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Simulation of Multiangular Remote Sensing Products
Using Small Satellite Formations

Sreeja Nag, Charles K. Gatebe, and Thomas Hilker

Abstract—To completely capture the multiangular reflectance of
an opaque surface, one must estimate the bidirectional reflectance
distribution function (BRDF), which seeks to represent variations
in surface reflectance as a function of measurement and illumi-
nation angles at any time instant. The gap in angular sampling
abilities of existing single satellites in Earth observation missions
can be complemented by small satellites in formation flight. The
formation would have intercalibrated spectrometer payloads mak-
ing reflectance measurements, at many zenith and azimuthal angles
simultaneously. We use a systems engineering tool coupled with a
science evaluation tool to demonstrate the performance impact and
mission feasibility. Formation designs are generated and compared
to each other and multisensor single spacecraft, in terms of esti-
mation error of BRDF and its dependent products such as albedo,
light use efficiency (LUE), and normalized difference vegetation
index (NDVI). Performance is benchmarked with respect to data
from previous airborne campaigns (NASA’s Cloud Absorption Ra-
diometer), and tower measurements (AMSPEC II), and assuming
known BRDF models. Simulations show that a formation of six
small satellites produces lesser average error (21.82%) than larger
single spacecraft (23.2 %), purely in terms of angular sampling ben-
efits. The average monolithic albedo error of 3.6 % is outperformed
by a formation of three satellites (1.86 %), when arranged optimally
and by a formation of seven to eight satellites when arranged in any
way. An eight-satellite formation reduces albedo errors to 0.67 %
and LUE errors from 89.77% (monolithic) to 78.69%. The aver-
age NDVI for an eight satellite, nominally maintained formation is
better than the monolithic 0.038.

Index Terms—BRDF, constellations, CubeSat, multi-view mea-
surements, NDVI.

I. INTRODUCTION

N order to completely capture the reflectance of an opaque
I surface, one must measure the bidirectional reflectance dis-
tribution function (BRDF) [1]-[3]. BRDF is influenced by in-
trinsic properties of the reflecting surface, which are not affected
by the position of the sensor relative to the surface, the choice
of the coordinate system, and the particular parameterization of
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the surface and can be measured within the surface itself with-
out any reference to a larger space. BRDF itself, as a ratio of
infinitesimals, is a derivative with instantaneous values of re-
flected radiance and solar illumination [1]. While it can never
be measured directly, BRDF can be approximated from mea-
surements that involve tiny but nonzero changes in illumination
and reflectance angles, including laboratory setups [2], [4], [5].
BRDF of a ground spot can be estimated from air or space,
using multiple images over the same area viewed from different
directions at a specific angle of solar illumination.

The uncertainties caused by surface reflectance anisotropy
as a result of changing view-illumination geometry makes it
extremely difficult to perform dense angular sampling of the
same ground spot at the same time. Single spacecraft have
traditionally approximated the angular samples by combining
measurements taken over time with forward-aft (e.g., MISR [6]
or MultiAngle Imaging Spectroradiometer on the Terra space-
craft which obtains spectral radiance images from nine differ-
ent directions (0°, + 26.1°, £+ 45.6°, £60.0°, and +70.5°) or
cross-track swath (e.g., MODIS [7] or moderate-resolution
imaging spectroradiometer on Terra which accumulates mul-
tiangular data on subsequent orbits) or precommanded au-
tonomous pointing (e.g., CHRIS [8] or compact high-resolution
imaging spectrometer on Proba-1 that provides spectral radiance
images at five angles (0°, 4 36°, and £55° in the along track di-
rection) sensors. However, a single satellite without autonomous
pointing can make measurements only along a restrictive plane
with respect to the solar phase. For example, MODIS collects
measurements at solar illumination angle differences of up to
20° from edge to edge of its swath, with additional variation
due to latitude and time of the year [9]. Angular measurements
made by single satellite are separated in time by minutes along-
track (e.g., MISR) or days/weeks cross-track (e.g., MODIS). In
areas of fast changing surface or cloud conditions especially
during spring melt or tropical storms, a few days can make a
large difference in reflectance. While a single satellite with au-
tonomous pointing, such as CHRIS on Proba-1, provides the
angular coverage unrestricted to a single plane within a few
minutes, it cannot provide global, repeatable coverage because
of its command-and-control pointing that is focused on specific
targets only.

Airborne instruments such as the Cloud Absorption Radiome-
ter (CAR), NASA’s heritage radiometer for estimating BRDF
[2], [3], [54] can sample only a few locations at specific times
of the year when a campaign is commissioned. A spaceborne
mission is required for global, repeatable BRDF estimations.
Distributed space missions (DSMs) have the potential to pro-
vide a middle ground between the angular sampling of single
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Fig. 1.
same ground spot simultaneously

aircraft and global sampling of single spacecraft. A formation
of small satellites can make multispectral measurements of a
ground spot at multiple angles at the same time as they pass
overhead using narrow field of view (FOV < 3°) instruments in
controlled formation flight [10]-[12]. Fig. 1 shows a graphic for
a six-satellite case, where the relative positions of the satellites
do not need to be tightly controlled, but their relative attitudes do.
Near-simultaneous angular measurements of the same ground
spot eliminate inaccuracy due to surface inhomogeneities or the
changing solar angles. There will be a significant difference
in the pixel spatial resolution for images acquired when tilting
sideways compared to when pointing nadir, however the chal-
lenge to integrate such multiangular images exists even when the
images are acquired using the same, single platform; therefore,
the same integration algorithms can be leveraged.

DSMs have only recently been proposed for or implemented
in large scales in government[13] (e.g., NASA’s Earth Science
Technology Office 2030 Science Vision envisions “distributed
observations” and formation flight), academia (e.g., Europe’s
QB50 mission [14]) and industry (e.g., Planet Labs, [15] and
Skybox, [16]) to address the need for repeated, global measure-
ments for Earth observations, monitoring and quick response.
NASA’s decadal surveys or their mid-term assessments have
called for the consideration of DSMs in areas of Earth sci-
ence, Astrophysics, Heliophysics, and Planetary science. The
advent of the CubeSat standard, miniaturization of propulsion,
power systems or electronics, frequent and cheaper launch op-
portunities by emerging companies such as SpaceX and Rocket-
Dyne, hosted payload opportunities on traditional rockets using
the Evolved Expendable Launch Vehicle Secondary Payload
Adapter, deployment mechanisms for CubeSat payloads using
the Poly-Picosatellite Orbital Deployer or NanoRacks and the
increasing availability of ground stations [17] has made the
deployment and operation of large numbers of small satellites
more feasible than it ever used to be. In fact, larger numbers are
financially feasible because smaller satellites are possible [18].

DSMs have been critical to the success of science goals, other-
wise not possible with single spacecraft. For example, GRACE
for gravity estimation [ 19], STEREO for three-dimensional

Formation or cluster of six satellites in arranged within and over three orbital planes at the same altitude and inclination, pointing to and imaging the

(3-D) imaging of the Sun [20] and the upcoming CYGNSS for
wind speed measurements [13]. DSMs can increase data redun-
dancy and thereby provide a clear way of quantifying errors in
parameter estimation and identifying major biases or flaws from
single sensors. For example, the combined cloud information
from CALIPSO and CloudSat has exposed significant biases
in interpretation of International Satellite Cloud Climatology
Project global cloudiness, led to a new and more accurate way
of retrieving aerosol optical depth and yielded powerful new
information about polar stratospheric clouds [21]. The benefits
of multilook instruments to provide denser angular sampling are
well recognized in BRDF products compared to single look [1],
[6], [7], [22], however, DSMs have never been developed for
them. This paper quantifies the benefits of using formation flight
for BRDF estimation when compared to multisensor approaches
on a single spacecraft.

