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Adaptation and Evaluation of an optical flow
method applied to co-registration of forest remote

sensing images
Guillaume Brigot, Elise Colin-Koeniguer, Aurélien Plyer, Fabrice Janez

Abstract—The coregistration of heterogeneous geospatial im-
ages is useful in various remote sensing applications. Since the
number of available data increases and the resolution improves, it
is interesting to have an approach as automated, fast, robust and
accurate as possible. In this paper, we present a solution based on
optical-flow computation. This algorithm called GeFolki allows
the registration of images in a non-parametric and dense way.
GeFolki is based on a local method of optical flow derived from
the Lucas-Kanade algorithm, with a multi-scale implementation,
and a specific filtering including rank filtering, rolling guidance
filtering and local contrast inversion. The efficiency of our
coregistration chain is shown on radar, LIDAR and optical
images on Remningstorp forest in Sweden. An analysis of the
relevant parameters is investigated for several scenarios. Finally,
we demonstrate the accuracy of our coregistration by proposing
specific metrics for LIDAR/radar coregistration, and optics/radar
coregistration.

I. INTRODUCTION

Coregistration of heterogeneous images is useful in various
remote sensing image fusion applications, since one expects
a gain from the synergy of sensors. Applications where data
fusion is relevant are numerous, whether for land classification
[1], for agriculture [2], or forestry applications. In the case of
the forest, many works illustrate the benefit of the combination
of LIDAR and radar images [3], [4], LIDAR and high resolu-
tion optical images [5], or radar and optical images [6], [7], for
the characterization of plant species or biomass assessment.

In all cases where the expected product is a map, geometri-
cally aligning two or more images in order to combine pixels
corresponding to the same objects is a crucial step of the
fusion.

Most methods of remote sensing image coregistration are
based either on geocoding, or on non-rigid image registration
methods that use only the images as input.

In the case of geocoding, the accuracy of coregistration will
be highly dependent on the availability and precision of both
a DTM (Digital Terrain Model) and the orbit parameters [8].

On the other hand, non rigid image registration without
geocoding is widely investigated in various fields beyond the
scope of remote sensing, for example in computer vision
and medical imaging [9]. In computer vision, video image
co-registration has to meet the constraints of robustness and
speed of execution, but often focuses on images taken from
the same sensor with little delay in time. In medical imaging
[10] or remote sensing, difficulty generally lies in the different
nature of the images to compare. Moreover, the context of
remote sensing is also changing today with larger quantities of

time series data, and some time-sensitive applications require
fast processing. This is the case for example for near real
time change detection for rapid post disaster assessment,
wildlife tracking, and surveillance across broad areas such as
battlefields or border regions [11].

Most non-rigid registration methods are parametric
methods, meaning that an assumption is made about a
parametrized model that constrains the form of the expected
deformations between processed images. Then a similarity
function is optimized to find an approximation of a real
underlying deformation [12]. Among them, feature-based ap-
proaches establish a correspondence between a number of
especially distinct points in images [13]. Selection of these
points can use SIFT [14], [15] or SURF methods [16]. Other
methods handle more complex features, such as segments, or
use the shape descriptors [17], [18].

The choice of an image similarity measure is a key point.
One of the most widespread used for the registration of mul-
timodality images is mutual information [19]. Already used
in remote sensing image coregistration, the main drawback
of this measure is that it is quite time consuming. Instead
of employing a similarity metric, [20] proposes to exploit a
low rank constraint to jointly register multiple hyper-spectral
images. Although such a model appears to be stable with
respect to occlusions and imaging artifacts, it is not directly
applicable in our case. In practice such a model requires a
stack of multiple images and is further quite slow.

Another family of non-rigid coregistration methods are non-
parametric. Among them, dense methods compute a displace-
ment for every pixel in the image. They are particularly
interesting in the case of very local deformation due for
example to terrain elevation that has a lot of influence on
high resolution images. Most of dense and non parametric
methods belong to optical flow estimation. Optical flow is
the pattern of apparent motion of objects in a visual scene
caused by the relative motion between the sensor and the
scene. Optical flow methods have been developed in a context
where the constraints of speed and robustness to environmental
effects have led to intensive efforts in producing algorithms
that combine robustness, precision and high computing speed.

In this paper, we want to show how one optical flow method
can undertake such a task of co-registration of heterogeneous
images.

Optical flow has already been considered by the remote
sensing community. [21] proposes a dense method to recon-
struct the annual motion of glacier surfaces from ortho-photos.
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In contrast, in this work we focus on the more general case of
heterogeneous data, acquired by different sensor modalities,
like the co-registration of LIDAR to SAR or optical images.
In comparison to other existing methods developed for hetero-
geneous images often based on the use of mutual information
(eg. [10]), our algorithm prevails clearly when the execution
speed matters. Further, we demonstrate that our algorithm
can be applied successfully to our needs, while providing
added value compared to a method based on geocoding. We
have already shown in [22] that an optical flow algorithm
can successfully coregister SAR images in various conditions,
including the demanding interferometric ones. In this paper
we present a new version of this algorithm, called GeFolki,
adapted to the coregistration of heterogeneous data, such as
SAR-LIDAR images, or SAR-optical images. The acronym
GeFolki stands for Geoscience Extended Flow Optical Lucas-
Kanade Iterative.

A flow algorithm computes the displacement between two
images. Most classical methods use partial derivatives of
image intensity with respect to the spatial and temporal
coordinates. They are based on two key points:
• First, an observation model where intensity remains the

same from one image to another. This hypothesis is called
the brightness constancy constraint.

• Then, a linearization step in order to be able to solve the
equation. Generally, it enables to write the variation of
the associated intensity as a local gradient.

In the case of heterogeneous images, brightness constancy
is not respected because images have very different char-
acteristics. It does not even make sense to compare SAR
and photometric data with regard to intensity. Hence, the
adaptation of such an optical flow algorithm to heterogeneous
images is a challenging task. The solution proposed in this
paper is to apply additional functions on the images to make
them as similar as possible.

Moreover, the multi-scale strategy is used to estimate large
displacements.

