both synthetic data and some real data sets in the
Colorado State Repository (will write CSR for short thereafter) made available
through the ATD program (Algorithms for Threat Detection), co-sponsored by
NSF, DTRA and NGA. We start with synthetic data to present the functionality
of our models in simple situations, and subsequently consider real data sets,
demonstrating the effectiveness of our methods in applications.
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Algorithm 4 Multiscale-transform based Density Estimation

Input: Data set Xn

Output: Multiscale densities {ν̂j,k}j≥0,k∈Λj

1: Apply GMRA to the training data to obtain a multiscale dictionary
{cj,k,Φj,k, wj,k,Ψj,k}j>0,k∈Λj

2: For each j > 0, k ∈ Λj , apply the Geometric Wavelet Transform to the data
in each Cj,k and obtain low dimensional coefficients

3: Apply a density estimator (e.g. KDE [15]) to each set of geometric scaling
and wavelet coefficients corresponding to each Cj,k, and obtain density es-
timates ν̂j,k; also record π̂j,k, the empirical probability of a point belonging
to Cj,k.

4: By testing on a validation set, select an optimal scale j∗ and return the
mixture model

∑
k π̂j∗,kν̂j∗,k.

5.1 Synthetic Data Sets

5.1.1 Gaussian Mixture Models

Description. We use synthetic data set to realize the Gaussian mixture model.
We take the MIT Lincoln Lab Challenge Data (see details in the next section) to
obtain the mean spectra for three regions - sky, mountain and ground (denoted
by µ1, µ2 and µ3 respectively) and the target plume signature s. These spectra
consist of 68 measurements at different values of wavelength and are shown in
Figure 1.

900 1000 1100 1200
0.04

0.06

0.08

0.1

0.12

0.14

0.16

wavenumber

ra
di

an
ce

 

 

µ
1
 − sky

µ
2
 − mountain

µ
3
 − ground

900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

wavenumber

ab
so

rp
tio

n

Figure 1: Left: the mean spectra of sky, mountain and ground. Right: the
absorption of the chemical plume.

Moreover, 5, 000, 5, 000 and 4, 000 spectra are generated i.i.d. from Gaussian
distributions N (µ1,Σ1), N (µ2,Σ2) and N (µ3,Σ3) respectively for the three
regions, where Σi = diag{σ2

i,1, · · · , σ2
i,68}, i = 1, 2, 3 and all σi,j ’s are drawn i.i.d.

from the uniform distribution on [0.002a, 0.008a] with a = max(µ3). Finally,
1, 000 spectra on the ground with chemical plume are generated from gs + v,
where v ∼ N (µ3,Σ3) and g ∼ N (−0.01, 0.001). Top left of Figure 2 displays 5
sample spectra for each of the groups - sky, mountain, ground and plume.
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Figure 2: Top left: radiance against wavenumber of 5 samples each from the
groups of sky, mountain, ground and plume. Top right: the ACE scores of 10
spectra samples computed by 1 Gaussian and 3 Gaussians respectively. Bottom:
the boxplot of the ACE scores of using 1 Gaussian (left) and 3 Gaussians (right).
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Task. Detect the plume and compare the Gaussian mixture model with the
single Gaussian model by the detection.
Technique. We compute the ACE (or NMF) statistics (detection scores) using
the ground truth. More precisely, we compute TmixNMF by (4) using the true
values of µi and Σi with i = 1, 2, 3 and TNMF by (2) using µ = (µ1 +µ2 +µ3)/3
and Σ = (Σ1 + Σ2 + Σ3)/3 for all spectra.
Results. Ten sample ACE statistics each from the 4 groups are demonstrated
on the top right of Figure 2 for both the single Gaussian and mixture Gaussian
models. In addition, the summary of these statistics are shown as boxplot at
the bottom of Figure 2, with the single Gaussian on the left and the mixture
Gaussian on the right. The boxes are colored by groups of sky, mountain,
ground and plume. On each box, the central mark is the median, the edges
of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered as outliers. These figures show that when
using three Gaussians instead of a single Gaussian, the ACE statistics of the
plumes are greatly larger than those of the other regions. This makes the plumes
more separable and thus more detectable.

