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Abstract— This work compares microwave radiometry and
Global Navigation Satellite Systems-Reflectometry (GNSS-R) ob-
servations using data gathered from airborne flights conducted
for three different soil moisture conditions. Two different regions
are analyzed, a crops region and a grass-land region. For the
crops region the correlation with the I/2 (First Stokes parameter
divided by two) was between 0.74-0.8 for large incidence angle
reflectivity data (30◦-50◦), while it was between 0.51-0.61 for the
grass-land region and the same incidence angle conditions. For
the crops region the correlation with the I/2 was between 0.64-
0.69 for lower incidence angle reflectivity data (<30◦), while it
was between 0.41-0.6 for the grass-land region. This indicates that
for large incidence angles the coherent scattering mechanism is
dominant, while the lower incidence angles are more affected by
incoherent scattering. Also a relationship between the reflectivity
and the Polarization Index (PI) is observed. The PI has been used
to remove surface roughness effects, but due to its dependence
on the incidence angle only the large incidence angle observa-
tions were useful. The difference in ground-resolution between
microwave radiometry and GNSS-R and their strong correlation
suggests that they might be combined to improve the spatial
resolution of microwave radiometry measurements in terms of
brightness temperature and consequently soil moisture retrievals.

Index Terms—GNSS-R, Microwave radiometry, Soil moisture,
Coherent reflectivity, Brightness temperature.

I. INTRODUCTION

M ICROWAVE radiometry is a passive remote sensing

technique based on sensing the microwave radiation

that is emitted by a body that is above 0 K. This so-called

brightness temperature is a function of the body physical

temperature and the emissivity. Microwave radiometers are

instruments that measure very accurately the brightness tem-

perature, they are not highly affected by surface conditions

(roughness) and they are not highly sensitive to signal noise.

The spatial resolution of this technique depends on the antenna

footprint and on the distance to the body under observation. In

other words, the larger the antenna, the better the resolution.

From the brightness temperature measurement geophysical

parameters such as soil moisture can be inferred with an

accuracy of 4% or better for some spaceborne missions [1],

[2]. Some examples are the Soil Moisture Ocean Salinity

(SMOS) [2] and the Soil Moisture Active and Passive (SMAP)
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[3] spaceborne missions, both with the goal of measuring soil

moisture.

Radar scatterometers measure the normalized radar cross

section by transmitting a pulse towards the surface under

observation, measuring the power of the back-scattered echo,

and removing the noise power contribution. They work in a

real aperture measurement mode. Differently from microwave

radiometers, they belong to the active remote sensing family

as they transmit the signal that is reflected on the surface.

The spatial resolution of this technique depends on the the

Doppler filtering and the geometry of observation in the

across-track direction, and on the the platform’s speed and the

integration time in the along-track direction [4], [5]. From the

radar cross-section measurement the geophysical parameters

are inferred. One example is the Advanced SCATterometer

(ASCAT) scatterometer that has been used like microwave

radiometers for soil moisture monitoring [6], [7], and more

often for sea surface wind estimation [8], [9].

Global Navigation Satellite Systems (GNSS)-Reflectometry

(GNSS-R) is an emerging technique based on sensing the for-

ward scattered GNSS signals emitted worldwide. These signals

are called opportunity signals, as they are always available.

GNSS-R can be seen as a passive bistatic scatterometer as

GNSS-R payloads only receive the GNSS reflected signals

and they do not transmit any signal. The spatial resolution

of GNSS-R products depends on the surface characteristics,

whether the coherent or the incoherent scattering component is

dominating. Note that GNSS-R works in a forward scattering

geometry where both scattering components are present [10].

As it will be later detailed, when the coherent component

dominates the spatial resolution corresponds to the First Fres-

nel zone [11]. When the incoherent component dominates

GNSS-R can also be seen as an scatterometer in the main

cell of the Delay-Doppler Map (DDM), and as an unfocused

Synthetic Aperture Radar (SAR) with a typical integration

time of 1 ms (duration of the Global Positioning System

(GPS) C/A code) in the outer Delay-Doppler cells [12], [13].

Therefore, in the incoherent regime it will depend on the same

parameters than a scatterometer. In terms of accuracy of the

retrieval it performs worse than microwave radiometers, due

to its higher sensitivity to surface roughness [11], [14]. The

measured reflectivity and the bistatic radar cross section, have

been both correlated against the surface soil moisture obtaining

significant correlation values [11], [14], [15], and they have

been used to measure sea surface wind speed like conventional

scatterometers [16].
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This work compares the performance of L-Band microwave

radiometry and GNSS-R, as they are techniques very close in

frequency (1.4 GHz for microwave radiometry and 1.575 GHz

for the L1/E1/B1 frequency band used in the GPS, Galileo,

and Beidou systems respectively). The first publication stating

some correlation between GNSS-R and L-band microwave

radiometry appeared in 2006 [17], but only qualitative rela-

tionships have been shown until now. Other works comprising

other sensors comparing L-band brightness temperature and

radar back-scattering cross-sections have been also performed

[18], in this case including both qualitative and quantitative

results. However, results presented in this manuscript suggest

that the bistatic geometry provides higher correlations among

those datasets.

The correlation results between both techniques leads to a

possible combination of the two techniques for spatial reso-

lution enhancement of microwave radiometry data (brightness

temperature, and consequently their estimated parameters such

as soil moisture). In order to enhance the spatial resolution of

microwave radiometry products two different approaches have

been followed. The first approach is based on image deconvo-

lution and the application of signal processing techniques [4],

[19]–[21]. For instance in [19] a factor of 1.8 spatial resolution

enhancement is found for the SMOS brightness temperature

images. The other approach to spatial resolution enhancement

is by pixel disaggregation and the use of information of

different sensors working at different frequency bands [22]–

[24]. This approach is the one that could be followed to merge

GNSS-R and L-band microwave radiometry data. Even though

it provides a worse resolution than previous approaches, since

GNSS-R spatial resolution is worse than optical sensors,

GNSS-R data is not weather dependent while optical data is.

Furthermore, this approach would be using two techniques

very close in frequency, and consequently, sensitive exactly to

the same geophysical parameters.

The work is structured as follows. Section II provides a

summarized theoretical background. Section III shows the

setup and instrumentation of the three airborne field campaigns

performed under different soil moisture conditions. Section IV

provides an analysis of all the datasets used (radiometry and

GNSS-R), together with a comparison among them, and the

main results achieved. Section V discusses the results obtained

from the comparison among GNSS-R reflectivity and L-band

brightness temperature. Finally, section VI summarizes the

main conclusions of this work.