Our work is therefore based on the adaptation of a generic
optical flow algorithm, that includes this multi-scale iterative
strategy to compute the existing displacement between two
remote sensing images of different types. The resulting new
algorithm is called GeFolki. In section II, we present the pre-
viously mentioned GeFolki algorithm, detailing the different
steps. Different results are presented in section III. Section
IV assesses the underlying robustness of the result and deals
with the parameter setting. In section V, we present a specific
method to evaluate the performance of the results on the
coregistration of images over forest lands, before concluding.

II. DESCRIPTION OF GEFOLKI

A. GeFolki position among optical flow algorithms

Let us consider the registration of two images I1 and I2,
defined on a 2D support S ∈ R2. The dense optical flow in
computer vision is the pattern of apparent motion of objects. It
corresponds to the displacement to find between both images.
It is defined by u : x → u(x) ∈ R2. Those variables
introduced are illustrated in Fig. 1.

Figure 1. Definition of variables used in our optical-flow algorithm:
To register the slave image I2 to the master image I1, we model the
displacements between both images u(x) for each pixel x in the master
image. Corresponding pixels I1(x) and I2(x + u(x)) are supposed to be
close with respect to a similarity measure.

Most optical flow algorithms have a common starting point:
it is to assume that pixel intensities remain constant from one
frame to the next, what can be written:

I1(x) = I2(x+ u(x)) (1)

This choice of observation model is called the brightness
constancy. To compute the flow, the equality above needs
usually a linearizing step. In most widely used techniques for
optical flow computation, a change in intensity is written as:

I2(x+ u(x)) = I2(x) +∇I2 · u (2)

Equation (2) is often called the linearized optical flow
constraint. This constraint is based on the assumption that
the displacements are small.

In the case of remote sensing images, almost all assumptions
are violated: there is no temporal proximity between images,
they are acquired under uncontrolled acquisition conditions
and even by different sensors. The classical algorithms are
thus not suited to model or compensate these effects. In this
work we will show that with properly chosen modifications,
the classical formulation can be adapted to these more general
conditions.

As the optical flow system of Eq. 1 and 2 is under-
determined, optical-flow methods introduce in general ad-
ditional conditions on the spatial distribution of the flow.
Most prominently is to assume spatial smoothness in the flow
field. This spatial additional condition can either be expressed
globally or locally and relative methods can be classified
respectively as local and global methods. Founding works are
the global regularized framework of Horn and Schunck [23],
and the local window-based approach of Lucas-Kanade [24].

Local optical flow methods are often considered as more
time and memory efficient, while global techniques are based
on a richer prior formulation on the estimated motion flow
[25]. Therefore, global methods can produce piecewise con-
stant flow fields, as for example in the case of TV regularisa-
tion [26]. However they have a higher computational cost due
to global formulation of the problem. More recent approaches
combine both concepts.
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However in this article, our aim is not to produce the most
efficient gradient-based optical flow algorithm, but to show
that it is possible to adapt one of them for the coregistration of
heterogeneous remote sensing images. Our choice was to adapt
eFolki, a fast and robust local method, developed in the per-
spective of the trade-off between quality of the estimated flow
and computational cost [27]. EFolki is derived from the Lucas
Kanade gradient-based method. Since eFolki has a remarkably
simple and parallel structure, it is ideally suited to massively
parallel computing architectures. Thus, the computation of
the flow with our matlab implementation of GeFolki can be
obtained in a few seconds for a 5,000 x 5,000 pixel image
on a Intel(R) Core(TM) i7-2620M CPU @ 2.80GHz. A GPU
implementation could provide this registration at the scale of
hundreds of milliseconds.

Classical Lucas-Kanade algorithms assume that the flow
is essentially constant in the local neighbourhood of the
pixel under consideration, and solves the basic optical flow
equations for all the pixels in that neighbourhood, by the least
square criterion. Minimization is done by an iterative Gauss-
Newton strategy based on first order Taylor expansion of the
intensity of image around a previous guess of the optical flow
uk, as illustrated in Fig. 2.

Figure 2. General minimization scheme by an iterative method. On the left:
master image with a local window under consideration. In the middle: Two
candidate regions in the slave image. The correct match is highlighted in red,
another window with high similarity in blue. On the right: The matching cost
is in general a non-convex function. Below: When started within sufficient
proximity to the true minimum, gradient descent based optimization can
recover the correct solution.

Modern Lucas-Kanade algorithms are not only iterative, but
also multi-resolution. A pyramid of images is used to com-
pute optical flow at varying scales following a coarse-to-fine
strategy. This strategy enables to estimate large displacements
despite the local constraint.

Our fast and robust algorithm can also be categorized as
being of Lucas Kanade type. Thus, it belongs to local or
window-based approaches.

B. General Scheme

GeFolki takes two input images resampled at the same rate,
and outputs the two components of the flow at every pixel
position. The aim of the algorithm is to minimize a given
criterion J(u;x) [28]:

J(u;x) =
∑
x′∈S

ω(x′ − x)(f1(I1(x
′))− f2(I2(x

′ + u(x)))2

(3)
where ω defines a local window of radius r and size (2r +
1)x(2r + 1), thus ω(x) = 1 iff |x|∞ ≤ r and 0 else; f1 is a
function applied to the master image I1, and f2 is a function
applied to the slave image I2. These functions f1 and f2 are
designed to project the images in a space where f1(I1) and
f2(I2) are similar enough to validate the brightness constancy
model. They significantly improve the robustness, but are also
designed to retain the efficiency of our method..

Multi-scale algorithms can deal with displacements larger
than a few pixels because they initialize the flow by estimates
from coarser image scales, where displacements are small
enough to be estimated by local optimization. Unfortunately,
too much down-sampling can remove information that may
be vital for establishing the correct matches. Therefore, to
converge to a correct solution, the initialization is important.
We propose to start with a couple of images first computed
in a common resolution grid. We compute the projective
transformation based on the selection of four tie-points. The
outcome from this first coarse registration becomes our input
images for registration.

The first step is to create a pyramidal structure of down-
sampled images, in order to be able to find large displace-
ments. The number of pyramid levels L affects the amplitude
of the desired movements. Then, we have to solve the mini-
mization of the criterion J(u;x) iteratively in each scale, as
represented in Fig. 3. The solutions are incrementally refined
over the scales.

Figure 3. To enable the recovery of large displacements, a multi scale strategy
is employed: After the generation of image pyramids for master and slave
image, the optical flow is computed from coarse to fine, by minimizing the
cost function (eq 3).