Designing DSMs is challenging because the process includes
a much larger number of variables than single spacecraft de-
sign, and it is imperative to understand the tradeoffs and in-
terdependences among the variables early in the design stage.
Model-based systems engineering (MBSE) is a useful tool for
preliminary mission concept designs that has been used for many
large missions in the past and has recently demonstrated success
in small satellite design [23] for understanding the tradespace
between conflicting design variables. Previous research on dis-
tributed satellite missions [24], [25] has treated satellite systems
as modular information processing centers, used N2 diagrams to
represent the iterative flow of information between subsystems
and optimized performance for extremely simple metrics such
as revisit time. Complex metrics specific to missions can be
calculated using observing system experiments (OSE) or simu-
lated using observing system simulation experiments (OSSE).
OS(S)Es have been traditionally used to quantify the impact of
observations from future observation systems such as satellite
instruments or ground-based networks on data products such
as weather forecasts, by mimicking the process of data assimi-
lation to validate science return for proposed instruments [26].
OSSE:s are important for effective DSM design in Earth science,
because the quantitative gaps of flagship missions can only be
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established in the language of specific performance metrics, in-
herent to the flagship mission concepts. This paper integrates
MSBE with OSSE and uses the coupled tool to identify DSM
designs that perform better than multisensor, single spacecraft
for BRDF estimation, purely from an angular sampling stand-
point. Design architectures can be generated from unique com-
binations of orbits, satellite number, etc., technically assessed
using MBSE and the value of those architectures in terms of
data assimilation and science products can be assessed using an
OSSE. Typical OSSEs are very resource-intensive, therefore,
a simple OSSE for differentiating between different DSMs in
terms of BRDF retrieval errors has been proposed in [12] and
will be used here to demonstrate the utility of DSMs in BRDF
estimation. The coupled technique simultaneously addresses the
current gap in MBSE, which lacks science evaluation and the
current gap in OSSEs which evaluates only point designs.

II. APPLICATIONS OF GLOBAL BRDF ESTIMATION

The accuracy of BRDF estimation has an impact on the ac-
curacy of estimating many Earth science products (e.g., albedo,
and vegetation indices), especially for non-Lambertian surfaces.
The impact of BRDF estimation in terms of only angular de-
pendence of reflectance on the albedo, photosynthetic efficiency,
and vegetation indices will be discussed in this paper. The sec-
tions below describe the said products and provide a review
of literature that supports the need for improved multiangular
measurements for their improved accuracy.

Multiangular imaging by Earth observation satellites is con-
sidered important for estimating surface albedo, which is a key
controlling geophysical parameter needed in the surface en-
ergy budget studies, numerical weather forecast, and general
circulation models. Albedo is related to land surface reflectance
by directional integration of reflectance measured over the full
viewing hemisphere at a single or over all solar zenith angles
and is therefore dependent on the BRDF, which describes how
the reflectance depends on view and solar angles [1]. As early as
1998, the NASA ARMCAS airborne campaign [22] in Alaska
measured reflectance at thousands of zenith and azimuth an-
gles using a radiometer that was flown around in circles on an
airplane and estimated albedo using these hemispherical mea-
surements. The comparison with nadir reflectance albedo shows
45-50% errors depending on the wavelength or geolocation
sampled. A more recent study [27] shows 15-20% difference
between vegetation albedo estimated using many angles—tower
or aircraft and MODIS albedo products.

The Earth’s albedo has been an important component of cli-
mate studies and the Earth radiation budget since the 1960s [28].
Vonder Haar and Suomi [28] established that Earth’s albedo was
closer to 0.3 and not 0.4 as was previously thought, but further
progress has not been made on albedo uncertainty. A change of
0.01 in albedo corresponds to a 3.4 W/m? change in reflected
or absorbed sunlight (assuming outgoing radiation to be 341.3
W/m? [29]) which is more than half the Earth Radiation Imbal-
ance [30], as will be described later. Climate modeling requires
albedo with an absolute accuracy of 0.05, according to [31], and
of 0.02 according to [32], therefore it is important to not only

reduce the average albedo estimation error from measurements
but also the maximum error below the stated values.

Accurate BRDF is required in quantifying the extent to which
forests and vegetation act as a sink for atmospheric carbon diox-
ide, which in turn is imperative to estimate carbon feedbacks of
vegetation in response to global climate change [33]. Deforesta-
tion and forest degradation accounts for 12% of anthropogenic
carbon emissions, which have nearly doubled in the past 30
years [34]. Vegetation analysis is adversely affected by under-
sampling on the principal plane and hotspots [35]. Current gross
primary productivity (GPP) estimates show uncertainties up to
40% in the terrestrial carbon uptake [36]—known as the missing
carbon problem over land. GPP is the product of photosynthetic
efficiency (¢)—also called light use efficiency (LUE)—and ab-
sorbed photosynthetically active radiation (APAR). In recent
studies, it has been shown that measurements of vegetation re-
flectance at multiple angles can be used to estimate changes in
protective leaf pigments as a function of shadow fraction [37].
These protective leaf pigments (xanthophylls) regulate LUE in
leaves: Under conditions where factors other than light are lim-
iting the photosynthetic processes, excess radiation energy is
dumped as heat, a process which strongly depends on incident
solar radiation. This down regulation can be measured by means
of the photosynthetic reflectance index (PRI), a normalized dif-
ference index that is sensitive to the xanthophyll absorption at
531 nm. Photosynthetic efficiency is proportional to the dif-
ferential of PRI with respect to the shadow fraction [38]. This
differential can be estimated from the BRDF of PRI. There is no
correlation between PRI, not corrected for BRDF, and efficiency
and the no mapping inferences can be made between the two.

Recent studies have also suggested an overestimation of the
greening of Amazon forests during the dry season due to sea-
sonal artifacts in MODIS’ sun-sensor geometry and therefore
inaccurate BRDF estimation [39]. Using denser, space-based
angular sampling (using CHRIS instrument mounted on Proba-
1, dynamic pointing satellite [6]) reduces GPP uncertainties to
10% [37], showing a 75% improvement in carbon cycle calcu-
lations. However, Proba-1’s measurements were on demand and
repeatable, global measurements were not possible.

Normalized difference vegetation index (NDVI) is the ratio
of the difference of the reflectance at near infrared (NIR) and
red bands to the sum of the reflectance at the same bands [40].
MODIS provides NDVI at different spatial resolutions, at differ-
ent frequencies (250 m every 16 days to 25 km NDVI monthly)
and serves as a continuity index to NOAA-AVHRR-derived
NDVI (approximately 9 day cycle) [9]. NDVI can be used as a
vegetation monitoring tool. The temporal profile of NDVI has
been shown to depict seasonal and phenologic activity, length
of the growing season, peak greenness, onset of greenness, and
leaf turnover or “dry-down” period. Ratioing of the NIR and red
spectral bands in a normalized manner to compute vegetation
indices does not remove surface anisotropy effects in estima-
tion errors, unless the angular variation of the BRDF function
at both bands is exactly the same [41]. NDVI errors are depen-
dent not only on the spectral BRDFs themselves, but also their
relation to each other and NDVI values get even more distorted
due to longer atmospheric path lengths associated with off-nadir
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Fig. 2. Coupled formation design (driven by MBSE) and evaluation (driven
by science-inspired OSSEs) tool for designing a formation for bi-directional
reflectance estimation from space.

viewing. BRDF knowledge is needed for successful utilization
of vegetation indices and the derivation of land cover-specific
biophysical parameters [42] and BRDF corrections of AVHRR
reflectance to a standard nadir view angle have been shown
to improve the accuracy of the composited NDVI [41], [42].
Aerosol retrievals are also affected due to inadequate scattering
angles in polarization data [6], [43]-[45].