II. THEORETICAL BACK-GROUND: OVERVIEW OF GNSS-R

AND MICROWAVE RADIOMETRY

A. GNSS-R

GNSS-R is an emerging technique that started in 1988,

originally proposed for multistatic scatterometry [10], and

continued in 1993 [25], when it was proposed to use satellite

reflected navigation signals for mesoscale altimetry. In 1994, a

publication reporting an 1991 aircraft incident showed the pos-

sibility of sensing navigation signals reflected over the ocean

[26]. In 2000, some ground-based scatterometry experiments

demonstrated that there was a relation between the GNSS

scattered power and the Soil Moisture (SM) content [27].

Subsequently, the main work was developed by Masters et al.

[28], but no clear relation between scattered power or Signal-

to-Noise Ratio (SNR) and SM was established [11], [15].

Egido et al. [14], [29] reported relations between the SM and

the cross-polar scattered power. They also related the cross-

polar scattered power, and the ratio between cross-polar and

co-polar scattered power to SM and vegetation biomass [14].

New research towards cost-effective applications has been

conducted, including the development of the Light Airborne

Reflectometer for GNSS Observations (LARGO) instrument

[30].

GNSS scatterometry for soil moisture monitoring is based

on sensing the power of the GNSS reflected signals. The

received power for each satellite can be divided into two

different terms, the coherent power (Pc) and the incoherent

power (Pi). From the bistatic radar equation the coherent

received power is [31]:

Pc = P t
q

|Kpq|2λ2

(4π)
2
(r0r + r0t)

2 |rpq (θi) |2, (1)

where P t
q is the transmitted power by the satellite, the term

|Kpq|2/
(
(4π)

2
(r0r + r0t)

2
)

accounts for free space propa-

gation losses, antenna gain and polarization mismatch factor(
|Kpq|2

)
, λ stands for the wavelength, r0r is the distance

between the reflection point and the receiving antenna, r0t
is the distance between the GNSS satellite and the reflection

point, |rpq (θi) |2 is the terrain’s reflectivity which is normally

modeled by the Fresnel reflection coefficients [32], p stands

for the transmitted polarization, and q for the received po-

larization. In the same way the incoherent scattered power is

expressed by [31]:

Pi,pq = P t
q

|Kpq|2
(4π)

3 λ2

∫
Aill

σ0
pq(x, y)g

r
p(x, y)g

t
q(x, y)

r2r(x, y)r
2
t (x, y)

dxdy,

(2)

where σ0
pq(x, y) stands for the incoherent bistatic scattering

cross-section, grq(x, y) for the receiving antenna gain at q
polarization, gtp(x, y) for the transmitting antenna gain at p
polarization, r2r(x, y) for the distance between each scatterer

and the receiving antenna, and r2t (x, y) for the distance be-

tween each scatterer and the transmitting antenna. The amount

of coherent or incoherent power will depend basically on

the surface roughness condition and the scattering geometry

(incident and specular reflection angles) [33]. The thermal

noise power reaching the receiver after the correlation with a

locally-generated replica of the transmitted code (conventional

GNSS-R or cGNSS-R in short) is:

PN = k (Tant + T0 · (F − 1))Bcoh, (3)

where k stands for the Boltzmann constant, Tant for the

antenna noise temperature, T0 = 290 K, F is the system

noise figure, and finally Bcoh which is the equivalent noise

bandwidth, which corresponds to the inverse of the coherent

integration time (1/Tcoh).

The spatial resolution of GNSS-R varies depending on

the reflection conditions. For the coherent reflected power,
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the spatial resolution corresponds to the first Fresnel zone

[11], [15]. For the incoherent power, it corresponds to the so

called glistening zone [34], which is limited by the scattering

properties and some system parameters such as the coherent

integration time Tcoh and the code modulation used. Fur-

thermore, depending on the Delay-Doppler cell looked, the

incoherent scattered power has a different spatial resolution

[12], [13], whereas the coherent one always comes from the

same region of the DDM [34]. However, for the land scattering

case, due to the low reflectivity of land in comparison to

water, values out of the first iso-delay cell are very small, and

therefore not reliable unless a very large incoherent integration

time is used.

B. Microwave radiometry

L-Band Microwave radiometry is a consolidated remote

sensing technique to measure soil moisture [35], [36]. It is

based on measuring the terrain’s emissivity e, which is 1−R,

being R the terrain’s reflectivity. The terrain’s reflectivity has

two different parts, a coherent component and an incoherent

one. The coherent one is modeled by the Fresnel reflection

coefficients, and the incoherent one using the scattering cross

section. Coherent reflectivity is defined as the modulus square

of the Fresnel reflection coefficients. In this model, surface

roughness is characterized by its standard deviation (σrms),

and then the Fresnel coherent reflectivity (Rc,pq(θ)) is cor-

rected by an attenuation factor, also known as the Rayleigh

attenuation parameter:

Rc,pq(θi) = |rpq(θi)|2e−(2κσrms cos(θi))
2

(4)

where κ stands for the wavenumber. Incoherent reflectivity
(Rinc) is expressed using the scattering cross-section as [37]:

Rinc (θi, φi) =
1

4π

∫
4π

[
σ0
pp (θi, φi, θr, φr) + σ0

pq (θi, φi, θr, φr)
]
dΩr

(5)

where i and r stand for the incident and reflected radiation

respectively, θi for the incidence angle, φi for the azimuth

angle, σ0
pp for the co-polar bistatic scattering cross section, and

σ0
pq for the cross-polar bistatic radar cross section. However,

modeling errors in the bistatic radar cross section simulation

and generation, and the computation of the whole integration

is not practical. In that case, for smooth surface terrains,

it is assumed that the equivalent incoherent reflectivity is

much smaller than the coherent one. Consequently, it is not

taken into account in the emissivity models, and emissivity

reduces to the use of the coherent reflectivity component.

Thus, emissivity at horizontal and vertical polarizations are

eH(θi) = 1 − Rc,HH(θi) and eV (θi) = 1 − Rc,V V (θi),
respectively.

A microwave radiometer measures the noise power emitted

by the terrain in a frequency band of the microwave spectrum.

The power measured by a radiometer depends basically on 3

parameters: the Boltzmann constant (k), the system Bandwidth

(B), and the antenna temperature, which is then related to the

so called Brightness Temperature (TB) taking into account the

System parameters. The TB at q polarization is equal to:

TBq = eqTF , (6)

where TF is the object’s physical temperature. So a calibrated

microwave radiometry measurement includes also the mea-

surement of the target physical temperature in order to obtain

the emissivity parameter.

C. Reflectivity and Emissivity curves

For a flat surface, both the reflectivity and the emissivity

depend on two parameters: the incidence angle (θi), and the

soil dielectric constant (εr). There are several models to obtain

the soil dielectric constant as a function of the soil moisture

content [38]–[41]. To illustrate the reflectivity and emissivity

curves, and explain the relationship among them, the Wang’s

model [38] has been used for the sake of simplicity. To

generate the dielectric constant as a function of soil moisture a

soil composition of 50% clay, and 20% sand has been chosen.