Then, for each pyramid level, from the coarsest resolution
to the finer:
• first, functions f1 and f2 are applied to the intensity

images I1 and I2. This functions are detailed below;
• then, the algorithm minimizes the criterion expressed in

eq. 3 by first-order Taylor expansion of the residuals at
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the current flow estimate. At the first pyramid level, this
initial current flow value is 0, and at the other levels, it
derives from the expansion of a previous low resolution
estimate.

The quadratic term of eq.3 is a composition of several
functions with non-trivial derivatives, for example the rank
function that is not continuous. Recall, that the Gauss-Newton
iterations require a linearization around the current solution.
Here, we cannot compute these derivatives explicitly. Instead
we approximate the derivatives numerically, with regard to the
current discretization of the image function. In other words,
we directly consider f1(I1) and f2(I2) as functions defined
on the image grid, after applying the similarity correcting
transformations f1 and f2, and operate with linear finite
elements defined on the image grid. We did not experience
any problems with this simplification.

In GeFolki, the function f1 and f2 are designed to ensure
the robustness of the algorithm, as well as the execution speed.
The success of the criterion lies in the presence of macroscopic
components similar in both images. It is imperative to adjust
the parameters in such a way that these structures are not
affected by noise or by smaller details that differ in texture.
Thus, in GeFolki, f1 and f2 are defined as follows:
• For coregistration of SAR images, function f1 = f2 = R

is a rank filter, as proposed in [22]. This function will be
explained below. Note that in this case, we are brought
back to the initial eFolki algorithm, evaluated in [22].

• For coregistration of heterogeneous images, f1 and f2
will include, in addition to the rank filter:

– a filtering step based on the rolling guidance filter,
in order to make image textures more similar,

– a function of local contrast inversion, for all cases
where the contrast exhibited between the different
sensors is not the same. It is very often the case
for co-registration between optical and radar images,
and more generally for images acquired in different
parts of the electromagnetic spectrum, for which the
scattering levels change, as shown in Fig. 5.

Therefore, in this case f1 and f2 are not strictly the same,
and can be written as:

f1 = R ◦ g

f2 = C ◦R ◦ g

where g is the rolling guidance filter, R is the rank-filter,
and C is the local contrast inversion decision function.

We choose for all of them fast execution functions to main-
tain the speed. They are described in the following sections.

C. The Rolling guidance filter g

An issue concerns the difference in texture and resolution
in the original images. When the resolution of an image is too
high compared to the other one, then the textures are generally
different, and this makes the coregistration more difficult to do.
Moreover, a detail present in one image, and not visible in the
other one, can perturb the result of flow calculation, as well
as the presence of speckle in SAR images. For example in the

case of registration of SAR-LIDAR images, the main difficulty
lies in the differences existing about texture and resolution
effects. These differences make the flow calculation setting
particularly challenging.

For these reasons, in order to maximize the efficiency of the
algorithm, we propose to apply a pre-filtering step that can
make the intensity images more comparable. Among them,
we have successfully tested the Rolling Guidance Filter [29],
that removes small-scale structures but maintains the edges
in the image. To that end the image is first blurred with a
Gaussian filter. This step essentially removes small structures
and artefacts. Starting from this blurred version, repeated
bilateral filtering with the original image itself, then recovers
the edge information.

In our experience, Rolling Guidance Filter enables to filter
images with the complete control of detail smoothing un-
der a scale measure, which is especially interesting to use
in GeFolki since it is also a multi-scale strategy. Finally,
the Rolling guidance filter implementation achieves real-time
performance and then can be integrated to our algorithm
without degrading its computing performance. The complete
description of the algorithm is given by [29], and the source
code is provided by the authors.

D. The Rank filter R

This rank function R(I) applied to the image I , is expressed
as:

R(I)(x) = #{x′ : x′ ∈ SR(x) with |I(x)| > |I(x′)|}, (4)

where SR(x) is a neighboorhood of the pixel x.
We use # to denote the number of elements of the set.

This rank function consists in replacing the intensity value
I(x) by the number of pixels in the neighborhood of x with a
intensity lower than I(x). Thus, the rank transform depends on
the relative order of pixel values within a local neighborhood,
which is invariant under various transformations of the data,
namely those which preserve this order. The effect of the
rank transform is a non-linear filter that highly compresses
the signal dynamics. By this compression effect on the signals
gradient, the rank filter enhances the robustness of the motion
estimation. This has been already studied in [30], and used
in [31]. Other functions such as Census transform could also
be used, but empirically deliver worse results. Moreover, rank
filter is better suited to a massively parallel implementation.

E. The Local Contrast Inversion decision function C

In order to be compliant with the brightness constancy
model, we need to address the possible differences in terms of
contrasts. From one image to another, these contrasts can be
locally reversed. This is particularly the case between a radar
image and an optical image.

In order to decide whether the intensity value of the pixel
under consideration x0 should be inverted or not, we proceed
as follows. We considerW a (2M+1)×(2M+1) sliding window
centered around x0, defined by W(x0) = {x : |x − x0|∞ ≤
M}.
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We determine whether the set of points {(I1(x), I2(x +
u(x))) : x ∈ W(x0)} is closer to the line defined by the
equation y = x or the line defined by the equation y = 1−x.
To this aim, we have to compute the following criteria:

C1(x0) =
∑

xi∈W(x0)

|I1(xi)− I2(xi + u(xi))| (5)

C2(x0) =
∑

xi∈W(x0)

|1− I1(xi)− I2(xi + u(xi))| (6)

If C1(x0) < C2(x0) we do not have to invert the intensity
value of the second image, whereas if C2(x0) < C1(x0) we
replace I2(x0 + u(x0)) by 1− I2(x0 + u(x0)) in image I2.

One example for each case is given on Fig. 4 and 5 with
M=100. The first case concerns images of a transition between
a vegetated area and a water one. In both radar and optical
images, the contrasts are the same, and the intensity point
cloud is closer to the line y = x than the line y = 1−x. As a
consequence, no inversion will be applied to the central pixel.
In the second case, we see a transition between a forest area
and a bare soil area. In the optical image, forest is darker than
the soil, whereas forest is brighter than the soil in the radar
image. Thus, the corresponding point cloud is closer to the
line y = 1− x. The value of the central pixel x0 of the slave
image will be replaced by 1− I2(x0 + u(x0)).