III. CourPLED MBSE AND OSSE METHODOLOGY

An architecture is defined as a unique combination of design
variables such as number of satellites, their orbit parameters,
spectrometer payload’s FOV, imaging mode, etc. The method-
ology which is employed to assess the optimal architectures
and validate their BRDF estimation capabilities couples MBSE
with OSSEs. A tradespace of architectures can be analyzed by
varying the design variables in the MBSE model and assess-
ing its effect on data assimilation and science products using
OSSEs, as shown in Fig. 2. The left-hand box generates archi-
tectures, sizes them to check their feasibility and costs them, in
keeping with the MBSE approach. The model can be simulated
over any time horizon, divided into appropriate time steps. The
right-hand box evaluates the angular spread over time for ev-
ery architecture using a simplified OSSE described in [12] and
assesses science performance in terms of estimation errors of
BRDF and its dependent products.

DSMs can be made cost efficient if the free-flying elements
are small satellites. Small satellites have been endorsed by the
U.S. National Research Council as “complement to larger satel-
lites, not a replacement for them” [18]. Small satellites are found
to be especially cost effective when their payloads have already
been developed elsewhere and the arrangement and deployment
of multiple instances of these payloads can be optimized based
on mission requirements [18], such as the proposed BRDF for-
mations. The CubeSat form factor is a representative example
of a standard nano-satellite bus and CubeSats are known to sup-
port multispectral imagers to make Earth reflectance measure-
ments [46]. Therefore, the spacecraft bus requirements within
the MBSE model are set to values that adhere to optimistic
6U CubeSat standards: mass less than 20 kg; physical dimen-
sions within a 6U bus; and average power less than 40 W. We
have not yet sized all the spacecraft subsystems in detail to
ensure that it fits exactly in a 6U standard because full space-
craft packaging with structures is out of scope of preliminary

concept design (pre-Phase A) and falls within Phase B of the
NASA Systems Engineering Lifecycle [47]. If the packaging
solution finds 6U to be infeasible, the spacecraft structure can
be expanded to the 12U standard (~25 kg) without any loss in
relevance of the results presented here.

This paper discusses only the results of the coupled model
in terms of angle-dependent science performance (output from
the right box of Fig. 2) as a function of the most important
architecture-differentiating variables in the engineering design
(parameters in the left box of Fig. 2). The selection of the vari-
ables and internal optimization of the models have been de-
scribed in parallel literature [48], [12], [49]. The sections below
describe the two models in the coupled framework to provide
some context in the selection of the architectures whose per-
formance will be compared to single satellite performance, as
validated against reference data (Section I'V).

A. Systems Engineering Model (MBSE)

The MBSE model generates hundreds of formation flight
architectures by using BRDF measurement requirements and
6U CubeSat bus requirements as inputs (listed in Fig. 3) and
constraints and outputs the following three types of metrics
shown in Fig. 3: 1) science performance in green (e.g., signal-
to-noise ratio or SNR), 2) technology supportability in black,
and 3) resource measures in red (e.g., cost). The orbits/modes
and payload module are the architecture generators while the
GNC/ADC (guidance, navigation, and control and attitude, de-
termination, and control), onboard processing, communication
and propulsion modules are the architecture feasibility evalua-
tors. In this paper, only angular sampling (as quantified further
in the OSSE) will be compared among the different, generated
architectures that are deemed technically feasible by the GNC
and other subsystems mentioned.

The mission measurement requirements are derived from
science goals and specifications of current, successful space-
borne instruments (specifically MISR) and airborne instruments
(specifically CAR). Measurement zenith angles up to 80°, mea-
surement azimuth up to 360°, and solar zenith angles up to 80°
are ideal for the full angular spread at any ground spot. Spec-
tral requirements, derived from the CAR [2] instrument, are
14 wavebands with spectral resolution varying from 10 to 40
nm and over the spectral range of 350-2300 nm. These spectral
specifications are expected to represent those needed by the pas-
sive optical remote sensing community, and can be modified to
add new bands or descope existing ones. The spaceborne pay-
load is expected to be a narrow FOV spectrometer, preliminarily
outlined in [48]. A medium spatial resolution of less than 500
m is used as an initial requirement because 500 m of resolution
at the longest required wavelength (2300 nm) corresponds to a
resolution of 188 m at MISR’s highest band (865 nm), as per
the Rayleigh criterion. Since MISR’s resolution at 865 nm is
275 m, a finer resolution requirement allows for combining data
products from the proposed mission with MISR’s data products.
As with spectral, the spatial requirements can be changed if sci-
ence products were to change or the other subsystems were to
provide such feedback. For example, the payload analysis con-
firmed a preference to spatial resolutions coarser than 500 m
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MPYV = Mass, Volume, Power.

in order to improve swath for more coverage and allow more
integration time per image, thus more SNR. The altitude range
is constrained to 400-800 km (LEO) because that range corre-
sponds to the most common shared rides available with primary
payloads. If all the satellites can be launched as the primary
payload itself, then the orbit constraints may be removed. The
given LEO range has also been found to be a sweet spot for
payload operations and maintenance against atmospheric drag.

The flow of information between the modeled subsystems is
shown in Fig. 3 as an N2 diagram (defined in [24], [25]) so that
only feasible architectures are outputs from the MBSE model,
to be evaluated by the OSSE. In keeping with the structure of N2
diagrams, the arrows on the upper and lower triangle represent
feed-forward and feedback loops, respectively. Information flow
is represented as lists of variables between any two modules,
where in the text is placed in the knee or corner of the right-angle
arrow connecting the two modules. For example, the GNC/ADC
module sends “Actual satellite states” to the propulsion module,
which sends back ‘“Position, Attitude Control” to GNC/ADC
and “Maintainability” to the orbits and modes module. The
entire penultimate column of variables starting with “number of
sats” are variables that flow from all modules into the cost and
risk module.

The functions of each module, in the context of simulat-
ing and evaluating DSM architectures, are briefly described be-
low. The orbits and imaging modes module generates formation

flight architectures that satisfy the input constraints and mea-
surement requirements. Since there are hundreds of thousands
of possibilities, the variable space has been streamlined based
on semi-analytical sensitivity studies [48] and we compare only
the streamlined architectures in this paper. There can be differ-
ent strategies for payload pointing or imaging modes for a given
set of orbits. While the orbits module simulate how the satellites
will be organized in space, the imaging modes simulate where
they will point to capture optimal images in coordination. The
pointing strategy chosen for this paper dynamically switches the
satellite pointing nadir, and has been shown to maximize per-
formance [49]. The payload module is a physics-based model
to find the optical requirements based on external (mission or
other module) requirements, use them to design dispersive spec-
trometers that will fit within a 20 kg spacecraft, and evaluate
their spectral, spatial, and radiometric performance. The FOV
and spatial resolution provided by the payload drive the atti-
tude determination and control bits required in the GNC and
ADC module. The slew rate of payload pointing required for
all the geometry solutions and imaging modes drives the ADC
module to find required angular momentum and torque capacity
of an appropriate ADC system. If inter-sat communication is
used (currently suboptimal [48]), the GNC sensors and range
will limit the intersatellite distances allowed in the formations,
therefore a feedback loop leads to the orbits module. The on-
board processing simulates the intake of raw images from the
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payload and position information from the GNC module. It pro-
cesses and compresses the image, ensures accurate image reg-
istration so that it can be combined with processed images from
other satellites in the formation obtained at the same ground
spot at different angles. The processed image may be used to
further enhance the spacecraft’s state knowledge. The commu-
nication module is responsible for simulating the transmission
of the processed images down to the Earth at the next downlink
opportunity as a function of the range and elevation to ground
station (as obtained from GNC). Limited by available data rate
and ground stations, the processing and communication mod-
ules set a limit in terms of the amount of data that can be sent
to Earth, which in turn sets a limit (feedback loop) on the data
collection rate of the payload. The propulsion module simulates
the initialization of the formation after launch, station-keeping
and momentum dumping for the ADC system. If maintenance
within current capability for small satellites is not possible for an
architecture’s orbits, as evaluated by the propulsion module, that
particular architecture will be discarded. The cost and risk mod-
ule is used to cost every architecture including its complexity
and risks to estimate tradeoffs against the science performance
of that architecture.