5.1.2 Subspace Mixture Models

Description. We use synthetic data set to realize the subspace mixture model.
5, 000, 5, 000 and 4, 000 spectra are generated i.i.d. from cµ1 + ε, cµ2 + ε and
cµ3 +ε respectively for sky, mountain and ground regions, where c ∼ N (1, 0.01),
ε ∼ N (0,Σε), Σε = diag{σ2

ε,1, · · · , σ2
ε,68} and σε,j ’s are drawn i.i.d. from

N (0, 0.005 max(µ3)). Then 1, 000 spectra on the ground with plume are gener-
ated as gs + cµ3 + ε with g ∼ N (−0.01, 0.001). Top left of Figure 3 displays 5
sample spectra for each of the groups - sky, mountain, ground and plume.
Task. Detect the plume and compare the subspace mixture model with the
single subspace model by the detection.
Technique. We compute the NSS statistics (detection scores) using the ground
truth. More precisely, we compute TmixNSS by (4) letting Bi = µi, i = 1, 2, 3
and TNSS by (3) using B = (µ1 + µ2 + µ3)/3.
Results. Ten sample NSS statistics each from the 4 groups are demonstrated
on the top right of Figure 3 for both the single subspace and mixture subspace
models. In addition, the summary of these statistics are shown as boxplot at
the bottom of Figure 3, with the single subspace on the left and the mixture
subspace on the right. From these figures, we know that the separation between
the plume and other regions greatly improves when using the mixture subspace
model.

5.1.3 Partial Least Square Regression

Description. We generate 10, 000 spectra from µ+be, where µ = (µ1+µ2+µ3)/3
, b = maxµ and ej ∼ Poisson(0.005), i.i.d., j = 1, · · · , 68. Then 1, 000 spectra
are generated from µ+ be + gs with g ∼ N (−0.01, 0.001). 10 sample spectra of
each class (scene and plume) are shown in Figure 4.
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Figure 3: Top left: radiance against wavenumber of 5 samples each from the
groups of sky, mountain, ground and plume. Top right: the NSS scores of 10
samples computed by 1 subspace and 3 subspaces respectively. Bottom: the
boxplot of the NSS scores of using 1 Gaussian (left) and 3 Gaussians (right).
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Figure 5: Top left: ACE statistics of 50 sample spectra of each class; Top right:
ACE statistics after PLSR of the same 50 sample spectra of each class; Bottom
left: the boxplot of the ACE statistics; Bottom right: the boxplot of the ACE
statistics with PLSR.

Task. Detect the plume and compare the performances before and after PLSR.
Technique. We compute the ACE statistics as described in Section 2. Then we
apply Algorithm 2 with τ2 = τ3 = 0.2 to the computed ACE scores.
Results. The top of Figure 5 displays the 50 sample ACE scores on the left and
the corresponding enhanced results after applying PLSR on the right. Their
statistical summary are demonstrated as boxplots at the bottom of Figure 5
with ACE on the left and PLSR on the right. These figures demonstrate that
the PLSR procedure greatly improves the separation of the detection scores
between scene and plume.

5.1.4 Multiple Chemical Plumes

Description. We follow Section 5.1.1 to generate 5, 000 sample spectra each for
the sky, mountain and ground areas, then we generate 1, 000 sample spectra
for the ground area each with chemical plume 1 and 2. The signature (s1, s2)
of these two plumes are demonstrated on the top left of Figure 6. Finally we
generate 100 sample spectra for the ground area with both chemical plumes
from g1s1 + g2s2 + v, where v ∼ N (µ3,Σ3) and g1, g2 ∼ N (−0.01, 0.001). On
the top right of Figure 6, sample spectra of different areas are displayed.
Task. Detect where a plume (or both plumes) are present.
Technique. We compute the detectors as described in Section 2.3.
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Figure 6: Top left: signature spectra of plume 1 and plume 2. Top right: sample
spectra of different areas, with and without plumes. Bottom left: boxplot of the
ACE statistics for different areas. Bottom right: boxplot of the NSS statistics
for different areas.

Results. The box plots of the NMF (ACE) statistics and the NSS statistics are
shown at the bottom of Figure 6. It is evident that the regions with plumes
can be distinguished from those without plumes very well. We will not conduct
an experimental analysis as careful as for a single target plume for two reasons.
First, all the real data under consideration have only a single chemical plume.
Second, from the statistical point of view, our models (both Gaussian and sub-
space) for different numbers of chemical plumes are essentially the same models
with different dimensions. We will just use this simple example in this section
to justify that our methods work effectively for N > 1.