One situation where this strategy does not work could be
when one of the images contains an element, and the other
image does not contain it. The strategy of parameter settings
for the window size will be discussed in section IV-A.

Figure 4. Example of the contrast inversion decision. Left: Optical master
image I1 for a local window. Middle: Radar slave image I2 for the same
window. Right: Scatter Plot of I1(xi), I2(xi) for the example. Our criterion
defined in eqs. 5 and 6 leaves the value of the central pixel x0 of the window
unchanged.

Figure 5. Example of the contrast inversion decision. Left: Optical master
image I1 for a local window. Middle: Radar slave image I2 for the same
window. Right: Scatter Plot of I1(xi), I2(xi) for the example. Here, our
criterion defined in eqs. 5 and 6 inverts the value of the central pixel x0 of
the investigated window.

For the whole images, these criteria can be expressed as:

C1(x) = (|I1 − I2| ∗W)(x), (7)

C2(x) = (|1− I1 − I2| ∗W)(x) (8)

where ∗ denotes the convolution between images and W
is a (2M+1)×(2M+1) all-ones matrix. The advantage of these
criteria is that they can be rapidly computed by using integral
images.

Then the transformed slave image C(I2) is computed from:

C(I2) = (C2 < C1) • I2 + (C1 > C2) • (1− I2) (9)

where (C2 < C1) and (C1 > C2) are simple logical arrays
corresponding to the respective conditions expressed for each
pixel, and • is the Hadamard product.

III. RESULTS

A. Description of the data set

Now that we have presented the algorithm, we apply it to a
concrete case of interest: the heterogeneous image registration
on the site of Remningstorp, a Swedish forest. Firstly, this
site was chosen because the forest is a particularly interesting
case for fusion; and many open dataset exist for the scientific
community. Secondly, it represents an interesting case for
coregistration because forest images contain few specific fea-
tures such as segments and isolated points. Finally, the images
are airborne high resolution images, where deformations are
particularly interesting to estimate with a dense method. The
data set contains a radar image, an airborne Laser Scanning
(ALS) image, as well as an optical image.

The SAR (Synthetic Aperture Radar) acquisition is a P-band
full polarimetric image taken by the airborne Onera system
SETHI [32] on 23th September 2010 during the BioSAR 2010
campaign. It corresponds to the first track of the BioSAR
delivery. This acquisition has been chosen to maximize the
common footprint with the LIDAR data provided by SLU
(Swedish University of Agricultural Sciences). The quality of
localization has been estimated on a trihedral corner with an
accuracy of about one meter. Accuracy of trajectory is 20cm.
Range and azimuth resolutions are 80 cm. Local incidence
angle varies from 25 to 60 degrees, and the image is 12,250
x 7,000 pixels.

The LIDAR acquisition was carried out by the Helicopter-
mounted TopEye Mk III system on 29th August 2010. All
LIDAR data have been processed by SLU, i.e. going from the
collected LIDAR raw data of point clouds to various products
delivered as several raster files. Here we use a raster image
with a 0.5mx0.5 m resolution, which contains the difference
of height value of the first LIDAR return and height value
of the DEM (Digital Elevation Model) at the LIDAR return
horizontal position. This image is called DSM (for Digital
Surface Model) image and is georeferenced in WGS84.

For the georeferencing of the SAR data, another DEM was
provided by FOI, the Swedish Defence Research Agency.
This DEM covers the entire radar images. At the date of
the BIOSAR 2010 campaign, this DEM was a commercial
product with a single user license and not included in the
deliverable distributed by ESA for public access. However,
since July 2015 it is provided without license with simplified
terms of use by the National Land Survey as open data. It
contains ground height values at the intersections of a 50 m
grid. This product is referred as GSD50+ and is described in
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[33]. Standard error in height is announced to be 2.5 m. To test
the influence of this DEM on the coregistration, in particular
on georeferencing, we have also used the product delivered by
SRTM90 data before 2015, which gives ground height values
on a 90 m grid.

B. Tested co-registration scenarios

For the coregistration of two images, we have to choose
one as master and the other one as slave. When a SAR image
is included in the data set, we choose this one as the master
image for the whole coregistration products for at least two
reasons:
• Projecting a radar image on the ground introduces arte-

facts, because of the special SAR geometric configuration
[34]. These artifacts are further amplified for high relief
terrains, and also when the incidence angle variation is
great, such as encountered for our airborne acquisitions.

• The choice of a master SAR image is in favor of advanced
processing methods such as interferometry that will not
be affected by a resampling of the radar image.

In order to enhance the usefulness of GeFolki for the
coregistration, we have tested several scenarios as follows:
• The SETHI SLC data have been delivered by ONERA

with an auxiliary transformation grid file to be able to
link precisely one pixel on the image to one geographic
location. This grid file allows to link a pixel position
with a height to a precise latitude and longitude. It can
also be used to associate an image position and a height
to a geographic position. Therefore, we have applied
the process to link each pixel of our SAR image to a
geographic location, by using different available DEM.
This process is described in [35]. Then, this geocoding
information is used in combination with the LIDAR one
to find the differences of positions of image pixels in
map coordinates. Thereafter, it is possible to resample one
image onto the other one. Results obtained by this process
will be called coregistered products by geocoding.
The corresponding synoptic is illustrated on Fig. 6. This
method does not utilize the flow algorithm. It has been
implemented in order to compare the results with those
obtained using GeFolki. It also allows to judge the
influence of the quality of the DEM on the accuracy
of registration. Indeed, we have applied it using the two
types of DEM available on the whole image: SRTM90
and GSD50+ provided by the National Land Survey.

• In parallel, we register images without using any georef-
erencing data. We begin with images after the initializa-
tion procedure explained in section II B., as represented
in Fig. 7. Then we apply GeFolki to compute the flow,
and the slave image is re-sampled accordingly. We call
this approach GeFolki after coregistration by manual
initialization. This approach has been chosen because it
enables us to attempt a coregistration even if no auxiliary
data is available.