Many formation architectures were generated by running the
MBSE model for different subsystem variables within measure-
ment requirements. Technical feasibility of these architectures
were determined by the output values, shown in black text on the
right-hand side of Fig. 3, as modeled by the relevant modules:
SNR, commercial or off-the-shelf availability of technology re-
quired for the payload, GNC/ADC, communication, onboard
processing and propulsion subsystems and their corresponding
readiness level (TRL). Science performance of these architec-
tures was determined by the output values in green text: angular
spread, spectral range and resolution, spatial resolution, and
swath and temporal resolution. Of these, angular spread served
as the input into the Science Evaluation model, because it can-
not be evaluated in absolute terms like the other metrics. Only
architectures with the values permitted by the technology con-
straints and measurement requirements were considered. For
example, technologies required by the GNC/ADC module (e.g.,
star tracker accuracies) were checked against industrial cata-
logues for small satellites and whether the downlink channels
for the required data rates could be obtained. If not, either the
relevant architectures were discarded, or the measurement re-
quirements relaxed (e.g., payload collection rate reduced). This
paper will not cite or compare costs of different options, because
a single-unit cost depends on the detailed satellite design and
the design, cost to copy multiple units and large-scale operations
depends on the mission contractor. Instead, we will show per-
formance impact, in terms of BRDF and dependent products, as
a function of increasing number of satellites and, by extension,
resources.

B. Science Evaluation Model (OSSE)

Airborne or tower data of multiangular reflectance (re-
flectance at all view and relative azimuth angles at 1° resolution)
serve as “Reference BRDF” for the science evaluation model.
The BRDF angular pattern is dependent on the wavelength and

surface type [2]. Therefore, reference BRDF to be used at any
instant in the simulation depends on the geographic area that
the formation is expected to fly over and the data products of
interest. The simplified OSSE model evaluates each architec-
ture in the following way: At any simulated instant of time, a
subset of BRDF values, that correspond to the view zenith and
azimuth angles of the formation’s satellites at that instant, is
selected from the “Reference BRDF” and used as data to invert
a BRDF model and estimate the model parameters. These pa-
rameters are then used to run the forward model and compute
simulated reflectance at all angles at that time instant. The differ-
ence between this estimated reflectance and the reference CAR
reflectance is called the “BRDF error” and is represented as a
root mean square value (RMS) over all 90 view zenith multiplied
by 360 relative azimuth angles. BRDF can be used to calculate
geophysical variables such as albedo and GPP. The difference
between these variables calculated from the “reference BRDF”
reflectance values versus the forward model estimated values
is called the application error, for e.g., albedo or NDVI error.
BRDF errors and application errors at every instant of time in the
simulation are the outputs from the science performance evalu-
ation model and determine the goodness of the input formation
design and corresponding angular spread. By calculating the
error over time for a full tradespace of formation architectures
or designs helps us judge them based on an intricately coupled
science metric.

The error obtained using the above algorithm is a sum of the
model error, linear inversion errors, and angular sampling error.
Since the first two are found to be negligible [12], the error term
represents the goodness of angular sampling of the “Reference
BRDE.” The simulated or reference data in our models do not
include atmospheric corrections because they are not expected
to cause significant differences in the BRDF errors between the
different architectures, when compared to errors due to angular
sampling. The “acquired” simulated images are not screened
based on expected cloud cover (40-50%) because clouds are
not architecture-differentiating either and adding clouds would
impact global coverage more than local, angular coverage of
a specific image. Global coverage can be improved by adding
more formations, not within the scope of this paper. Combin-
ing off-nadir images with nadir ones to generate multiangular
products implies combining different pixel sizes. The BRDF
characteristics of large pixels are not necessarily the same as
those of small pixels, however the current MODIS and MISR
algorithms already integrate nadir and off-nadir measurements,
therefore the pixel size distortion is not seen as a problem newly
or additionally introduced due to small satellite formations. The
BRDF parametric models chosen for the OSSE are the Ross-
Thick Li-Sparse (RTLS) model [50] over land and the Cox-—
Munk model [51] over water. They were preferred over other
models such as the RPV, modified RPV, and Walthall models
based on sensitivity studies [12].

1) Airborne Data From CAR: Local BRDF data from air-
borne campaigns of the CAR on platforms such as NASA P-3B
is used as “truth” or “reference” [2] in BRDF calculations in all
applications except LUE estimation. The CAR has an instanta-
neous FOV (iFOV) of 1° and is designed to have a zenith to nadir
scan range of 190°. By flying it around a ground spot in circles
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Fig. 4.

AMSPEC instrument (bottom left), mounted on a tower for field tests (top left). The instrument can spin and tilt to adjust its azimuth and elevation

respectively (top right), producing multi-angular images of the area around the tower (bottom right).

and at different heights, radiance measurements are obtained at
every degree of reflectance zenith (up to 90° in elevation angles)
and 360° azimuth angles for state-of-art BRDF estimation. By
repeating measurements at different times of the day, reflectance
at different solar zenith angles may also be available but it is not
as exhaustive as the measurement angles.

Seven major surface types have been assumed for the study:
water, snow/ice, savannah, croplands, desert, forests, and cities
[12]. Their global distribution was extracted from the Global
Land Cover Facility, which draws from MODIS data. The global
grid points are 5° apart at the Equator and distance-adjusted for
higher latitudes. The use of surface types in this study is also
based on the broad directional features of BRDF described in
[2], obtained from 1991 to the present, where the measure-
ments have been acquired from six different aircraft and over
four continents. For each surface type, CAR data from airborne
campaigns were retrieved from the NASA GSFC database and
geometrically corrected reflectance stored as a function of mea-
surement zenith and azimuth with respect to the Sun. Both the
shape and the intensity values are very different for each sur-
face type, indicating the importance of local but angular data
collection as well as global and temporal assessment of this data.

2) Tower Data From AMSPEC II—The Automated Multi-
angular Spectroradiometer: Canopy reflectance measurements
from an automated, multiangular, spectroradiometer platform
called AMSPEC [52] is available for some forested regions.
These measurements are used as reference BRDF at the 531 nm
band, which the CAR does not possess, and which has been used
for calculations of photosynthetic LUE and therefore primary
productivity of plants. AMSPEC is a tower-based instrument

which can adjust its look angle between 40° and 70° and scan
up to 330° of azimuth (after which the tower gets in the way).
The mounting and measurement collection of the instrument has
been shown in Fig. 4. As an automated instrument, it can collect
data all day hence, has more solar illumination angle coverage
than the CAR. Note that both AMSPEC II and CAR data, even
if available at 1° angular resolutions are only approximations
of BRDF as obtained by state-of-art instruments in field and
air, respectively. BRDF is a theoretical ratio of infinitesimals of
illumination and radiance [1], therefore can only be estimated
from such angular data.

