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Monitoring Land Subsidence in a Rural Area Using
a Combination of ADInSAR and Polarimetric

Coherence Optimization
Zahra Sadeghi, Mohammad Javad Valadan Zoej, and Jan-Peter Muller

Abstract—This paper investigates a combination of advanced
differential synthetic aperture radar interferometry (ADInSAR)
with different coherence optimization methods. After the launch
of satellites with polarimetry capabilities, differential synthetic
aperture radar interferometry (DInSAR) is feasible to generate
polarimetric DInSAR to enhance pixel phase quality and increase
coherent pixel (CP) density. The first method proposed in this
paper, modified coherence set-based polarimetry optimization
(MCPO), is a modification of a known single-baseline coherence
optimization method to optimize coherence of all interfero-
grams simultaneously. The second method, coherence-set based
polarimetry optimization (CPO), was presented by Neumann
et al., and is an existing revision of the single-baseline coherence
optimization technique. The final method, exhaustive search
polarimetry optimization, is a search-based approach to find the
optimized scattering mechanism introduced by Navarro-Sanchez
et al. The case study is the Tehran basin located in the North
of Iran, which suffers from a high-rate of land subsidence and
is covered by agricultural fields. Usually such an area would
significantly decorrelate but applying polarimetric ADInSAR
allows us to obtain a more CP coverage. A set of dual polarization
TerraSAR-X images with 9 × 9 and 15 × 15 as multilook factors
were used within the polarimetric ADInSAR procedure. All three
coherence optimization methods with two different multilook
factors are shown to have increased the density and phase quality
of CPs. Moreover, the estimated deformation rates were evaluated
using available levelling measurements. MCPO, which is presented
in this paper, works more successful than CPO in terms of CPs
density, phase quality and deformation accuracy.

Index Terms—Advanced differential synthetic aperture radar
interferometry (ADInSAR), coherence optimization, polarimetric
differential synthetic aperture radar interferometry (DInSAR),
polarimetry.
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I. INTRODUCTION

ADVANCED differential synthetic aperture radar interfer-
ometry (ADInSAR) methods estimate the deformation

rate of the Earth’s land surface accurately using a permanent
scatterer selection process [1]. Due to decorrelation, only those
pixels that show permanent behavior over a sequence of inter-
ferograms, are identified for differential synthetic aperture radar
interferometry (DInSAR) processing [2], [3].

Interferometric coherence is the main criterion for the estima-
tion of pixels’ phase stability [4], [5]. Coherent Pixels (CPs) are
those with coherence values higher than a threshold. The qual-
ity and density of CPs in the scene are key factors in success of
ADInSAR methods.

Introduction of Polarimetric Synthetic Aperture Radar Inter-
ferometry (POLInSAR) was first investigated in [6] to demon-
strate how the analysis of interferometric scattering matrix data
can improve the performance of SAR interferometry. One of
the key ideas is that it is possible to obtain interferograms from
all possible linear combinations of polarization states. One ad-
vantage of using this combination is the possible improvement
of the coherence level using the polarimetric information [7].
As noise level is indirectly related to coherence, consequently
the signal-to-noise ratio is improved and the decorrelation terms
are decreased [8]. Therefore, using polarimetric information an
optimization problem is introduced and solved to obtain the
optimum scattering mechanism which leads to the highest in-
terferometric coherence. This approach is based on the intrinsic
assumption that there is no systematic impact on the polarimet-
ric dependence of interferometric phase due to deformations or
other processes, such as vegetation growth. However, this as-
sumption can be violated frequently in the some agricultural
fields and leads to uncertainty in the estimated deformation
[9], [10].

Cloude and Papathanassiou first introduced a polarimetric
coherence optimization technique [6]. This method allows
different polarization stats at the ends of the baseline. A general
technique for coherence optimization with equal polarization
states was presented by Colin et al. [7]. Given a multibaseline
data set in these methods, coherence can be optimized indepen-
dently for every baseline. This strategy is called single-baseline
coherence optimization that leads to different dominant
scattering centers depending on the chosen baseline. A more
robust polarimetric optimization approach to find the most
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coherent and dominant scatterer is simultaneous optimization of
multibaseline coherence. However, both single-baseline and
multibaseline approaches entail coherence improvement due
to using polarimetry information. Neumann extended single-
baseline coherence optimization to multibaseline and modified
the Colin’s method with a multibaseline strategy [8]. Another
multibaseline coherence optimization technique was proposed
by Navarro Sanchez based on using search spaces to increase
density of identified CPs and persistent scatterer pixels [1], [11].