Figures 1(a)–(d) show the reflectivity curves for a flat

surface with different soil moisture values and different polar-

ization, as a function of the incidence angle. Figure 1(a) shows

the reflectivity for horizontal polarization, which is mono-

tonically increasing with SM content. Figure 1(b) shows the

reflectivity for vertical polarization is shown, which in this case

is decreasing until the Brewster angle position, where there

is minimum reflectivity, and then starts increasing towards 1.

Figure 1(c) shows the reflectivity for the transmitted Right

Hand Circular Polarization (RHCP) polarization and reflected

RHCP polarization, which is much smaller than the other ones.

However, at grazing angles it is quite large and comparable to

the vertical and horizontal ones. This occurs because, for an

incidence angle above the Brewster angle, both components

(H and V) change their phase in the reflection process, and

polarization is preserved. The point where the |rRR|2 starts to

be noticeable is related to the Brewster angle position [42].

Figure 1(d) shows reflectivity for a transmitted RHCP wave

and a reflected Left Hand Circular Polarization (LHCP) wave.

This is the general case in GNSS-R scatterometry, where the

transmitted polarization by GNSS satellites is RHCP to mini-

mize Faraday rotation effects, and as it can be deduced from

Figs. 1(c)–(d), the main received power is LHCP polarized.

Furthermore, if roughness effect is negligible, there is one

region between 0◦−45◦ incidence angle where the reflectivity

is insensitive to incidence angle variations. The emissivity at

horizontal polarization is equivalent to 1−|rHH |2 curve (Fig.

1(a)), and therefore monotonically increasing. In the same

way, the emissivity at vertical polarization is equivalent to

1−|rV V |2, and it has the inverse behavior than the reflectivity

curve. Figure 1(e) shows first Stokes parameter divided by two

(normalized to the physical temperature) [43]–[45], which is a

combination of the |rRL|2 and |rRR|2 curves. It is understood

to represent a measurement of the total incident brightness

temperature at circular polarization independently from the

rotation sense. From now on this parameter will be notated

as I/2, and it is defined as:

I/2 =
1

2
(TBH + TBV ) . (7)

This is done for very flat surface areas in order to mitigate

the dependence of the emissivity and/or TB on the incidence

angle. Finally, Fig. 1(f) shows the Polarization Index (PI)
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(Polarization Index) [46], [47], which is defined as:

PI =
TBV − TBH

1
2 (TBV + TBH)

= 2
eV − eH
eV + eH

(8)

The PI is interesting because it normalizes the TB measure-

ment, making it independent from the physical temperature.

This independence from the physical temperature is very

important, as it means that measurements are automatically

calibrated, as they are relative.

Something mentioned before, but not shown in the ex-

amples, is the effect of surface roughness on the emissivity

and reflectivity curves. Surface roughness disperses radiation

which attenuates coherent reflectivity and makes the reflec-

tivity curves closer among them (in linear units as presented

in Fig. 1(a)–(d)). In the case of emissivity, its curves would

rise their level, resulting in a biased brightness temperature

observation. Furthermore, the emissivity curves also become

closer, which means that the retrieval is less accurate.

III. GELOZ FIELD CAMPAIGNS

The GNSS-R Experiments over Land in Australia (GELOz)

are a series of three airborne field experiments conducted

between September and November of 2013. Those flights

were performed under different soil moisture conditions. The

LARGO scatterometer [30] was flown together with the Po-

larimetric L-Band Microwave Radiometer (PLMR) radiometer

[48] in order to compare the data obtained with both instru-

ments and analyze the relationship between GNSS-R and L-

band microwave radiometry observations. Hot and cold load

calibration of PLMR was performed before the flights. The

LARGO is calibrated using direct signal measurements in

the post-processing stage every second. The first flight was

conducted when the average SM of a grass-land target area

was 0.15 m3m−3. In the second one, the terrain of the same

grass-land target area was very dry with and the average soil

moisture below 0.08 m3m−3. The third flight was performed

after a rain event on the same region in order to see the contrast

between the previous scenarios. The platform’s movements

were measured using the aircraft’s OxTS RT3003 system [49],

which provided a position accuracy of 2 cm, a roll and pitch

accuracy of 0.03 deg, and a heading accuracy of 0.1 deg.

Concurrent intensive 0-6 cm soil moisture sampling using

hydraprobes is available for the first two flights over the target

grass-land area in a 250 m x 125 m grid. Three measurements

were conducted at at each grid point in order to account for the

SM spatial variability. Vegetation type and height were also

recorded at each location. Apart from that, the OzNet stations

data [50] are available for all flights for the grass-land target

area and for another target area which was a crops area. More

information about both target areas is given in section IV.

The three flights followed approximately the same path over

the target areas, departing from Tyabb, Victoria, Australia,

and landing on a regional airport (Narrandera) close to the

Yanco region, New South Wales, Australia. The flight route

was designed to ensure full coverage of PLMR over the grass-

land area (approximately 4 km E-W x 1.5 km N-S in size),

and just following the location of the OzNet stations over the

crops area. The overpass over nearby lakes was used to have

a water body reference. Figure 2 shows the route for one of

the flights, as an example.

A. LARGO Scatterometer

The LARGO scatterometer is a GNSS-R instrument de-

signed and engineered at Universitat Politècnica de Catalunya-

BarcelonaTech (UPC). It was specifically designed to measure

the reflectivity of the targets illuminated by GNSS satellites.

Currently, it is configured to work only with the GPS con-

stellation and the civil/public codes (L1-CA, 1575 MHz). It

is a dual-channel low-power passive receiver. One channel is

connected to a zenith-looking RHCP antenna to monitor the

direct signals, which are used in the post-processing stage for

calibration purposes, and to estimate the power transmitted by

GPS satellites. The second channel is connected to a nadir-

looking LHCP antenna, as it is the main polarization for the

reflected signals, as it was shown in Fig. 1. The instrument

performs power measurements of all the reflected signals

within the down-looking antenna Field of View (FOV). Power

measurements on both channels were performed using 1 ms

of coherent integration time and 1 s of incoherent integration

time. Reflectivity was estimated using the information pro-

vided by both channels.

The ground-resolution of the LARGO instrument can be

determined by its sensing properties. As it will be seen later,

the LARGO instrument is sensitive to the coherent component

of the reflected signal, and consequently, its ground-resolution

is determined by the 1st Fresnel Zone [11]:

a =

√
λH cos θi
cos θi

, b =

√
λH cos θi
cos2 θi

, (9)

where a and b are the semi-minor and semi-major axes of the

first Fresnel zone ellipse projected on the ground, λ is the

wavelength, θi is the incidence angle, and H the platform’s

height. Since this is the instantaneous ground-resolution, it is

also necessary to take into account the platform’s speed and

the integration time in order to determine the final ground-

resolution. The first two flights were made at 220 meters height

at a speed of 220 km/h, whereas the third flight was made at a

height of 150 meters at the same speed. This leads to a ground

resolution of 67 m x 8 m for the first two flights and 66.7 m

x 6.8 m for the third one, which is roughly the same for the

three flights despite the height difference. The integration time

lowers the achievable instantaneous ground resolution severely

as will be discussed in section V-C.