AMSPEC data have been validated to be very closely corre-
lated to the CAR data, and can be used to fill up solar zenith gaps
in vegetated or forested regions, if required [48]. This study uses
data from a 61-year old, second-growth coniferous forest (here-
after referred to as the DF-49 site) located on Vancouver Island,
British Columbia, Canada, at 300-m above sea level (49°52°7”
N, 125°20°6” W). The stand consists of 80% Douglas fir, 17%
western red cedar, and 3% western hemlock and is among
the most productive forest types in Canada. The stand den-
sity is 1100 stems ha™', with tree height ranging between 30 and
35 m. The site is located within the dry maritime Coastal Western
Hemlock biogeoclimatic subzone (mean annual temperature ),
which is characterized by cool summers and mild winters with
occasional drought during late summer. The leaf area index is
7.3 m> m~2 [53].

Since the AMSPEC instrument is mounted on a tower and
scans the surrounding canopy by changing its look direction,
its angular spread is not as extensive or regular as the CAR
instrument. Fig. 5 shows measurement angular spread collected
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by AMSPEC over a one day span, binned every 7° of solar zenith
angle. The gap in the top, right quadrant is due to the views being
obstructed by the tower on which the instrument is mounted. The
view zenith range is from ~ 40° to 60° because the instrument
cannot look straight down from the tower as CAR can from an
airplane. AMSPEC reflectances are binned over short periods
of time so that the BRDF values not only capture the directional
effects seen in all VNIR wavelengths but also the physiological
effect during the xanthophyll cycle (a biophysical mechanism
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AMSPEC data at 531 nm from the DF-49 site as a function of VZA and RAA, for measurements collected at SZA = 25° (left) and 40° (right).

that controls photosynthetic downregulation in leaves), which
is more active in sunlit leaves than shaded ones. The reflectance
values at 1° intervals of VZA and RAA for are shown in Fig. 6, at
amorning hour in August 2006 during clear sky conditions. The
edge of the hotspot and the full hotspot itself is clearly seen in the
left and right panels, respectively. All AMSPEC measurements
from DF-49 are a conglomerate of measurements over all SZAs,
some of which are seen in Fig. 6, because the instrument operates
continuously all day. It is clear that this data alone cannot be
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BRDF of forest data, synthesized by RTLS inversion on data collected over the DF-49 forest site by the AMSPEC instrument in 2006-2009, at the [left]

531 nm and [center] 570 nm band. [Right] The corresponding, calculated PRI (always negative). Note the difference in color scales over the three panels.

used as truth because its angular spread is not enough to pick a
given random angle that the architectural outputs of the SysEng
model produces.

The approach adopted was thus to invert an RTLS model
using all the AMSPEC measurements at the 531 nm band (all
VZA, RAA, SZA) and calculate the three RTLS coefficients.
These coefficients were then used to calculate reflectance at all
VZA and RAA angles, and this reflectance used as the truth or
reference for the xanthophyll sensitive band. The same can be
repeated for a xanthophyll insensitive band (red band chosen
because of its overlap with one of CAR’s bands). The BRDF
simulated by inverting for and then forward modeling the RTLS
parameters is shown in Fig. 7 for both bands. The synthetic
data shows >0.92 coefficient of correlation with CAR’s red
band data, validating the applicability of the approach for using
sparse, angular data sets as OSSE truth. The PRI calculated from
both synthesized data sets is also shown.

IV. PERFORMANCE TRADEOFFS FOR
BRDF-DEPENDENT PRODUCTS

Angular measurements were simulated for a full day (> 15 or-
bits) using the Systems Engineering Model and errors for BRDF
and its dependent products (albedo, LUE, NDVI) computed at
every instant using the Science Evaluation Model, depending
on the surface type expected to be seen by the formation at that
particular instant. One satellite in the formation pointed nadir
while the other satellites pointed to the ground spot below the
first satellite. The nadir-pointing satellite changed dynamically
based on an algorithm documented in [48], [49] because this
imaging mode was found to produce the least estimation errors
without compromising spatial or global coverage. We assumed
that the algorithms for scheduling the nadir-pointing satellite are
run and decisions are made in ground stations and communi-
cated to the satellites during daily overpasses. Previous studies
have shown that the formation satellites can have only two dif-
ferences in its orbital elements such that the formation can be
maintained with small satellite technology (feedback loop be-
tween propulsion and orbits in Fig. 3). For any given number of
satellites (say, N) at a specific altitude and inclination, there are
8Cy_1 formation architectures available with orbital in-plane
and intraplane spacing of approximately £5° (chosen because
a few degrees of difference negligibly affects performance). By
extension, for a given altitude-inclination combination, there

are a total of 1254 architectures containing 3 to 8 satellites, all
of which were compared. Dependence on altitude/inclination
of the orbit was found to be negligible because the planar and
in-plane separation of the satellites could be changed in order
to achieve similar maximum spreads across orbits. Performance
depended largely on the number of satellites and how they were
arranged, differently for BRDF and its products.

The BRDF error percentage averaged to 23.2% over multi-
ple orbits, when angular sampling was performed by a single
satellite with nine instruments pointing in different angles such
as MISR, as compared to CAR reference BRDF at the sur-
face types expected to be below the satellite. It is important to
average over several orbits to a day to ensure that all the surface
types are accessed by the formation as it orbits the Earth, for
a representative error calculation. Six satellites, arranged opti-
mally in a formation, were found to make angular measurements
that estimate BRDF better than the MISR arrangement, provid-
ing an error of 21.8%. The RTLS model used for BRDF inver-
sion has residual norms <0.05%, is linear and not dependent on
the initial conditions [12], therefore model errors are negligible
compared to angular sampling errors. When MATLAB’s two-
sample t-test was applied to the error time series for MISR and
the best six-satellite formation, it rejected the null hypothesis
that the data are independent random samples from normal dis-
tributions with equal means and equal but unknown variances
at the default p < 0.05 significance level. Moreover, the six-
satellite formation performed better than MISR’s arrangement
when the satellites were initialized at different points in the or-
bital plane, as long as the formation geometry remained intact.
To improve the error further at more cost, one can add additional
satellites. Eight satellites, arranged in any orientation, as long
as the intraplane and in-plane spacing is approximately +5°
apart and can be maintained as such, were found to estimate
BRDF better than MISR’s orientation. The best case scenario
with eight satellites provided a 21% error compared to CAR ref-
erence data. The following sections describe the performance
of satellite formations in terms of a few BRDF-dependent prod-
ucts and the performance comparison with MISR, where esti-
mation errors were calculated using the method discussed in
Section III-B. Error due to MISR’s expected measurements was
calculated using this method instead of using MISR Level 2
Land Surface Data (MIL2ASLS) so that there was no any de-
pendence on BRF noise, inversion errors on aerosol properties
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Fig. 8.

Maximum albedo error, over simulation time, decreases for increasing satellite number at a 650 km, 51.6° orbit. Each circle represents a different planar

and in-plane arrangement between the satellites. The horizontal black line represents MISR’s error of 0.042 or 11.9%. When the maximum error is compared as
a percentage, it takes five satellites arranged in any slotted formation to outdo MISR’s arrangement [49]. Insets correspond to the satellite arrangement with the
lowest error of 0.002 and 0.0015 using three (red outline) and four (blue outline) satellites, respectively. The orbital planes are marked by thin, continuous lines.

or any other background noise, and to ensure error comparison
with DSMs in terms of only angular sampling.

MISR was chosen as the single spacecraft instrument to
compare the small satellite formations against because it is
on a repeat track orbit and provides the highest number of
near-simultaneous multiangular images (nine images from
its nine cameras within ten minutes). All the multiangular
measurements simulated for any small satellite formation in
this study are simultaneous. Integrating multiday measurements
will increase the angular spread of measurements made by
a multisensor single satellite or a single satellite formation,
however, only those multiangular instruments that provide
near-simultaneous angular measurements were found fit for a
fair comparison. Other along-track multiangular instruments,
such as Along Track Scanning Radiometer-ATSR [29] and
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer-ASTER [30], provide only two look angles near
simultaneously, therefore MISR is a best representation of
along-track state-of-the-art. Cross track sensors like MODIS
or Clouds and Earth’s Radiant Energy System-CERES [27],
provide one angular image per ground spot every hour and half,
and therefore cannot be considered near-simultaneous. CHRIS
provides five look angles per ground spot for every pass, there-
fore near-simultaneously, which is less than MISR. Moreover,
it does not image the same ground spots consistently in time
because it is commanded to observe only specific targets. The
Polarization and Directionality of the Earth’s Reflectances-
POLDER [26] instrument provided 12 angular images due to its
wide-angle swath, however its coarse ground resolution of 67
km makes it less useful for the vegetation products discussed
in this paper compared to MISR’s subkilometer resolution.