Generally, estimation of land deformation using ADInSAR is
suggested over areas covered by vegetation due to decorrelation.
To the southwest of the Tehran basin (located in northern Iran)
there is an area covered primarily by agriculture fields, which
is subject to high-rate land subsidence. Our previous works in
this case study presented enhanced algorithms based on ADIn-
SAR to address phase unwrapping error due to decorrelation
[2], [3]. A combination of ADInSAR and polarimetry infor-
mation can improve the identified CP density significantly in
vegetated areas. In this paper over the Tehran basin, three dif-
ferent multibaseline coherence optimization approaches in case
of two different multilook factors were applied. One of those ap-
proaches, modified coherence set-based polarimetry optimiza-
tion (MCPO), was introduced by this research. Then, optimized
interferograms were ingested into an ADInSAR technique to
select CPs with coherence values higher than a predetermined
threshold. Finally the results were compared in terms of CP den-
sity and phase quality and validated through available levelling
measurements.

This paper is organized as follows. Section II presents a brief
review of concepts of POLInSAR and also the three multibase-
line polarimetric optimization approaches. In Section III, the
study area and the available dataset is introduced. Section IV
describes the implementation of combining coherence optimiza-
tion methods with ADInSAR and shows output velocity maps.
The polarimetric optimization methods are compared in terms
of CP density and then are verified through estimation and anal-
ysis of noise phase. Moreover, the results are validated using
available levelling measurements. Finally, the main conclusions
are discussed in Section V.

II. COHERENCE OPTIMIZATION USING POLINSAR

One of the key ideas of POLInSAR is application of vector
interferometry instead of scalar that was already proposed in [6].
In the case of dual-polarization interferometry, considering there
is no data from cross-polar channel, the Pauli form of scattering
vector for each pixel can be defined as in [6] as follows:

k− =
1√
2
[SHH + V V , SHH − V V ]T (1)

T indicates the matrix transposition operation, and Sij (i, j =
H orV ) is the complex scattering coefficient for j transmitted,
and i received polarization in the HV polarization basis. Using
the outer product formed from the scattering vectors k−

1
and k−

2
for images I1 and I2, it can be defined in a 4 × 4 matrix [T4]

[T4 ] =

[
[T11 ] [Ω12]

[Ω12]
∗T [T22 ]

]
(2)

where [T11 ], [T22 ], and [Ω12 ] are 2 × 2 complex matrices
given by

[T11 ] =
〈
k1k

∗T
1

〉
[T22 ] =

〈
k2k

∗T
2

〉
[Ω12 ] =

〈
k1k

∗T
2

〉
. (3)

The generalized vector expression for the coherence γ is
given by

γ =

∣∣∣〈ω− ∗T
1

[Ω12]ω−
2

〉∣∣∣√〈
ω−
∗T
1

[T11 ]ω−
1

〉 〈
ω−
∗T
2

[T22 ]ω−
2

〉 (4)

where ω−
1

and ω−
2

are normalized complex vectors that can be

interpreted as two scattering mechanisms [6]. The scalar com-
plex value for each pixel can be defined as μ = ω−

∗T k− , that is a

linear combination of the elements of k− .

Given a multibaseline dataset, in contrast with the inde-
pendent single-baseline coherence optimization methods,
multibaseline methods simultaneously optimize multibaseline
coherence. Thus, the average magnitude of the interferometric
coherence,|γ| = 1

n

∑n
i=1 |γn |, is maximized. This approach

generally entails lower coherence magnitudes, but the cor-
responding scattering mechanisms and their interferometric
phases are estimated on basis of all available data set and
more accurately. Therefore, they are expected to deliver
more robust estimates of the optimized interferometric phases
and dominant scattering mechanisms [8]. In this research,
three different multibaseline coherence optimization methods
were used and enforced equal polarimetric signatures of
scatterers along all baselines (ω− 1 = ω− 2) called equal scattering

mechanism.