B. PLMR radiometer

The PLMR is a microwave radiometer working at L-

band (1400-1426 MHz) [48], [51]. It measures the brightness

temperature in the range of 0–350 K with an accuracy of

0.7 K for one second of integration time. It has an 8 x 8

patch antenna array with vertical and horizontal polarization

feeds. PLMR also uses analog beamforming to generate 6

different beams at a time pointing to ±8◦, ±21◦, ±38◦ off-

nadir, with an antenna beamwidth of 15◦. The ±38◦ beams

correspond to beams 1 and 6, the ±21◦ correspond to beams

2 and 5, and the ±8◦ correspond to beams 3 and 4. Its size
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is 94 x 94 x 20 cm and weights approximately 40 kg. Figure

3(a) shows an overview of the general set-up used to perform

the field campaigns. Part of the LARGO setup is shown in

Fig. 3(b); in particular the instrument and the direct antenna

connection. Figure 3(c) shows the PLMR instrument before

its installation in the aircraft’s pod.
The ground-resolution of PLMR is determined by the

antenna footprint projected onto the ground, the beam used

(incidence angle), and the platform height. For the first two

flights the ground-resolution is approximately 120 m x 58 m

for the ±8◦ beams 127 m x 62 m for the ±21◦, and

153 m x 93 m for the ±38◦. For the third flight the ground

resolution is approximately 101 m x 40 m for the ±8◦ beams

106 m x 42 m for the ±21◦, and 110 m x 63 m for the ±38◦.

In this case the integration time does not degrade as severely

the instantaneous ground-resolution. It will be seen in section

V-C that the reflectivity pixels are only 10% approximately

overlapped, whereas the radiometry pixels are at least 50%

overlapped. This will have an impact on the data correlation.

IV. DATA ANALYSIS

A. GNSS-R data set
Instead of directly performing an absolute power mea-

surement of the direct and reflected signals, the LARGO
instrument measures the observed thermal SNR, which is
equivalent to the power received compared to the thermal noise
floor level. The measured thermal SNR for the waveform peaks
for the direct/up-looking LARGO channel after the correlation
with a clean replica of the satellite code is:

SNRU =
EIRPTGRU (θRU , φRU )ρRU (θRU , φRU )λ2

(4πRU )
2k (TantU + T0 (FU − 1))BU

, (10)

where EIRPT stands for the Equivalent Isotropically Ra-

diated Power transmitted by the GNSS satellites, GRU
for

the receiving antenna gain, θRU
and φRU

for the incoming

signal direction in the antenna reference frame, ρRU
for

the polarization mismatch factor, RU for the distance path

traveled by the direct signal, TantU for the up-looking antenna

temperature, T0 is 290 K, FU for the receiving chain noise

figure, and BU for the system’s bandwidth after the correlation

with the satellite code.
The measured thermal SNR for the reflected/down-looking

channel after the correlation with the satellite code is:

SNRD =
EIRPTGRD (θRD , φRD )ρRD (θRD , φRD )λ2Rc,RL(θi)

(4πRD)2k (TantD + T0 (FD − 1))BD

,

(11)
where GRD

stands for the receiving antenna gain, θRD
and

φRD
for the incoming signal direction in the antenna reference

frame, ρRD
for the polarization mismatch factor, Rc,RL(θi)

for the coherent reflectivity, θi for the local incidence angle,
RD for the distance traveled by the signal in the downwelling
and upwelling paths, TantD for the down-looking antenna
temperature, FD for the receiving chain noise figure, and
BD for the system’s bandwidth after the correlation with the
satellite code. This equation assumes that surface roughness
is relatively low, and consequently, the coherent scattered
component is much larger than the incoherent one. When
radiometry and reflectometry data are compared the roughness
limitations will be seen. Consequently, the coherent reflectivity
can be estimated as:

Rc,RL(θi) =
SNRD

SNRU

GRU ρRU

GRDρRD

TantD + T0 (F − 1)

TantU + T0 (F − 1)
, (12)

considering that the system’s equivalent bandwidth is the

same for both channels, which it is because both use 1 ms

of coherent integration, the noise figure (F ) is also the same

for both channels, and that the distance RU and RD are

practically the same for ground-based and airborne conditions.

After having compensated for the different antenna gains seen

by both the direct and reflected signals, the terrain’s reflectivity

can be estimated. This reflectivity corresponds to the coherent

component, as the incoherent component is generally much

lower than the coherent for the target areas. This assumption

is also supported by recent data from the UK-DMC [52]–[54]

and UK TDS-1 missions [16], [55].

The geolocation of the specular reflection points is done by

ray tracing and assuming the paraxial approximation of rays,

which means that direct signal, and the one that impinges on

the terrain are parallel. This means that for a flat surface, the

incidence angle (θi) is the complementary angle of the GNSS

satellite elevation angle (θe). With a simple GNSS receiver

obtaining the signal from a coupler on the direct channel it

is therefore straightforward to perform the geo-location. For

an airborne receiver, the specular reflection point for each

satellite, or center of the First Fresnel zone, is:

x =
(H −H0) sinφa

tan (90− θe)
, y =

(H −H0) cosφa

tan (90− θe)
, (13)

where x and y coordinates are expressed in meters, and are

referred to the platform position, H0 is the geoidal separation

to the WGS84, H the platform height with respect to the

WGS84, θe the GNSS satellite elevation angle, and φa the

GNSS satellite azimuth angle. In order to geo-locate the

specular reflection points for each acquisition, it is necessary

to change from latitude and longitude coordinates to Universal

Transverse Mercator (UTM) coordinates, add the x and y
coordinates computed to the platform’s position, and then go

back to latitude and longitude coordinates1.

Once the data processing is completed as described, Figs.