A. Impact on Albedo Estimation

Narrow band albedo was calculated from CAR'’s reference
BRDF data at representative wavelengths (chosen from sensi-
tivity studies [12]) for each of the seven major surface types.
Reference or forward modeled albedo were calculated from ref-
erence or forward modeled BRDF (after estimating parameters
from the simulated angular measurements—Section III-B) by
integrating across the reflectance at every one of the 360 relative
azimuth and 90 view zenith angles. Albedo error was modeled
as the difference between the reference and forward modeled
albedo. Since the solar zenith angle for all the CAR datasets
was within a few degrees (campaign lasts a few hours daily un-
der clear sky conditions), the calculated product, when used as
reference BRDF, could used to estimate black-sky albedo. For
our simulations, either the directional-hemispherical reflectance
(black-sky albedo) or bihemispherical reflectance (white-sky
albedo) could have been used to calculate the albedo for any
given illumination conditions, with no loss of generality of the
presented results. White-sky is the bihemispherical reflectance
under conditions of isotropic illumination, so it has the angular
dependency removed. On the other hand, black-sky is the direc-
tional hemispherical reflectance computed at local solar noon.
In practice, the albedo at a particular solar zenith angle can rea-
sonably be approximated by the proportionate sum of the two
terms: black-sky albedo and white sky albedo, which defines
the proportion of diffuse illumination.

Comparing the albedo error, averaged over multiple orbits,
for satellites deployed in five orbits of differing altitudes and
inclinations (raised ISS orbit at 600 km/51.6°, Landsat and
A-Train orbit at 710 km/98.2°, Iridium orbit at 790 km/86.4°,
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Fig. 9. Average albedo error over time at a 650 km, 51.6° orbit decreases
with the number of satellites in the formation (adapted from [49]). Each circle
represents a different planar and in-plane arrangement between the satellites.
The horizontal black line represents MISR’s error of 0.0065 or 3.6%.

sun-synchronous orbit at 600 km/97.79°, sun-synchronous
orbit at 425 km/98.2°) showed that albedo errors are insensitive
to orbital altitude and inclination, as long as all the formation
satellites share the same values, allowing the mission designer
significant flexibility in choosing any available launch. Note that
while the errors presented in Figs. 8 and 9 are average values
over multiple orbits, they are derived from the errors calculated
at every minute and only for simultaneous measurements.
The simulated measurements for MISR’s arrangement were
assumed to be near-simultaneous to present a fair comparison,
even though its nine multiangular images are spread over more
than 7 min. Estimates for all formations and single spacecraft
are expected to be better, if multiday averaging is used in
calculating albedo.

The albedo estimation error for all 1254 formation orienta-
tions in an ISS altitude and inclination, calculated at every time
step, was averaged over the full simulation time to compare with
MISR’s configuration. We found architecture options for as low
as three satellites that outperform MISR’s average error percent-
age. The range of errors over possible arrangements per satellite
number was relatively large. While MISR (time-averaged error
of 3.6%) was outperformed by some three-sat arrangements (the
best error is 1.86%), any slip in orbit maintenance or changing
the nadir-pointing satellite efficiently could cause the error to
shoot above the multisensor single spacecraft design. To miti-
gate risk and taking into account that the maximum error over all
configurations decreases with satellite number, a formation of
seven to eight satellites were found to outperform MISR’s errors,
irrespective of how they are arranged. Formation arrangement
was thus as important as number of satellites, but its importance
was reduced in the context of operational concerns. Albedo es-
timation needed lower numbers (three and seven, respectively)
compared to BRDF estimation, which needed six and eight
satellites, respectively, because albedo is a less rigorous metric
by virtue of having only one error term per instant. BRDF error,
in comparison, is the RMS value of the error term at every angu-
lar direction (90 x 360 = 32400 values). The highest average

albedo estimation error across all shown formation configura-
tions and MISR was 0.005 and 0.003, respectively, which easily
met the absolute albedo error required for climate modeling
[32], assuming CAR-measured albedo to be the truth. In reality,
there will be many sources of error apart from angular sam-
pling therefore simulated albedo, including all radiative transfer
parameters, is likely to be higher than the above numbers.

MISR’s BRDF or albedo estimation errors were found to in-
crease significantly, in time, when the nine measurements were
made at a relative azimuthal angle perpendicular or close to
perpendicular to the solar principal plane. Relative reflectance
at the hot spot and sun glint are inadequately measured if the
angular space around the principal plane is not sampled. Due to
this reason, MISR’s maximum albedo estimation error, across
all simulation time steps, was more than the maximum error
of any of the proposed formation architectures arranged in any
way, as seen in Fig. 8. All 1254 formation architectures have
been plotted as circles in Fig. 8, color coordinated by the number
of satellites in the formation. The in-space formation arrange-
ment of the three and four satellite formation that corresponded
to the lowest errors, are highlighted in the inset, as the forma-
tion flies over the Southern tip of Africa. As expected, the error
and its spread across different configurations decreased with the
number of satellites. Three satellites arranged in some configu-
rations and six satellites arranged in any proposed configuration
was able to meet the absolute albedo accuracy of 0.02 required
by [32] for climate modeling, at any instant of time in their
orbits, assuming the albedo measured by the CAR instrument
at any given surface type to be the true albedo. The multisen-
sor single-platform architecture (MISR) was able to meet the
absolute albedo accuracy of 0.05 required by [31] at all times
in its orbit, but it was outperformed by all proposed formation
architectures.

Fig. 9 shows a plot similar to Fig. 8, except that the met-
ric on the Y-axis is the maximum albedo estimation error for
each architecture, expressed as a percentage of reference BRDF
(CAR data in Section III-B.1) instead of an absolute value.
Errors corresponding to the most (red) and least (blue) erro-
neous configurations per satellite number are shown, instead of
all configurations. It is obvious that the MISR arrangement did
comparatively better when percentage was used as a metric,
instead of absolute albedo error. Even then, a three-sat forma-
tion in some arrangements and a five-sat formation in any of
the slotted arrangements outperformed the MISR arrangement.
Increasing the number of satellites had noticeably diminishing
returns because they were arranged in orbital slots that were
well spread in and out of plane. Purely evaluated in terms of
angular sampling, MISR’s worst performance over time (rela-
tive to formations) was far worse than its average performance
over time (relative to formations) due to the inflexibility of its
geometric arrangement causing the sensors to be badly aligned
in at least two periods in every orbit or ~90 min.

B. Impact on LUE Estimation

Errors in BRDF estimation map into errors in global pri-
mary productivity, because GPP is the product of photosyn-
thetic LUE and APAR incident on vegetation (APAR). APAR
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is relatively well estimated using current satellite missions, be-
cause total incoming radiation to the Earth is a well-measured
quantity in space and time, and atmospheric effects are known
enough to calculate the radiation incident on vegetation. This
section quantifies the impact of BRDF estimation errors, or
their aforementioned improvement, on LUE errors and their
improvement.