As a baseline we use a method whose similarity metric
is based on mutual information [36]. Because the baseline
algorithm is more time consuming, we could not apply it
at full resolution (12,250 x 7,000 pixel). For that reason,
we have restricted the test on a part of the image only, and
thereby, only to qualitative evaluation. The initial algorithm
introduced by Thirion [37], called demon registration, is a
popular algorithm for non-rigid image registration because of
its linear computational complexity and ease of implemen-
tation. It is a non parametric registration that approximately
solves the registration problem by successively estimating
force vectors that drive the deformation toward alignment,
and smoothing the force vectors by Gaussian convolution. In
this version, the method has been adapted to heterogeneous
images. This algorithm is provided for free by the authors in
matlab language. Therefore, it is close in spirit to GeFolki,
in the sense that it handles the conventional formulations
of optical flow problem, adapts the similarity criterion to
heterogeneous images, and is able to compute the flow for
each pixel in the images.

The conclusions drawn from our various tests are:
• Geocoding methods with our data set are insufficient to

ensure a pixel precision. The impact of DEM accuracy
on the result is clearly demonstrated in next subsection.

• The improvement brought by GeFolki is significant. It
can be particularly useful for all applications where the
highest accuracy is required, for instance for the counting
of trees.

• GeFolki was sucessful even with its coarse initialization
trough an projective transformation based on a few tie-
points.

• With the same coarse initialization, the baseline algorithm
based on mutual information was not successful. There-
fore, we have managed to use it in combination with our
best geocoding result as initialization. The results appear
to be still of inferior quality and needs a 20 times more
computation time.

In next subsections, we detail these qualitative results, first,
of the LIDAR DSM image at the best resolution (0.5m) on
the SAR image, and then of an optical aerial photography on
the SAR image.

C. 0.5mx0.5m elevation map with the SAR image

We consider here coregistration results of a 1,000 x 1,000
pixel part of the whole image SAR image, with the LIDAR
0.5mx0.5m elevation map. This part contains forest stands,
isolated trees, electrical cables and pylons. Each result is
presented as a colored composition in which the radar image
is in the green channel and the coregistered LIDAR image
in the magenta channel. When a pixel is white or grey, we
have similar intensities in both images. If not, a pixel will
tend to take the color of the channel with the highest intensity
value. With this representation, it is then possible to appreciate
the quality of a registration, in particular when we focus on
isolated scatterers.

The two first results presented on Fig. 8 are coregistered
products by geocoding. For the first one, we have used the
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Figure 6. First coregistration scheme by geocoding from a geometric point of view: the latitude and longitudes are computed for each pixel of the images
according to topographic and track information. Then the flow is computed between these both coordinates, and the slave image is resampled accordingly.

Figure 7. Coregistration scheme by optical flow calculation: first a coarse coregistration is performed by warping the slave image on the master image trough
a projective transformation based on the manual selection of four tie-points. This first step constitutes the initialization of GeFolki. Then, GeFolki computes
the flow for this couple of images, and the final slave image is resampled accordingly.
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SRTM90 DEM, and for the second one the GSD50+ DEM
which is more accurate. For both cases, we can notice that a
residual shift remains, notably between forest edges and small
structures such as pylons. These results also demonstrate that
the precision obtained by geocoding is better with the most
accurate DEM of the Land National Survey, than with the
SRTM product. Thus, the DEM choice is crucial on the final
accuracy.

(1)

(2)

Figure 8. Result of coregistation for DSM LIDAR data on a 1,000 x
1,000 pixel SAR image sample over Remningstorp forest (Sweden) (1) after
coregistration by geocoding using SRTM, (2) after coregistration by geocoding
using GSD50+ DEM

Then, Fig. 9 presents the results obtained by the baseline
algorithm based on mutual information and by GeFolki. The
baseline algorithm has been initialized by the previous result
of best geocoding, because it was diverging for the coarse
initialization based on the projective transformation.

For these two new results, the images show less saturated

(1)

(2)

Figure 9. Result of coregistation for DSM LIDAR data on a 1,000 x 1,000
pixel SAR image over Remningstorp forest (Sweden) (1) after coregistration
by an algorithm based on Mutual Information, (2) after coregistration by
GeFolki

colors, which means that the coregistration results are better
than using the geocoding method. However, some colored
pixels remains, mainly because of the lateral viewing geometry
of the radar, that implies that the return of the tree is often
clearly double: the branches echoes appear in HV polarization
at the first range cells, whereas the trunks double bounce echo
appears in HH-VV polarization at further range cells. Due to
its vertical illumination, the LIDAR return of one tree is a
single patch. These effects are illustrated on Fig. 10. Note
that for this reason, we perform the computation of the flow
by using the radar image calculated in HH-VV polarization, in
order to make the double bounce echo of the ground matching
to the LIDAR return echo.

Concerning the baseline algorithm based on mutual infor-
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Figure 10. Effects of geometry on the signature of a tree in the scene for
polarimetric radar images and for LIDAR image. Example on a very small 30
x 40 pixel extract of the different products containing four trees: polarimetric
SAR image on the left, DSM LIDAR image on the middle, and superposition
after our best coregistred product on the right

mation, we notice that electrical cables are deformed. Two
different image samples represented in Fig. 11 show that tree
superposition is good for both GeFolki and baseline algorithm;
however cables are not straight any more in the case of the
coregistration by baseline algorithm.

The execution time of the baseline method in matlab is 248
seconds, while Gefolki needed only 7 seconds for the same
images (1,000 x 1,000 pixels).

D. Optical and SAR images

Our algorithm GeFolki is now applied for the registration
of radar and optical images. The optical image used in this
test is distributed by Lantmäteriet. Several areas of the scene
present intensity contrasts that differ between the SAR image

Figure 11. Result of coregistation for LIDAR data and SAR image over
Remningstorp forest (Sweden) for two 100 x 100 pixel extracts (1) after
coregistration by geocoding (2) after coregistration by the baseline algorithm
based on Mutual Information, (3) after coregistration by GeFolki

and the optical one, as we will show later in Fig. 16. Forests
are dark patches in the optical one, and bright in the radar
images. Water surfaces are dark in both cases. The intensity
of the soil varies greatly in both images but not necessarily in
the same way for the radar and for the optical sensors. In this
case, success of GeFolki lies mainly in the inclusion of the
local contrast inversion.

Optical and SAR images now implies even more different
geometries. The optical scene is viewed from a given camera
position where the main source of light is the sun. In the case
of our images, the camera is almost at the top of the tree,
the sun is low in the sky and consequently the shadows are
relatively large. The optical signature of a tree will consists
of the crown, which partially hides the foot of the trunk, and
the shadow. The crown has little contrast with the ground; it
is especially the shadow that is visible in the case of isolated
trees, as seen as in Fig. 12 on the top.