5.2 MIT Lincoln Lab Challenge Data

Description. We use hyperspectral images available at the CSR, collected by the
MIT Lincoln Lab, and made available through the ATD program. This data set
consists of four individual hyperspectral images, two of which are for released
chemical plume and two for embedded plume. In each of the four, available
data include a radiance data cube, its matrix form, the absorption coefficient
spectrum of the chemical plume of interest and plume present mask. Data cubes
are about of the size 200 × 300 × 100, where 200 × 300 is the spatial size and
100 is the spectral dimension.
Task. Detect the chemical plume from a single cube.
Technique. We apply the three detection algorithms (NMF, NSS, LC), their
corresponding mixture models (mixNMF, mixNSS, mixLC), and the two en-
hancement techniques (resampling and PLSR) as described in Section 2 and 3.
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The dimension for the subspaces is chosen to be 2 by looking at where the sin-
gular values start to flatten. The parameters for the enhancement techniques
are τ1 = 0.2, τ2 = τ3 = 0.15.
Results. The receiver operating characteristic (ROC) curves are shown in Fig-
ure 7 for one of the embedded data cube (also the most difficult one). Com-
parisons are made between single and mixture models on the left and between
mixture models and those followed by resampling and then PLSR (the combi-
nation of these two enhancement techniques are denoted as -eh) on the right.
From the left figure, we see that using mixture models for background can im-
prove the detection results. Among the three algorithms, mixture LC works
the best. In the right figure, when adding the enhancement procedures, both
mixNMF and mixNSS improve, but mixLC does not. Overall, mixNMF with
enhancement outperforms others.
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Figure 7: ROC curves. The left is comparison for single and mixture models and
the right for mixture models before and after enhancement (denoted as -eh).

Furthermore, we demonstrate the detection maps of the intermediate steps
of the best performed method mixNMF-eh, namely mixNMF, mixNMF with re-
sampling (mixNMF-rs), mixNMF with resampling twice (mixNMF-rs2), mixNMF
with resampling twice and followed by PLSR (mixNMF-rs2-plsr). These results
are shown with those of the NMF on the original data (NMF-outliers) and on
the data with outliers removed (NMF). All the methods stated in this section
proceed the outlier removal first, except NMF-outliers. Figure 8 shows that the
mixture model and the various enhancement steps (resampling and PLSR) im-
prove the results gradually; the plume region becomes more and more separable
over these steps.

5.3 Fabry-Perot Interferometer Sensor Data

Description. This dataset consists of five time series of radiance data, collected
using an imaging Spectroradiometer that operates in the 8 – 11 micron range
under five different combinations of the kind of chemical material (TEP, or
MeS, or GAA), the release amount (75 kg/burst or 150), and the sensor used.
To generate each sequence, a predetermined quantity of simulant is released into
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Figure 9: Detection results by ACE (left column) and TmixLC (right column) on
a fixed frame in each of the five hyperspectral movies of the Fabry-Perot data
set. Note that (1) our detection map is consistently cleaner than ACE, and (2)
our algorithm significantly outperformed ACE in the third movie.
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the troposphere by using explosives (i.e. a burst release). Successive data cubes
are collected, beginning before the event and terminating when it is deemed
that additional data collected will not augment scientific value. As a result,
each hyperspectral time series contains several hundred frames of hyperspectral
images, which all have 256× 256 spectra along 20 spectral bands.
Task. Detect and track the chemical plume.
Technique. We first check the time derivatives of the spectra (along the se-
quence) but did not observe anything useful (this indicates that the data is
particularly challenging). We then applied Algorithm. 3 with the mixLC esti-
mator and compared our results with ACE [2].
Results. The comparison is shown in Figure 9. It is obvious that the detection
map by our algorithm is always much cleaner than that by ACE. Furthermore,
in one case, our algorithm was able to clearly locate the plume while ACE could
not (see Figure 9, third column). In this experiment, we used the 5th frame for
background modeling (via a union of lines) and the 35th frame for testing (for all
five movies); future work will utilize multiple clean frames for joint background
modeling.