LUE can be correlated with the normalized difference of re-
flectance between a xanthophyll-insensitive reference band and
the 531 nm band, defined as the photochemical reflectance index
(PRI) [59]. Since reflectances have large angular dependence, it
is easy to see how errors in reflectance measurements in either or
both bands can impact their normalized difference. Inaccurate
PRI leads to inaccurate LUE and therefore inaccurate GPP

P£531 nm — P570 nm
P531 nm T P570 nm

Since the CAR dataset does not contain the 531 nm band,
reflectance derived from the AMSPEC II instrument was used
as truth, as detailed in Section III-B.2, for both xanthophyll-
sensitive (531 nm) and reference (570 nm) bands. The
reflectance data was recorded over 1 hour in August 2006, time-
restricted to capture the xanthophyll cycle. First-order, second
moment (FOSM) propagation of uncertainty for nonlinear func-
tions was used to statistically map the uncertainty of reflectance
in either spectral band to the uncertainty of PRI. By definition
of FOSM, the variance of a dependent function is a function
of the variances of its variables and its partial differential with
respect to them. PRI variance could therefore be represented as
a function of the reflectance variance at the 531 and 570 nm
bands
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Uncertainties in the reflectance values of the two bands were
assumed to be between 21% and 31% for every angular direc-
tion, as informed by the 21% to 31% average RMS errors over
all possible formation architectures using three to eight satellites
[12], [48], summarized at the beginning of Section IV. Angular
directional error highly correlated across wavelengths, is as seen
in sensitivity studies. Since large reflectance errors for a partic-
ular angular sampling at a particular wavelength correlated with
large errors for any other wavelength, given the same angular
sampling, BRDF RMS error percentages were assumed to be
well representative of error per angular direction (VZA-RAA
combination), irrespective of wavelength. Fig. 10 shows how
errors in the 522 or 570 nm bands (bound between 21% and
31%) map to PRI errors using FOSM, expressed as an RMS
value.

Reference PRI was assumed at —0.05 (with sign), from
Section III.B.2, and its directional dependence shown in
Fig. 7-right. While PRI errors increased with either band’s er-
rors, a 21% error in both bands caused a 38% error in PRI
(~0.018 from the color map of Fig. 10) and a 31% error in the
bands caused a 58% error in PRI. Unlike albedo, the error per-

Error in PRI Estimation due to Reflectance Estimation Errors
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Fig. 10. PRI error (RMS value) as a function of reflection error (as %)
in the xanthophyll sensitive versus insensitive bands, calculated using first-
order second moment analysis of uncertainty. “Reference” PRI can be found in
Fig. 6-right, as comparison, with a calculated mean of —0.05.

centage of RMS PRI as a dependent BRDF product was more
than the error percentage of RMS BRDF itself. This can be at-
tributed to the additive nature of PRI with respect to reflectance
or BRDF (1), where every angular value is added to another,
in contrast to albedo which integrates all the angular values.
Errors can also be attributed to variations in the xanthophyll
cycle which would alter the reflectance at 531 nm over time, as
well as alter the shape of the BRDF, sometimes even over a few
minutes.

PRI may be mapped to LUE using data from [52], only if its
angular signature has been accounted for. The authors in [52]
have shown that field data when plotted between axes of PRI,
without accounting for BRDF effects, versus LUE are randomly
scattered. However, the same field data when plotted between
axes of BRDF-corrected PRI versus LUE showed visible corre-
lation. As seen in Fig. 11, an orange logarithmic trend-line can
also be calculated. The blue cross represents BRDF-corrected
reference PRI(= —0.05) and its corresponding LUE(= 0.8).
The gray panels are the region on the PRI axis corresponding
to —38% to —58% error (on the left of the cross) and +38% to
58% from reference PRI, which in turn came from the 21-31%
simulated error in the reflectance bands. Due to the nonlinearity
of the PRI-LUE curve, errors in PRI mapped to even more errors
in LUE. Also, since the PRI-LUE plot is monotonically decreas-
ing positive PRI errors produced negative LUE errors and vice
versa. Errors around lower values of PRI (left) produced large
LUE errors, compared to errors around the higher values of PRI
(right). A -38% to —58% simulated error in PRI (about 0.05)
mapped to +78.7% to 143.4% simulated error in LUE. On the
other hand, a +38% to +58% error in PRI resulted in —54.2%
to —76.7% LUE errors.

The PRI RMS error, when estimated using multisensor, single
spacecraft measurements, was 42% compared to the reference
RMS PRI of 0.05 due to a multi-angular reflectance error of
23.2% (BRDF RMS corresponding to MISR’s design). If this
error is positive/negative, the corresponding LUE is 0.328/1.518
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Mapping between BRDF-corrected PRI and LUE (also called photosynthetic efficiency) obtained from the dataset in [52], with a fitted logarithmic

trend-line. “Reference PRI” from Fig. 7-right is marked by a blue cross. Transparent grey panels mark the range of positive/negative PRI errors from Fig. 10; gray

dashes mark the corresponding LUE errors.

which is =58.9%/+89.8% different from the reference LUE de-
rived from reference data in Fig. 11. In comparison, as discussed
in the previous paragraph, the best case formation architecture
with eight satellites produced a 38% error in RMS PRI, which
mapped to a —54.2%/78.7% error in LUE. Furthermore, since
LUE linearly maps to GPP for a statistically determinate APAR,
the percentage of LUE error improvement between a single
spacecraft (MISR arrangement) and the best formation will be
reflected in GPP improvement as well.

The full tradespace of architectures, such as that for the BRDF
and albedo case study, was not evaluated again, because the
above analysis was deemed sufficient to establish the impact of
BRDF errors on GPP estimation. The NDVI analysis presented
in Section IV.C shows that it is possible that the PRI errors may
be overestimated by FOSM. For example, if a 10% error in PRI
were used, in keeping with NDVI error for the best eight-satellite
formation instead of the 38% predicted by FOSM, the LUE er-
rors would be —17.6%/15.9% depending on whether the PRI
error is positive/negative. Using the same method, if a 26% PRI
error were used for the multisensor, single spacecraft (MISR)
arrangement, the LUE errors would be -50.3%/38.7%. In fact,
the improvement in LUE estimation by using a formation of
eight satellites compared to single satellites was found to be
even more significant if NDVI error values were to inform PRI
errors instead of the FOSM theory. Moreover, the error PRI val-
ues for the formation and MISR arrangement, respectively, were
very close to those obtained when Fig 7 (right) was used as ref-
erence PRI. Given the modular nature of architecture evaluation
using OSSEsg, if reference PRI were to be available from field
campaigns as densely as CAR data, the mapping algorithm of
{BRDF to PRI to LUE to GPP} can be plugged in the same way
as {BRDF to albedo} and plots like Figs. 8 and 9 can be made.