Also, in order to create a visualization of the differences
between both radar and optical images, we first reverse the
contrast of the optical image before assigning the magenta
color channel in the output image. The green color is assigned
to the radar image in the final composite visualization. In the
case of a perfect coregistration, the colored overlay makes us
see the optical shadow in magenta, whose direction crosses
the radar double bounce echo, colored green. The choice of
the colors is explained in Fig. 12.

Using the same procedure as in the case of LIDAR to
coregister the optical image with the SAR image, we obtain
the different results presented in Fig.13 for geocoding, baseline
registration and GeFolki.

Once again, the coregistration algorithm applied to remote
sensing heterogeneous images results in an interesting product
in terms of spatial accuracy. The algorithm based on mutual
information also improves the coregistration results in most
areas, albeit unevenly, as shown in Fig. 14. On the first
extract, both baseline registration and GeFolki improve the
matching of trees, whereas in the second case, only GeFolki
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Figure 12. Effects of geometry on the signature of a tree in the scene for the
optical image. Example on a very small 50x50 pixel extract of the different
products containing some trees: initial optical image on the left, then inverted
optical image, SAR image, and superposition after our best coregistred product
on the right

is sucessful. On the 1,000 x 1,000 image, coregistration by
GeFolki requires 22 seconds, whereas baseline coregistration
by mutual information is done in 263 seconds.

Let us have a look at another example of the devil in the
details. A mosaic image of a result of coregistration obtained
by geocoding is given on the top of Fig. 15. Then we can
see on the same figure below how the flow computation
through GeFolki and a rough manual initialization, improves
the geocoding coregistration on some details. Examples of
areas where the coregistration is better done by GeFolki are
highlighted by yellow ellipses.

IV. ROBUSTNESS AND PARAMETER SETTING ANALYSIS

Several parameters have to be set for the whole coregistra-
tion process: the window size parameter for the local inversion
contrast, and the parameters used for the calculation of the
flow. We study these two kinds of parameters independently,
to evaluate their impact on the quality of results.

A. Discussion about the local contrast inversion

The first point is that for the coregistration of optical and
radar images, the algorithm fails to estimate the flow without
the local contrast inversion. Indeed, estimation of the flow
without the contrast inversion function diverges, even if a good
initialization is done. Therefore, this function is crucial in the
algorithm.

(1)

(2)

(3)

Figure 13. Result of coregistation of an optical image on a 1,000 x 1,000
pixel SAR image over Remningstorp forest (Sweden) (1) after coregistration
by geocoding (2) after baseline coregistration based on Mutual Information,
(3) after coregistration by GeFolki
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Figure 14. Result of coregistation for optical data and SAR image over
Remningstorp forest (Sweden) for two 100 x 100 pixel samples (1) after
coregistration by geocoding (2) after coregistration by an algorithm based on
Mutual Information, (3) after coregistration by GeFolki

The criterion for inversion depends on the size of a local
window. Therefore, we must keep in mind that this size is the
outcome of a compromise between:
• the scale of structures offering contrasts that we want to

correct: the size of the window has to be in the same
order than the size of these structures;

• the flow to estimate: when a significant displacement
between the two images exists, the inversion process must
be performed at a larger scale than this displacement,
otherwise the algorithm may fail on the transition areas.

Ultimately, through several tests on different images, we
can confirm what we expect intuitively: similar to the flow
calculation, the contrast inversion is very effective when
conducted in a multi-scale manner. At a given pyramid level,
and for window size equal to that of the local window ω in eq.
3, the contrast inversion is conducted at a scale large enough
compared to the flow, and therefore is always carried out with
an appropriate setting.

To illustrate this, we take a sample of our optical and radar
images. The initial image pair is presented in Fig. 16, simply
in native gray scale formats.

At the bottom, we show intermediate results of contrast
inversion, obtained for images that have been scaled down by a
scale factor 8 through a dyadic pyramid reduction of three lev-
els (23 = 8). The images have been successfully transformed
by the local contrast inversion, for a radius equal to 8, that
corresponds to a 17x17 local window (2r+1 x 2r+1). Globally,
the obtained images are very similar in terms of intensity
levels. Some small areas are still different in contrast, such
as the small lake highlighted by red rectangles. Nevertheless,
these images depict the solution at an intermediate stage and
when we apply the inversion algorithm to images at the initial
resolution, we will see that the result is effective on these
areas, as shown on Fig. 17.

In conclusion, a multi-scale strategy is essential for the
contrast inversion decision, because this one is robust only for
local window large enough, and displacements small enough

A - Image display with mosaic after coregistration by geocoding

B - Image display with mosaic after coregistration by GeFolki

Figure 15. 1,600 x 1,500 pixel mosaic of the polarimetric SAR image and
the RGB aerial photography. A: by geocoding; B: by GeFolki

also, and the multi-scale strategy is sufficient to satisfy these
two requirements.

B. GeFolki parameter settings
Now that the sensibility of the contrast inversion step

has been analyzed, we want to discuss the influence of
the parameters of GeFolki in the case of remote sensing
heterogeneous image coregistration. The main features are:
• r, called the radius, that describes the size of the local

window;
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(A) optical in Red channel (B) Radar in HH channel

(C) optical after equalization (D) Radar after equalization +
contrast inversion

Scale 1:8, window 17x17 Scale 1:8, window 17x17

Figure 16. Top left (A): the Red Component of the optical image - Top right
(B): the SAR image in HH channel. Bottom left (C): the Red Component of
the optical image after local inversion procedure - Bottom right (D): the SAR
image in HH channel after contrast enhancement.

(C) optical (D) Radar after contrast inver-
sion

Scale 1:1, window 17x17 Scale 1:1, window 17x17

Figure 17. Zoom of contrast inversion on images at initial resolution

• L, the number of pyramid levels;
• K, the number of iterations.
Empirically, the found solutions were not very sensitive to

K. A prior sensitivity analysis was conducted in the case of
SAR images in [22]. It was shown in particular that it was
preferable to use large radii in order to minimize the impact
of the speckle, this latter being a level of texture that provides
no useful information for the correlation between images.