A. Modified Coherence Set-Based Polarimetry Optimization
(MCPO)

Colin et al. in 2006 proposed a coherence optimization
method, which performs the optimization of the coherence using
the same complex unitary vector for both antennas. In the inter-
ferometric configuration, both antennas as well as the incidence
angles are very close, and it is sensible to calculate a coherence
for two equal mechanisms. So in practice matrices T11 and T22
are both coherence matrices of the target seen under very close
incidence angles. It is even more suitable in a single-pass acqui-
sition since signals are not affected by temporal decorrelation
effects [7]. Using this assumption, the formulation of γ was
replaced by the following:

γ̃ =

∣∣∣〈ω− ∗T [Ω12 ]ω−
〉∣∣∣∣∣∣〈ω− ∗T [T12 ]ω−
〉∣∣∣ (5)

where matrix T12 is defined as T12 = (T11 + T22)/2. The set of
all complex coherence is called the coherence set and is written
Γ (Ω12 , T12) [7]. It was proved in [12] that this coherence set
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can be defined as follows:

Γ (Ω12 , T12) = Ω
(
T12

− 1
2 Ω12T12

− 1
2

)
(6)

Ω(A) is the field of values of matrix A and the optimization
of γ̃ is equivalent to finding a maximum of the numerical range
of matrix A ( =T12

− 1
2 Ω12T12

− 1
2 ).

The main process is finding the radius value of matrix A
to optimize the coherence. A numerical approach was used
to achieve this goal. Initialization is the first step. θ = θ0 =
arg(A(1, 1)), θ0 ∈ [0, π] [7]. Then, matrices Aθ and Hθ are
calculated as follows:

Aθ = eiθA

Hθ =
Aθ +A∗T

θ

2
. (7)

The next step is calculating the maximum eigenvalue and
corresponding eigenvector (x) of Hθ . A new θ is extracted
from arg (x∗T Ax). An iterative process continues to achieve θ
convergence. The associated optimal vector ω for the coherence
is given by ω = T−( 1

2 )x.
An MCPO is a modification of Colin’s method for this

multibaseline approach. Therefore, instead of optimizing each
interferogram individually, the mean value of all simplified
coherence according to (5) is optimized and the optimal ω−
is found for all interferograms. Therefore, the optimization
function is changed to

Hθ =
m∑
k=1

m∑
j=1 �=k

Aθkj +A∗T
θkj

2

where Aθkj = eiθk j Tkj
− 1

2 ΩkjTkj
− 1

2 (8)

where k and j are related to master and slave images,
respectively, and m is the number of all images.

B. Coherence-Set Based Polarimetry Optimization (CPO)

Neumann et al., in 2008 extended Colin’s coherence opti-
mization method for multibaseline case [8]. This method differs
slightly from the modified algorithm presented in Section A in
the optimization function and initialization. This iterative opti-
mization method can obtain the optimal scattering mechanism
from the eigenvector associated with the largest eigenvalue of
the matrix Hθ in

Hθw = λw

where

Hθ =
m∑
k=1

m∑
j=1 �=k

Akj e
−iθk j

Akj = T− 1
2 ΩkjT

− 1
2 where

T =
1
m

m∑
i=1

Tkk . (9)

Selecting the initial phase shift θ can be critical with respect
to the number of iterations and robustness. At first, initialization

is done, θkj = arg(trace Akj ). Then, in an iterative process,
Hθ and eigenvector w corresponding to the highest eigenvalue
are computed. The phase shift is improved in each iteration
via θkj = arg(w∗T Akjw) until the termination criterion is met.
The optimal scattering mechanism vector ω is calculated from
ω = T− 1

2 w/(w∗T T− 1
2 w).