C. Impact on NDVI Estimation

NDVI, like PRI, is a normalized difference product of re-
flectances and is expected to be impacted by BRDF estimation

errors in a similar fashion as PRI is. Equation 3 quantifies NDVI
and can be calculated using CAR band #4 (red centred at 682
nm) and #5 (NIR centred at 870 nm). NDVI Application error
for every DSM architecture was computed as follows: Reference
(or forward modeled) NDVI was calculated from reference (or
forward modeled) BRDF at both 682 and 870 nm, using (3)
at every one of the 360 relative azimuth and 90 view zenith
angles. As described in Section III-B, forward modeled BRDF
was calculated from parameters estimated from the simulated
angular measurements provided by any architecture. NDVI er-
ror is the difference between the reference and forward modeled
NDVI (90 x 360 = 32400 values). Just as BRDF error was rep-
resented as an RMS value, NDVI error is also represented as an
RMS value calculated over all 32400 values

P870 nm — P682 nm
P870 nm + 682 nm

The NDVI error, with respect to CAR reference NDVI, aver-
aged over one day’s simulation varied between 0.022 and ~0.1
for a three to eight satellite formation as shown in Fig. 12. The
corresponding percentage errors ranged between 1% and 36%,
and were much lower than the 38-56% error predicted for PRI
using the FOSM analysis. Since NDVI and PRI have exactly the
same form of equation, FOSM would have overpredicted NDVI
errors. NDVI error estimated for the MISR-type arrangement of
instruments on a single satellite was 0.038 or ~26% difference
from CAR reference NDVI. As seen in the generic BRDF
case, when MATLAB’s two-sample r-test was applied to the
NDVI error time series for MISR and the best eight-satellite
formation, it rejected the null hypothesis that the data are
independent random samples from normal distributions with
equal means and equal but unknown variances at the default
p < 0.05 significance level. Like previous BRDF products,
the range of errors and the maximum error over all formation
orientations decreased with increasing number of satellites.
However, unlike previous products the minimum formation
error did not decrease with satellite number and hardly showed

NDVI =

3
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Fig. 12.  Average NDVI error over time at a 650 km, 51.6° orbit as the number
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The horizontal black line represents MISR’s NDVI error of 0.038 as calculated
in the same way as for the formations, accounting for only angular sampling.

a trend. This behavior could be due to the difference term in
the NDVI equation which causes otherwise large error terms
to cancel out instead of adding up. Simulations showed that a
formation of eight satellites (cyan in Fig. 12) avoids the risk of
inefficiently maintained formations, because all its orientations
outperformed the multisensor, single spacecraft error of 0.038%
or 26%. The best performing eight-satellite formation averaged
an NDVI error of ~0.03% or ~10% over time.

As seen in the albedo case, when the maximum NDVI er-
ror over all simulation time steps was considered as a metric,
MISR’s accuracies (compared to formations) fell further due
to inflexibility in its geometric orientation causing inadequate
sampling of the solar principal plane for extended periods ev-
ery ~45 min. The simulated error for MISR’s orbits and sensors
was 0.12 while that of the minimum-error formations ranged be-
tween 0.09 and 0.11, depending on the number of satellites in the
formation. Unlike the albedo case, there were many formations
whose maximum simulated NDVI error was worse than MISR’s
and errors went as high as 1.01 and 1.13 for the worst-case 4-
and 3- satellite cases, respectively. Therefore, simulations con-
firmed that care must be taken to select the optimal formation
and invest in its optimal maintenance and operations.

V. SUMMARY DISCUSSION AND FUTURE WORK

We have demonstrated the feasibility of a formation flight
solution with small satellites for space-based BRDF estimation,
as well as a methodology to quantify the angular performance
advantages of the proposed solution with reference to existing
space and airborne missions. The advantage of using DSMs
or formations is not only in improved performance with in-
creasing satellites which can complement current, flagship mis-
sions (such as MISR) in angular coverage but also in making
space systems more scalable, given uncertain budget environ-
ments. Satellites can be launched as they become available and
the angular sampling and BRDF estimation will improve as

more assets are in orbit. Similarly, loss of a satellite from the
formation will gracefully degrade angular performance, instead
of causing data discontinuity, and can be replaced at a later time.

The coupled MBSE and OSSE framework allowed the assess-
ment of angular sampling performance in terms of BRDF and
BRDF product errors, compared formation architectures against
each other as well as existing multisensor, single spacecraft and
verified technical feasibility of each proposed architecture in
terms of existing small satellite technology to support the criti-
cal subsystems (otherwise the architectures are discarded). The
systems engineering model was divided into architecture gen-
eration, architecture evaluation, and architecture sizing com-
ponents. The science evaluation model used static BRDF data
from existing missions binned in terms of Earth surface types
as reference. It calculated the errors of forward-modeled BRDF
(or dependent products) with respect to the selected reference,
depending on which surface type is expected in orbit below
the formation, and identified the best performing architectures.
One satellite in the formation was always simulated to point
nadir while the others pointed their payloads at its nadir. The
nadir pointing satellite changed over time, based on a sim-
ple performance-based algorithm calculated on the ground and
communicated during daily overpasses.

The proposed formations were shown to improve angular
sampling (using BRDF products as metrics) of a medium-
resolution ground pixel, at any given waveband of interest to
the remote sensing community that needs angular signatures.
Case-study specific recommendations for designing formations
to estimate global BRDF and its dependent products such as
albedo, LUE, NDVI, were provided. A formation of six satel-
lites produced lesser BRDF RMS error (21.82%), averaged over
one day of simulations, compared to multisensor, single space-
craft in MISR’s arrangement (23.2%). An eight-satellite forma-
tion reduced the error to 21% at some additional cost. Albedo
estimation errors were lesser than BRDF RMS errors because
albedo is only a single number per multiangular image, while
BRDF has an error term per angular direction in the image. The
multisensor, single spacecraft albedo error of 3.6% was outper-
formed by a formation of three satellites (1.86%), when arranged
optimally and by a formation of five satellites (3.36%) when ar-
ranged in any way. An eight-satellite formation was shown to
be capable of pushing albedo errors to 0.67%. Since the Earth’s
outgoing radiation is approximated as 341.3 W/m? and global
albedo as 0.3 [29], less than 1% error in albedo estimation con-
strains the outgoing energy budget within 0.7 W/m?. Currently,
total outgoing radiation is accurate to only 1% (3.41 W/m?) and
better albedo estimates can help measure uncertainties in the
energy balance much better.

Photosynthetic efficiency (LUE) errors were higher than
BRDF RMS errors because of the nonlinear dependence of
LUE on PRI and the susceptibility of PRI to reflectance errors
at 2 wavelengths, at every angular direction. The 23.3% BRDF
error for MISR’s arrangement in both wavebands translated to
-58.98% or +89.77% in LUE at a 42% PRI error (depend-
ing on its sign). An optimally arranged formation architecture
with eight satellites, in comparison, mapped to a -54.22% or
78.69% of LUE error due to a 38% PRI error. Since GPP, or the
Earth’s carbon budget, is proportionate to LUE as scaled by the
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relatively very well-characterized APAR, LUE improvements
map to GPP improvements as percentages. Over 50% improve-
ment in GPP errors due to formation angular sampling can
improve the 40% uncertainty [36] in terrestrial carbon intake
significantly. The multisensor, single spacecraft NDVI error, av-
eraged over time, was 0.038 or 26% while the best performing
eight-satellite formation provided an NDVI error of ~0.03% or
~10%. The improvement in LUE estimation by using a forma-
tion of eight satellites (—17.6%/15.9) compared to multi-sensor,
single spacecraft (-50.3%/38.7%) was found to be even more
significant, if NDVI error values were to inform PRI errors
instead of the FOSM theory (used due to the lack of BRDF
reference data at PRI wavelengths). The NDVI informed errors
were in keeping with those obtained from using simulated PRI
as reference.

Our research has started the process of mission design for
a space-based formation flight mission for multiangle remote
sensing by putting high-level architectural decisions into place,
and modeling the low-level components that could impact those
architectural decisions. In the language of NASA’s project life-
cycle, it serves as a pre-Phase A level of analysis. Future work
includes but is not limited to high-level payload design (to com-
prehensively simulate all the 3-D spectral components iden-
tified, close the design in terms of integrated optics, select the
optimal imager architecture and compute expected SNR over the
period of operations given internal tradeoffs such as aberrations,
optics speed, number of lenses, etc. and external disturbances
such as temperature, jitter, atmospheric effects, etc.), detailed
analysis to identify the appropriate ADCS systems and control
algorithms that meet the jitter and stability requirements im-
posed by the need to co-point at every instant in time and robust
planning and scheduling tools (for more automation in terms of
target observation, imaging mode determination and decision-
making and downlink scheduling as a function of satellite capa-
bilities and ground station availability).
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