However, the SAR images were acquired in very similar
conditions. The flow does not vary much locally. In the case
where the images are taken with different geometries, the
terrain projection effects can induce more local deformation
between the two images, and in this case, it could be necessary
to use a smaller radius to be more precise.

Still in the case of SAR images in close acquisition con-
figurations, the desired displacements are small. In this case,
it is sufficient to reduce the number of pyramid levels to
only two. In the other cases investigated in this paper such as
heterogeneous images, we encountered situations where even
the coarse coregistration in first stage leads to remaining errors
of several tens of pixels to be compensated after. In such cases,
more pyramid levels are needed to estimate these major shifts.

However, these two parameters, radius and number of levels,
are intrinsically linked. If the overall displacement to find is
large, a high number of pyramid levels is required. Moreover, a
larger window leads to improved matching robustness but also
constrains the motion which can be estimated, what would not
be appropriate especially at a coarse resolution. This confirms
that the quality of initialization plays a significant role in the
successful outcome of GeFolki.

Overall, we therefore recommend the following procedure
in order to optimize the effectiveness of our flow algorithm:
• The initial pyramid level is chosen directly based on the

expected residual displacement after initialization. For
example, if the flow to estimate remains greater than
several tens of pixels, we have to choose a rather high
pyramid level number, typically equal to 6, equivalent to
a 1:64 scale. On the contrary, if images are already very
close after the initialization step, the pyramid level can
be only 2.

• to choose relatively a rather large matching window. An
effective strategy is to explore several values to ensure
robustness, for example a list of 6 radii ranking from 4
to 24 by step of 4.

V. COREGISTRATION PERFORMANCE

To date, there is no universal method to quantify the
accuracy of a registration algorithm for heterogeneous images.
Also, we propose a methodology for quantitative assessment
of performance. The key concept is to measure distances
between paired features in the two registered images. These
features will be different according to the image pairs under
consideration.

A. Metrics for LIDAR-SAR coregistration

The main idea is to detect trees in both images, to match
them, and to to measure the distance in pixels for each defined
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pair. This pixel-wise distance can be converted into physical
distance. Depending on the number of points considered, it is
also possible to carry out a statistical analysis of the results.
Given the nature of our images, we propose to calculate
performance by considering the positioning on the tree bases
on the ground.

In practice, we proceed in three steps, described in Fig. 18:

Figure 18. The different steps to evaluate metrics on LIDAR-RADAR
coregistration results

• First in the LIDAR image, we extract the individual
positioning of each tree. This positioning of individual
trees from the LIDAR DSM is performed using the
package rLiDAR [38]. The two processing steps are a
mean smoothing in order to eliminate spurious local
maxima caused by tree branches then non-maximum
suppression within two meters distance. Both functions
have been used with a fixed 5x5 windows.

• We extract in the polarimetric radar image the isolated
double bounce echoes. This detection is carried out
starting from intensity image polarization HH-VV. A first
simple threshold detection is performed on this image.
The binary mask thus created is dilated by using a 3
radius disk structuring element object. We then consider
all connected components found after this dilatation. We
keep among these components, only those whose number
of pixels does not exceed 100. Otherwise, we suspect
several trees to be aggregated. For each detection area, the
coordinates are calculated at the maximum intensity pixel.
If several adjacent pixels have the same peak intensity,
we take the center of gravity of these pixels.

• The last step is to search for each trunk detected in the
master image, position of its correspondent, supposed
the nearest in the second image. Finally we calculate
the distance between the master pixel position and its
corresponding position.

The LIDAR detection performance seems very good, while
radar detection fails once the trunk density is high. For this
reason, we have manually selected areas where detection

results are good. It is also possible to automatically select
the areas where the tree densities found in the LIDAR data
are low. Five areas selected are indicated on Fig. 19 on the
radar image on the right.

Figure 19. Selection of areas for metrics in coregistration of LIDAR and SAR
images- Left: the LIDAR image, Right: the 12,250 x 7000 pixel polarimetric
image with areas selected for our metric highlighted by yellow rectangles

From figures 20 to 24, we present the results relative to these
areas. For each of them, we compare the results in terms of
distance, after a coregistration performed:
• by geocoding following the scheme described in Fig. 6.
• after a simple projective transformation based on four

Ground Control Points, as the first step of the scheme
described in Fig. 7. This result constitutes the initializa-
tion of GeFolki.

• after coregistration of this latter product by GeFolki, as
the final product described in Fig. 7.

Each image is as follows:
• The first line shows the colored compositions of the

LIDAR and radar images: one codes the magenta channel,
and the other the green channel. This representation
allows to visualize the effect of any mismatch between
images.

• The second line for figures 20 and 21 indicates the trees
location of the LIDAR image (red circles) and the radar
image (black dots).

• The last line is a table where we summarize the mean
distance, the standard deviation, and the root mean square
error obtained for all detected trunks.

Thus, Fig. 20 concerns a simple case of five well isolated
trees whose LIDAR or radar signatures correspond to easily
identifiable echoes. Clearly on the colored composition, we
see that GeFolki allows to match the radar echoes with the
crown that can be seen in the LIDAR image. Quantitatively,
the geocoding method brings up a residual gap between the
two images of about 10 pixels. On the image obtained by
projective transformation, the calculated distances are of the
same order of magnitude. However, in this case it is very likely
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that the error is largely underestimated: the found matches are
not correct, because the gaps between trees are less than the
error of existing offset in this area. Finally, GeFolki leads
to a good match with a root mean square error around one
pixel. The error is below the expected accuracy of our trunk
detection chain.

metrics Geocoding Projective GeFolki
mean distance 10.1004 10.9684 1.1781
distance std 3.1393 5.2695 0.3505

distance rmse 10.4835 11.9382 1.2191
Figure 20. Performance evaluation for area 1

On the second example represented on Fig. 21, we see a row
of trees arranged in pairs. The order of magnitude of error is
the same than previously.

However, we can see in this case that our evaluation can be
more pessimistic for a precise algorithm than the real quality
of coregistration: in fact, some trees are not detected in the
radar image. For these missing trees, the distance measured
on the LIDAR image will be done with the nearest tree, but
not the true corresponding one. This will tend to increase the
average distance calculated for GeFolki. On the contrary, this
matching error has the opposite effect for the projective case:
in this case, the nearest tree is not the real one and the metrics
leads to underestimate the error, as in Fig. 21.