5.4 Anomaly Detection in Hyperspectral Movies

Description. We use hyperspectral movies available at CSR, collected by Johns
Hopkins Applied Physics Lab, and made available through the NSF ATD pro-
gram. These movies are taken with an FTIR based long wave infrared sen-
sor, recording a variety of releases of known chemicals in a gaseous, liquid and
gaseous state. They have frames consisting of 128 × 320 × 120 hyperspectral
cubes, with one collected approximately every 8 seconds. The data consists of
a desert scene where an unknown (to us) chemical is released at an unknown
location at an unknown time (after the beginning of the movie), growing into a
chemical plume.
Task. Detect and track the chemical plume.
Technique. We detect the spectra in the chemical plume as an anomaly with
respect to an empirical model for the background. We use the first two frames of
the movies (where we are told that no chemical plum is present) as our training
set X, and use the techniques detailed in section 4 to construct ν̂X , and detect
anomalies.
Results. An example of anomaly detection is visualized in Figure 10. In the
context of these movies, the intrinsic dimension of the data d appears to be
very low, typically d ≤ 5, as measured by Multiscale SVD [19]-[21]. Therefore
the number of samples required in order to learn ν̂X is expected to be low, even
if the high-dimensional space Rp with p = 120. In practice, with non-optimized
Matlab code, the construction of ν̂X , using the first frame as a training set
(a much smaller set would be more than sufficient) takes about a minute, and
the evaluation of ν̂X at all the spectra of a new frame takes a few seconds.
The anomaly detection requires the choice of a threshold, but not knowing the
ground truth we cannot study ROC curves. However the choice of threshold
did not seem to affect the results much, especially in the detection of the “core”

19



part of the chemical plume, albeit it did affect the detection of (presumably
less dense) regions of the plume: see Figure 10, where we chose on purpose a
particularly conservative threshold.

6 Computational Complexity

For the algorithms in section 3, the algorithm [11] to estimate the subspaces
modeling background has computational complexity isO(c1mn(dp+c2+log(mn))),
where d is the intrinsic dimension of the subspaces, c1 and c2 are two parameters
(set to 10 and 20). Algorithm [12] has similar cost and performance. Construct-
ing the estimators TmixNMF, TmixNSS , TmixLC requires O(p2), O((p + d)d2) and
O((p+ d)d2) basic operations. Resampling has cost O(mn log(mn)), PLSR re-
quires O((pmn + l2 + pl)l) operations, with l the dimension chosen for PLSR
(typically O(1), independently of p). The cost of the GMRA-based algorithms
(see section 4) is: O(Cdmnp log(mn)d2), where Cd is a constant that depends
exponentially in the intrinsic dimension d of the subspaces, for constructing the
GMRA; of O(mnd2) for constructing the estimator µ̂s using low-rank Gaussians
or KDE, and for evaluating it at new points; O(mnp log(mn)) for computing
the coefficients of new data needed to evaluate the likelihood.

In summary, all the algorithms we discuss run in time proportional to (up to
logarithmic factors) the size mnp of the hyperspectral data cube, with constants
that depend on the intrinsic dimension d of the data.

7 Conclusion

We have presented several ideas aimed at improving the current state-of-art in
several tasks related to the analysis of hyperspectral images, in particular for
background modeling, chemical plume detection and anomaly detection. We
discussed the application of these algorithms to a variety of data sets, with
state-of-art or better results (when ground truth was available). The proposed
techniques are diverse, but are mostly motivated by the observation that hy-
perspectral data is often noisy but intrinsically low-dimensional, allowing one
to use ideas from the dimension reduction and manifold learning algorithms
originally considered in view of machine learning applications. In particular
we use techniques for approximating data by mixtures of distributions on low-
dimensional subspaces [10, 11, 12], first with a small, fixed number of subspaces
for background modeling, and then with more complex, multiscale mixtures of
subspaces using GMRA [9] and its extensions to the estimate of probability
measures in high-dimensions.
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Figure 10: Anomaly detection of a chemical plume of an unknown chemical
appearing at an unknown time and location in a hyperspectral movie. No spatial
registration among the frames is assumed. The chemical plume is detected as
anomaly, evolving in time and space. Left column: log-likelihood score according
to empirical GMRA-based model, with darker red meaning lower log-likelihood,
i.e. higher probability of being an anomaly. Right column: thresholded version
of the images on the left, with a non-optimized, conservative threshold, showing
detection of the chemical plume. Ground truth was not provided for this data
set.
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