4a–4c are produced to show the reflectivity maps obtained for

a particular sub-set of the whole field campaign. They include

the pass over a lake (blue region), in order to have a water

body as a reference, and the Yanco area, where several flight

passes were performed. The main focus area (latitude: from -

35.05◦ to -34.9◦, from now on grass-land) shows a reflectivity

range of -12 dB to -16 dB (Fig. 4a) for the first flight, for

the second flight (Fig. 4b) reflectivity is between -14 dB and

-18 dB, and for the third flight (Fig. 4c) it ranges from -8 dB

to -12 dB. In all the flights, the reflectivity of the water body

ranged from -5 dB to 0 dB. This coincides qualitatively with

the experiment explanation seen in section III where the SM

content for the first flight was around 0.15 m3m−3, it was

very dry for the second flight (less than 0.08 m3m−3), and the

third flight was performed after a rain event without intensive

soil moisture ground-truth. This is also in concordance with

1This methodology is valid only for ground-based and airborne conditions
as the paraxial approximation and the flat Earth model apply in those
conditions. In order to geo-locate from a spaceborne point of view, it is
necessary to obtain the satellite position from the almanac and ephemeris
data, work with data in Earth-Centered, Earth-Fixed (ECEF) coordinates, and
consider the elliptical shape of the Earth. An example of the specular point
computation for spaceborne observations can be found in [56].
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Fig. 1 where a larger reflectivity is caused by higher levels

of soil water content or even open water bodies. In particular,

when observing small open inland water bodies, the reflectivity

can be as large as -1 dB, behaving as expected very close

to a mirror in the microwave L-band spectrum. Also, in the

reflectivity maps it is possible to see at least two different

tracks. These appear due to the different satellites in view that

are monitored at the same time, which shows the multistatic

properties of the GNSS-R technique [10]. The tracks are not

the same in the three figures due to two main reasons: 1)

the plane did not follow exactly the same flight path, 2)

the satellites’ positions were not the same in the three field

campaigns (geometry changed).

B. PLMR data set

Figures 4d–4f show the H-Pol brightness temperature maps

for the three GELOz flights. In Fig. 4d (first flight) it is easy to

identify the lake that was seen on the reflectivity data, and also

some other water bodies. Looking to the Yanco area, the TBH

ranges from 250 K to 265 K, changing to 260 K-280 K for

the second flight, and about 210 K for the third flight. This is

indicative of the general surface conditions of the area, going

from relatively wet to dry, and then significantly wetting up

again. The same patterns are seen in the TBV data (Figs. 4g–

4i).

C. GNSS-R and Microwave Radiometry Relationship

Qualitatively, the behavior of the reflectivity and brightness

temperature data across both polarizations depending on the

field conditions has been explained: when the soil moisture

increases, reflectivity rises, and emissivity decreases, and

consequently TB , and vice versa. Again, qualitatively, there

is a negative relationship between the reflectivity maps and

the TB maps. Note that in Figs. 4a–4c the color scale has

been inverted, to reflect this relationship and to make sure that

dry surface conditions are represented in red for both types of

measurements.

In the previous qualitative analysis there are several param-

eters that must be taken into account in order to perform

a quantitative analysis and study the correlation between

GNSS-R and microwave radiometry. The main parameters to

take into account that may differ in both situations are:

1) Incidence angle (θi): While for the PLMR data it is very

clear and it is determined by the beam pointing direction

(taking into account the platform’s attitude), in GNSS-R

it depends on the satellite geometry, and as discussed

above it was different for the three field campaigns.

This feature is seen by comparing Figs. 4a–4c where

the separation between satellite tracks is different.

2) Polarization: While GNSS satellites transmit in RHCP

and GNSS-R data is mainly LHCP, microwave radiom-

etry data has been measured at linear polarization. This

yields a noticeable change, as for circular polarization

there is almost no dependence with the incidence angle

up to 45◦, whereas for linear polarization it is, as seen

in Fig. 1. This means that it is not possible to directly

compare both measurements for a quantitative analysis

and as it will be seen later, linear brightness temperature

measurements will be transformed into other parameters.

3) Surface roughness: The effect of surface roughness is

not the same for the two types of measurements, as

GNSS-R relies on the forward scattering mechanism,

which is mainly based on the coherent reflection model,

and microwave radiometry on the emissivity, which is an

integral over half hemisphere of the co- and cross-polar

bistatic scattering coefficients.

4) Land Cover: The surface coverage may have an impact

on the reflectivity and TBs measured, as it will not be

the same to have bare soil, grass-land, or some crops

which may have a taller vegetation and different water

content.

In order to solve the first two points, TBH and TBV are

combined to form half of the I/2 and the PI, as shown in

Fig. 1(e)–(f). To study the third point, the reflectivity data

has been binned into two different regions: incidence angles

ranging from 30◦ to 50◦, where the reflection is assumed

to have a larger coherent part, and incidence angles ranging

from 0◦ to 30◦, where the reflection may be more influenced

by the incoherent scattering. Incidence angles larger than 50◦

are discarded because they are out of the antenna beamwidth,

and the main polarization is not guaranteed to be LHCP. This

binning was previously used in [57] to analyze the correlation

between GNSS-R data and optical, near-infrared and thermal

indexes. To study the last point, a dedicated analysis for a

grass-land region and a crops region is performed, as Figs.

4a–4i show a big region of the whole field campaign where

different land cover and surface types were found. Figures 5a–

5i show the reflectivity, TBH , and TBV for the three GELOz

field campaigns over the grass-land focus area. Figures 6a-6i

shows the reflectivity, TBH , and TBV for the three GELOz

flights over the crops focus area. Again, qualitatively the

same relationship than with the previous figure is obtained.

Observations acquired with a roll or a pitch larger than 10◦

were discarded, as well as data collected during the steep

banking of the turns. Also if roll and pitch had changed more

than 5◦ per second, the data was also discarded as it would be

an indication of a quick plane maneuver and antenna pattern

compensation algorithms would not work properly.

1) Semi-arid grass-land: Figures 5a–5i show a summary

of the grass-land dataset used for this analysis. A minimum

distance algorithm has been used to associate each reflectivity

point to each PLMR beam, guaranteeing that the distance is

less than 100 meters according to the LARGO and PLMR

ground-resolution for the three flights. If more than one PLMR

TB measurement fell within the same reflectivity point, they

were averaged weighting them according to the inverse of their

distance to the reflectivity point. Once the data were matched,

the I/2 parameter was computed and a correlation analysis

between the reflectivity data and the I/2 performed. Figure 7

shows this comparison for the different reflectivity incidence

angle groups with Figs. 7(a)–(c) corresponding to the larger

incidence angles group and Figs. 7(d)–(f) to the lower one,

both compared to the data from the PLMR beams at their

respective incidence angles from the bore sight. In red the
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best fit with the following shape is shown:

I/2 = a
(
1− 10

RRL[dB]

10

)
(14)

where:

I/2 =
TBH + TBV

2
= TF

(
1− RH +RV

2

)
, (15)

and:

RRL ≈ RH +RV

2
, (16)

for the reflectivity incidence angle range used.
Table I shows the correlation of the data presented in

Fig. 7 as well as the parameters of the proposed fit. The

correlation among reflectivity and I/2 for the PLMR beams

±38◦ and ±21◦ is 0.6, while it decreases for the PLMR

±8◦ beams, probably due to surface roughness effects, since

roughness affects more the forward scattering geometry at

more nadir incidence angles. It is also noticeable that for the

larger reflectivity incidence angles the Root Mean Square Error

(RMSE) of the best fit is lower than for the lower incidence

angles, which is also an indicator of the surface roughness

effects. Finally, the a parameter of the fit in all cases ranged

from 270 K to 278 K, and this parameter did not significantly

change the goodness of the fit.