Fig. 22 is an example chosen along power lines. On the
left there is one row of trees, and on the right side we see a
group of trees. The evaluation leads to a slightly worse score
for GeFolki than in the previous examples, but still better than
the other two methods. Visually, it is mostly trees arranged on
the left that make them slightly less good statistics.

Another example of grove is given in Fig. 23. It is located in
a part of the image very far from the previous one, at a distance
of about 5 km. In this area, the projective transformation fails
completely. Geocoding and GeFolki have equivalent statistics,
slightly in favor of the latter, in terms of root mean square
error about 8 pixels for Geocoding and 6 pixels for GeFolki.
Note that in this example, the displacement obtained after the
simple projective model is rather strong, and GeFolki can still
recover from such an inaccurate initialization.

A final example with more trees is shown in Fig. 24, still
in favor of the GeFolki method.

metrics Geocoding Projective GeFolki
mean distance 11.3805 12.9625 2.1793
distance std 4.2149 4.9549 0.9128

distance rmse 12.0748 13.8033 2.3480
Figure 21. Performance evaluation for area 2

metrics Geocoding Projective GeFolki
mean distance 8.9914 10.1773 5.8337
distance std 3.8463 6.0195 1.3129

distance rmse 9.7534 11.7712 5.9747
Figure 22. Performance evaluation for area 3
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metrics Geocoding Projective GeFolki
mean distance 7.6783 47.2973 5.1029
distance std 3.4021 31.6825 3.2271

distance rmse 8.3896 56.8178 6.0269
Figure 23. Performance evaluation for area 4

metrics Geocoding Projective GeFolki
mean distance 7.8826 5.7363 3.5503
distance std 2.9982 3.4944 2.5157

distance rmse 8.4270 6.7056 4.3422
Figure 24. Performance evaluation for area 5

B. Metrics for Optics-SAR coregistration

For the optical images, the detection of trees is much more
difficult to handle. For this reason, we first go through a
manual selection of some reference points, at the foot of the
various pylons detectable in the images. Most of them are
found in pairs. In this case, the coordinates of each of them
are then averaged. We then get 7 coordinates, highlighted by
yellow rectangles in Fig. 25, each corresponding to a pair of
pylons. Note that in the case of radar, the echo at the foot of the
tower is very strong, as can be seen in Fig.26. Furthermore, the
selection of the point is further facilitated by the polarimetric
color signing the double bounce mechanism. Contrariwise, the
position of the pylon base is more uncertain in the optics
image, because these objects provide little contrast with the
ground. Despite these difficulties, we are able to locate these
targets which are well distributed throughout the image extent;
furthermore echoes are sufficiently focused.

Then, we calculate for each pylon the difference between the
coordinates of the radar and the optical image. This procedure
is applied on the optical image coregistered by geocoding, and

Figure 25. Selection of areas for metrics in coregistration of optical and radar
images- Left: the polarimetric image, Right: the optical image with seven pairs
of pylons highlighted by yellow rectangles

Figure 26. Example of a common pylon selection: on the polarimetric SAR
image on the left, on the optical image coregistered by GeFolki in the middle,
and coregistrated by geocoding on the right. Red circles indicate the position
of the pylon bases in the SAR master image.

the one coregistered by GeFolki. The results are given in Table
27. We can note that GeFolki presents the best results.

Finally, we also looked at the errors of coregistration on
other types of objects: the outline of the lakes and some rows
of trees. We performed manual reading distances in the 6 areas
circled in yellow on the mosaic of Fig. 15. Four distances are
recorded at the transition on rows of trees, and two distances
are measured on the edges of the lake. These distances lead
to a root mean square error of 18.5 pixels in the case of data
coregistered by geocoding, and 0.8 pixels in the case of data
coregistered by GeFolki.

In summary, the GeFolki method provides more accurate
results than geocoding, with pixel- precision, compared to the
ten pixels from our method of geocoding.

VI. CONCLUSION

This article introduces the use of an optical flow algo-
rithm called GeFolki to register heterogeneous remote sensing
images. This consists in a dense flow method derived from the
Lucas-Kanade algorithm, with a multi-scale strategy, applied
to images transformed by a rank-filtering, and, for heteroge-
neous images, also by a rolling guidance filter and a contrast
inversion decision method.

The algorithm has been applied and qualitatively compared
to coregistration made using only geocoding information, and
also to an alternative method of baseline registration based on
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Geocoding GeFolki
Position difference Position difference

in pixel in pixel
17.61 4.95
19.42 6.96
21.21 5
12.04 7.16
18.90 1.80
15.53 0
12.74 3.53
Mean Mean
16.78 4.20
STD STD
3.47 2.63

RMSE RMSE
17.08 4.86

Figure 27. Examples of flow errors at reference points

the use of mutual information. Data considered are airborne
forest land images with resolutions down to the meter for
radar, 50 cm for optical image, 10 m or 50 cm for LIDAR
data. GeFolki has been shown to be:
• more accurate than geocoding on all our examples;
• free from some defects such as deformation induced by

the baseline registration;
• more robust than this same method with respect to the

initialization.
Quantitative performances have been derived, both for a

coregistration based on geocoding, and for GeFolki. Perfor-
mances are based on detection of trees for the SAR/LIDAR
coregistration, and on manual measurements on some pylons,
tree rows and lake edges for the SAR/optical coregistration.

The registration precision of GeFolki is about a few pixels,
(1 pixel=80 cm), compared to ten of pixels by geocoding. This
precision opens new opportunities for studies related to data
fusion, for example, with applications involving the counting
of trees. It appears that the fusion of different images may
improve detection performance, but only if we can trust the
accuracy of registration.

Finally, GeFolki has been proven to be faster than the
baseline registration method, by a factor of 10 to 20.

Our next efforts will focus on:
• Taking into account the several bands of multivariate

images, as opposed to a panchromatic image or single po-
larization radar image. Indeed, Hyperspectral or LIDAR
data contains several bands having different contrasts, as
well as the polarimetric radar images with the different
polarimetric channels. To date, the choice of the band has
not been reasoned. But a work could be undertaken on
how to make the most of this data diversity.

• The possible extension to more complex scenarios, for
example with two images containing mountainous ter-
rains or buildings, and acquired with different headings.
This case is particularly difficult because these objects
will be projected on the ground differently following the

acquisition mode.
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