TABLE I: Correlation and RMSE between LARGO reflectivity

and the first Stokes parameter divided by two for the grass-

land regions as well as the fit parameters.

Param. Inc. angle ± 38.5◦ ± 21.5◦ ± 8◦

a [K] 30-50 273.7 276.7 278.7

R 30-50 0.6 0.61 0.51

RMSE [K] 30-50 6.6 7.1 8.9

a [K] 0-30 270 270 275

R 0-30 0.6 0.58 0.41

RMSE [K] 0-30 9.2 9.8 10.2

Despite the fit proposed was not highly sensitive to the a
parameter or the physical temperature of the terrain (TF ),

the reflectivity values were compared to the PI, which is

a self-calibrated parameter independent from the physical

temperature. This comparison follows the same structure than

the one with the I/2, and it is shown in Fig. 8. The best fit

proposed in this case is a potential one:

TB = a10bRRL[dB] (17)

Table II shows the correlation between the reflectivity data

and the PI computed from the PLMR TBs as well as the

best fit parameters. Correlation increased to approximately

0.65 due to using self-calibrated data. Furthermore, the same

behavior than before is seen, the RMSE of the fits proposed

is lower for the larger incidence angle reflectivity group,

also indicating that surface roughness affects less the large

incidence angles. However, the PI parameter only seems useful

for the large PLMR incidence angles, as when the incidence

angle is close to nadir, both TBH and TBV are practically

equal, and the PI tends to 0. The use of self-calibrated data

allows the removal of any parameter affecting the relationship

between reflectivity and brightness temperature and mitigates

the surface roughness effects. However, the dependence of

brightness temperature on the incidence angle plays a role,

making the PI only useful for the large incidence angles

regions. Conversely, the effect of the incidence angle was

mitigated using the first Stokes parameter.

TABLE II: Correlation and RMSE between LARGO reflec-

tivity and the PI for the grass-land regions as well as the fit

parameters.

Param. Inc. angle ± 38.5◦ ± 21.5◦ ± 8◦

a 30-50 0.26 0.1 0.03

b 30-50 0.03 0.04 0.06

R 30-50 0.68 0.66 0.52

RMSE 30-50 0.02 0.008 0.003

a 0-30 0.32 0.13 0.03

b 0-30 0.03 0.04 0.05

R 0-30 0.66 0.63 0.31

RMSE 0-30 0.03 0.01 0.04

2) Crops area: Figures 6a–6i show a summary of the

crops data set used for this analysis. The dataset has been

pre-processed in the same way as was pre-processed the

grass-land dataset. The I/2 parameter was computed and

a correlation analysis between the reflectivity data and the

I/2 performed. Figure 9 shows this comparison for the two

different reflectivity incidence angle groups. In red the best fit

line is represented following the same linking model shown

in Eqn. (14).

Table III shows the correlation of the data presented in

Fig. 9 as well as the parameters of the proposed fit. The

correlation among reflectivity and I/2 for the three PLMR

beams was between 0.74 and 0.8 for the reflectivity larger

incidence angles, and between 0.64 and 0.69 for the lower

incidence angles. For the crops area, the correlation increased

in comparison to the grass-land area. This is an indication

that the crops area, due to the agricultural works is a more

regular region in terms of surface roughness than the grass-

land area. Analogously, the RMSE also increased slightly. The

increase in the RMSE can be justified by the presence of higher

vegetation, which adds some noise to the received signals.

Also, the same behavior than before is accomplished, being

the correlation smaller for the lower incidence angle group.

TABLE III: Correlation and RMSE between LARGO reflec-

tivity and the first Stokes parameter divided by two for the

crops region as well as the fit parameters.

Param. Inc. angle ± 38.5◦ ± 21.5◦ ± 8◦

a [K] 30-50 271.8 276.5 274.4

R 30-50 0.8 0.74 0.78

RMSE [K] 30-50 8.7 9.8 11.4

a [K] 0-30 270 271.5 270

R 0-30 0.69 0.66 0.64

RMSE [K] 0-30 11.3 11.4 15.4
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The same analysis than for the grass-land region with the

PI parameter has been performed for the crops region and

shown in Fig. 10. Also, the same fit as the one presented in

Eqn. (17) is shown in red. Table IV shows the correlation

between the reflectivity data and the PI computed from the

PLMR TBs as well as the best fit parameters. For the crops

region the correlation values were similar to the grass-land

region, increasing for the ±38◦ beam and large incidence

angles. Again, no conclusion could be obtained for the ±8◦

beam, as it was always nearly 0 (by definition).

TABLE IV: Correlation and RMSE between LARGO reflectiv-

ity and the PI for the crops region as well as the fit parameters.

Param. Inc. angle ± 38.5◦ ± 21.5◦ ± 8◦

a 30-50 0.33 0.1 0.06

b 30-50 0.04 0.03 0.07

R 30-50 0.74 0.6 0.58

RMSE 30-50 0.035 0.022 0.007

a 0-30 0.27 0.11 0.07

b 0-30 0.03 0.04 0.07

R 0-30 0.66 0.51 0.45

RMSE 0-30 0.03 0.01 0.04

V. DISCUSSION

There are several issues to take into account when analyzing

the correlation between GNSS-R and microwave radiometry

data, such as: incidence angle, surface roughness, land cover,

polarization, and pixel size. Using the first Stokes parameter

divided by two (I/2) it was possible to compensate for the

polarization difference between PLMR TBs and the LARGO

reflectivity. If the land surface is smooth, the I/2 curves

are also flat, as the reflectivity, and the dependence on the

incidence angle is also avoided. Using the PI it is possible to

calibrate the data, whereas the dependence on the incidence

angle is increased. Despite both areas analyzed being quite

homogeneous, the two instruments were not looking to the

same type of land surface cover due to differences in their pixel

size. Moreover, the footprint size of the GNSS-R technique,

and the sample interval is such that measurements taken

every second are nearly independent, as there is only 10%

overlapping among pixels. However, this is not the case

with microwave radiometry data, since the pixel size is such

that they are partially overlapped (50%), and consequently

correlated.

A. Sensitivity to incidence angle and surface roughness

It has been shown that independently from the land cover,

the group of reflectivity values with incidence angles ranging

from 30◦ to 50◦ has larger correlation with both the I/2 and

the PI than those below 30◦. This indicates that mainly surface

roughness, and with less importance vegetation structure and

its water content, might have to be dealt with when trying to

retrieve geophysical parameters such as soil moisture. For very

large incidence angles (larger than 50◦), the coherent compo-

nent is the dominant component in the scattering process [30],

[58]–[60], unless the surface is very rough [61], where the

coherent component finally disappears. For incidence angles

from 30◦–50◦, the coherent component dominates in most

regions, except in some highly vegetated regions or with highly

developed topography. For low incidence angles (lower than

30◦) the surface roughness makes the coherent component

decrease, and the incoherent component larger. Despite the

coherent component is still measurable, its decrease is shown

in the loss of correlation between the microwave radiometry

and the GNSS-R data. Recent spaceborne data from the UK

TDS-1 mission also supports that over land there is a coherent

component present [55], [62], as the DDMs retrieved over land

look like more to the Woodward Ambiguity Function (WAF)

than to the sea surface (non-coherent) scattering model [34],

[63], [64]. This is relevant because while the forthcoming

GNSS-R satellite missions will have close to nadir-looking

observations [65]–[67] mainly due to the antenna directivity

requirements, results from field campaigns indicate that for

GNSS-R scatterometry it may be useful to observe more slant

angles, where the coherent scattering component becomes

larger.

B. Land cover effects

In this work two different regions have been analyzed: a

grass-land area, and a crops area. The crops area is normally a

more regular area, and all fields have similar vegetation height

and structure. Conversely, the grass-land is a low-vegetated

area with different vegetation heights and some patches of bare

soil. Surprisingly, whereas a crops area is vegetated and the

grass-land area can vary its conditions, but it is normally low

vegetated, the correlation between GNSS-R data is larger for

the crops area than for the grass-land area. This occurs because

unless the crops area has plants with very high vegetation

water content, the L-band microwave GNSS waves pass trough

vegetation and impinge on the ground beneath them. In those

cases, the land surface is normally flatter and more regular than

for the grass-land area, where there are more irregularities, or

at least this was the case of the field campaign test sites. So,

the reflection over the crops area is more coherent than over

the grass-land area, and this is seen in a larger correlation

between reflectivity, (I/2), and PI parameters for the crops

area. Furthermore, it must be considered that the roughness

affecting L-band is the large scale roughness, referring that

also to the surface’s slopes instead of only the surface RMSE.

C. Sensitivity to pixel size

The difference in the pixel size of the two instruments also

plays a role in the data analysis performed. This effect is

better seen in the two examples shown in Fig. 11. Therein,

the reflectivity measurements from LARGO are plotted with

small circles whereas the TBH measurements from PLMR are

written as colored text. Both measurements have been plotted

over Google Earth. The color scale used for this plots is the

same one used previously in Figs 4a–4i. Figure 11(a) shows

how a water spot is detected as bright reflectivity points,

whereas the water body is not present in the Google Earth

Map. The TBH for the left beam (±38◦) reduces its TB
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measured, but it never reaches the water value (≈ 100 K)

because of the beam filling factor. The water spot sensed by

the GNSS-R instrument is at most 150 m size (2.5 times

the reflectivity pixel size), whereas the microwave radiometer

resolution for that beam is 153 m x 73 m at 220 m height. So,

due to the beam filling factor, the TBH observed is a mixture

of the one coming from the water spot and the surrounding

land, and due to that it never reached the ≈ 100 K. Note that

in the same figure, the right TBH PLMR beam also measures a

descend in the TB , which occurs also due to the pixel size and

the beam filling factor effect. It is also noticeable that PLMR

data varies more smoothly whereas there is a sharp transition

in the GNSS-R data. This shows some time correlation for

the radiometer data which is not present on reflectivity data.

This can also be understood as the difference in the pixel

overlapping factor between the two techniques. Figure 11(b)

shows a similar effect with a much smaller water area (∼
30 m x 30 m) detected over Google Earth, which is clearly seen

in the GNSS-R data while the radiometer data only decreases

10 K. This effect is also related to the RMSE of the fits

proposed, as the reflectivity data has stronger variations than

the TB data and adds some noise to the correlation curves,

explaining the large RMSE observed.

Table V compares the different ground resolution (pixel

size) for both instruments at different heights: 220 m and 1 km,

which would correspond to normal heights during airborne

campaigns, and 630 km for spaceborne conditions (UK TDS-

1 mission parameters). The antenna beamwidth of the PLMR

has been preserved for the data shown in that table in all

conditions. For very low heights, such as 220 m, the ground-

resolution of the reflectivity data is approximately half of the

pixel size for the radiometry data in the along-track direction

and one tenth in the across-track direction. For intermediate

heights, such as 1 km, the ground resolution of the reflectivity

data is between 1/4 and 1/5 the pixel size of the radiometry

data in the along-track direction and 1/20 in the across-track

direction. For the spaceborne conditions the reflectivity data

pixel size is much smaller than the radiometry data, specially

for the across-track direction due to the integration time.

Also if a microwave radiometry spaceborne mission with

different antenna parameters is considered, such as the SMOS

mission (a ground spatial resolution of 40 km x 40 km

roughly), the reflectivity data pixel size is also much smaller

than the radiometry data, leading to the concept of resolution

enhancement, which would be of particular interest for space-

borne applications. Furthermore, differently from other syn-

ergy techniques [22]–[24], [57], in this case, both techniques

work at very close frequency bands, which means that they

are sensitive to the same geophysical parameters. This idea of

down-scaling microwave radiometry data with GNSS-R data

has been proposed recently by National Aeronautics and Space

Administration (NASA), after the end of operations of SMAP

radar [68].

VI. CONCLUSIONS AND FUTURE LINES

This study has presented a qualitative and quantitative com-

parison between airborne GNSS-R data and L-band microwave

radiometry, making use of the data of three different airborne

field campaigns conducted over an experimental field site in

South-Eastern Australia. In the field campaigns a GNSS-R

scatterometer and the PLMR L-band microwave radiometer

were flown together. In order to be able to compare the two

datasets, linear polarization microwave radiometry data were

converted to the first Stokes parameter divided by two (I/2).

The PI was also computed from the brightness temperature

measurements. Correlation results between both datasets for

the three flights indicate that for large incidence angles (>30◦)

the coherent microwave radiometry model behaves quite well,

as the surface seems to be smoother, in agreement with

the Rayleigh criterion. Also, this indicates that the main

dominating scattering mechanism for those incidence angles

is the coherent one. For the crops region the correlation is

between 0.74–0.8. For the grass-land region it is between

0.51–0.61. For lower incidence angles in the reflectivity data

(<30◦), the correlation between reflectivity and I/2 is smaller,

ranging from 0.64–0.69 for the crops region and roughly 0.6

for the grass-land region. In those cases, the surface appears

rougher due to the scattering geometry, and the incoherent

component starts to be noticeable. Furthermore, if the surface

appears rougher, the received reflected power is smaller, and

reflectivity measurements are more affected by noise, which

is translated in larger RMSE for the proposed fits. The best

correlation results were obtained when the coherent model

works better (ie. larger incidence angles), and occurred for

reflectivity incidence angles ranging from 30◦ to 50◦ and the

±38◦ beams for the crops region.

Furthermore, a discussion is performed justifying the dif-

ferences between both datasets. It is mainly focused in three

aspects: incidence angle and surface roughness, land cover,

and pixel size. Regarding the pixel size, it is seen that due

to the scattering properties of GNSS-R, measurements are

nearly uncorrelated among them, and the spatial resolution

is smaller than the radiometer data. This shows that GNSS-R

data is able to detect features not seen in the TBs measured,

which means that both datasets can be used together to

improve the spatial resolution of the brightness temperature

data. Furthermore, correlation among both techniques indicate

that they are sensitive to the same geophysical parameters.
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TABLE V: Comparison of the ground resolution for both sensors at different flight heights and speeds. The two last columns

refer to the instantaneous ground-resolution and to the integrated ground-resolution considering an integration time of 1 s.

Sensor Inc. angle [deg] Height [m] Speed [m/s] Inst. Res. [m x m] Integ. Res. [m x m]

LARGO ± 8 220 61.1 6.6 x 6.6 67.7 x 6.6

PLMR ± 8 220 61.1 58.2 x 58.7 119.3 x 58.7

LARGO ± 21 220 61.1 6.8 x 7.2 67.7 x 7.2

PLMR ± 21 220 61.1 61.7 x 66.1 122.8 x 66.1

LARGO ± 38 220 61.1 7.4 x 9.3 68.5 x 9.3

PLMR ± 38 220 61.1 73.1 x 92.8 134.2 x 92.8

LARGO ± 8 1000 61.1 14.0 x 14.1 75.1 x 14.1

PLMR ± 8 1000 61.1 264.4 x 267.0 325.5 x 267.0

LARGO ± 21 1000 61.1 14.4 x 15.4 75.5 x 15.4

PLMR ± 21 1000 61.1 280.4 x 300.4 341.5 x 300.4

LARGO ± 38 1000 61.1 15.7 x 19.9 76.8 x 19.9

PLMR ± 38 1000 61.1 332.2 x 421.6 393.3 x 421.6

LARGO ± 8 630000 6·103 351.3 x 354.8 6351.3 x 354.8

PLMR ± 8 630000 6·103 166554.5 x 168191.3 172554.5 x 168191.3

LARGO ± 21 630000 6·103 361.8 x 387.6 6361.8 x 387.6

PLMR ± 21 630000 6·103 176667.8 x 189236.8 182667.8 x 189236.8

LARGO ± 38 630000 6·103 393.8 x 499.7 6393.8 x 499.7

PLMR ± 38 630000 6·103 209303.7 x 265610.3 215303.8 x 265610.3
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(UPC), Barcelona, Spain, in 1992 and 1996, re-
spectively. In 1991 to 1992, he was at the ENS
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Fig. 1: Reflectivity curves for different polarization states as a function of incidence angle and soil moisture content (in m3m−3)

using Wang’s dielectric constant model: (a) transmitted H and reflected H, (b) transmitted V and reflected V, (c) transmitted

RHCP and reflected RHCP, (d) transmitted RHCP and received LHCP, (e) normalized first Stokes parameter (I/2), and (f) PI.
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Fig. 2: Flight route followed for the three field campaigns in South-Eastern Australia: (a) Australian map with the field

campaign region indicated/highlighted in blue, (b) Zoom of the field campaign region with the flight route in blue highlighting

Melbourne’s location and Yanco’s location in white.

(a) (b)

(c)

Fig. 3: Flight setup with the LARGO and PLMR instruments: (a) General set-up, (b) LARGO instrument zoomed with up-

looking antenna connection, (c) PLMR instrument.
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Fig. 4: Summary of the reflectivity and TBmaps for the three GELOz field campaigns for a sub-set of the field campaign:

(a)–(c) Reflectivity maps for the first, second, and third flight respectively, (d)–(f) TBH maps for the first, second, and third

flight respectively, (g)–(i) TBV maps for the first, second, and third flight respectively.
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Fig. 5: Summary of the reflectivity and TBmaps for the three GELOz field campaigns over the grass-land area: (a)–(c)

Reflectivity maps for the first, second, and third flight respectively, (d)–(f) TBH maps for the first, second, and third flight

respectively, (g)–(i) TBV maps for the first, second, and third flight respectively.
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Fig. 6: Summary of the reflectivity and TBmaps for the three GELOz field campaigns over the crops area: (a)–(c) Reflectivity

maps for the first, second, and third flight respectively, (d)–(f) TBH maps for the first, second, and third flight respectively,

(g)–(i) TBV maps for the first, second, and third flight respectively.
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Fig. 7: Comparison between LARGO reflectivities and the first Stokes parameter divided by two for the grass-land regions. In

(a)–(c) the reflectivity data corresponds to incidence angles ranging from 30◦ to 50◦. In (d)–(f) the reflectivity data corresponds

to incidence angles lower than 30◦. In (a),(d) PLMR data from the ±38◦ incidence angles beams is used. In (b),(e) PLMR

data from the ±21◦ incidence angles beams is used. In (c),(f) PLMR data from the ±8◦ incidence angles beams is used. In

red the best fit is presented.
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Fig. 8: Comparison between LARGO reflectivities and the PI for the grass-land regions. In (a)–(c) the reflectivity data

corresponds to incidence angles ranging from 30◦ to 50◦. In (d)–(f) the reflectivity data corresponds to incidence angles

lower than 30◦. In (a),(d) PLMR data from the ±38◦ incidence angles beams is used. In (b),(e) PLMR data from the ±21◦

incidence angles beams is used. In (c),(f) PLMR data from the ±8◦ incidence angles beams is used. In red the best fit is

presented.
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Fig. 9: Comparison between LARGO reflectivities and the first Stokes parameter divided by two for the crops region. In (a)–(c)

the reflectivity data corresponds to incidence angles ranging from 30◦ to 50◦. In (d)–(f) the reflectivity data corresponds to

incidence angles lower than 30◦. In (a),(d) PLMR data from the ±38◦ incidence angles beams is used. In (b),(e) PLMR data

from the ±21◦ incidence angles beams is used. In (c),(f) PLMR data from the ±8◦ incidence angles beams is used. In red the

best fit is presented.
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Fig. 10: Comparison between LARGO reflectivities and the PI for the crops region. In (a)–(c) the reflectivity data corresponds

to incidence angles ranging from 30◦ to 50◦. In (d)–(f) the reflectivity data corresponds to incidence angles lower than 30◦.

In (a),(d) PLMR data from the ±38◦ incidence angles beams is used. In (b),(e) PLMR data from the ±21◦ incidence angles

beams is used. In (c),(f) PLMR data from the ±8◦ incidence angles beams is used. In red the best fit is presented.
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(a) (b)

Fig. 11: Effect of the pixel size in the comparison among

reflectivity and microwave radiometry data.