C. Exhaustive Search Polarimetry Optimization (ESPO)

Navarro-Sanchez et al., in 2010 parameterized the scattering
mechanism vectors and found the optimum coherence via look-
ing in defined search spaces of each parameter. Parametrization
of the projection vector guarantees its unitary nature, |ω− | = 1,

and ensures that all possible unambiguous values of ω− are taken

into account [1]:

ω− =
[
cosα, sinα ejψ

]T
,

{
0 ≤ α ≤ π/2
−π ≤ ψ < π

. (10)

This equation is specific for dual polarization images. The
parameterization is presented in [6]. With this expression, the
problem is reduced to finding two real values, i.e., α and ψ, for
optimizing coherence value [1].

III. CASE STUDY AREA AND DATA SETS

The Tehran basin, with an area of 2250 km2, is located in the
north of Iran. The southwestern portion of the basin is subject
to a high-rate land subsidence [2], [3] and is covered by agri-
cultural fields (see Fig. 1). Therefore, due to temporal decor-
relation, the coherence of interferograms and then ADInSAR
efficiency decline. In order to improve the ADInSAR procedure
through coherence optimization to monitor land subsidence in
the Tehran basin, dual polarization TerraSAR-X (TSX) images
were acquired. A set of eight dual polarization Stripmap TSX
images from July 21 to October 6, 2013 with 11 days interval
were obtained to test different combinations of different co-
herence optimization methods and ADInSAR in the rural case
study. Fig. 2 illustrates the spatial and temporal baselines of all
slave images with respect to the master one. All images involve
HH and VV channels information. Azimuth and slant-range
resolution are 6.6 and 1.17 m, respectively.

As can be seen in Fig. 1, the processing is applied over a
2600 × 2000 portion of the Tehran basin containing pixels with
the highest rate of deformation and also mostly covered by
agriculture fields.

IV. EXPERIMENTAL RESULTS USING ADINSAR
AND DISCUSSION

In this section, the performances of coherence optimization
methods are compared in terms of CP density and their re-
sults are verified using estimation and analysis of noise phase.
Moreover, the estimated deformation rates are validated through
available levelling measurements.

In order to estimate coherence, a multilooking process should
be applied based on the Equivalent Number of Looks (ENL)
in this paper. A multilook factor is calculated with a prede-
fined ENL value, pixel spacing and resolution in azimuth and
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Fig. 1. (a) Spatial location of master image (shaded rectangle) and case study
area (outlined rectangle). (b) Composite RGB of master image (20130903),
Channels: R = HH, G = VV, B: Absolute value of the difference between
channels. The channels are individually scaled based on the mean backscattering
value. The black rectangle is the rural case study suffering from land subsidence.

Fig. 2. Temporal and spatial baseline of available dataset.

slant-range orientations. According to the expression derived
in [13], with a predefined ENL there is tradeoff between co-
herence and standard deviation (STD). Windows of 9 × 9 and
15 × 15 which correspond to ENL of approximately 23 and 64
were chosen to assess effects of a multilook factor in the imple-
mented coherence optimization methods. To keep STDs below
0.09, coherence thresholds were chosen as 0.6 and 0.4 for 9 × 9
and 15 × 15 multilook factors, respectively.

Coherence optimization methods and modifying the inter-
ferograms to replace the optimum phase were implemented in
MATLAB. Interferometric preprocessing and ADInSAR pro-
cedures were carried out in Doris and the StaMPS software
[14]–[16]. CPs were selected in multilooked interferograms, if
at least three interferograms had coherence values above a spec-
ified threshold.

Figs. 3 and 4 show deformation velocity maps from the ADIn-
SAR approach for standard single polarimetry information (HH
and VV channel) and optimized coherence via vector polarime-
try information. It should be mentioned, different scales for CPs
in Figs. 3 and 4 is due to usage of different multilook factors and
given an area of approximately 2.2 m2 for each pixel, the area
of each multilook CP should be 15 × 15

9 × 9 times larger in Fig. 4
than in Fig. 3. As the figures show, all three coherence opti-
mization methods were successful in increasing the CP density
for both the applied multilook factor. Number and percentage
of selected CPs in the velocity maps are presented in Tables I
and II, respectively.

Numbers of existing pixels for 9 × 9 and 15 × 15 multilook
factors are 64447 and 23316, respectively. The tables show that
the VV and ESPO selected the lowest and highest number of CPs
in the case study area. A combination of ADInSAR with MCPO,
CPO, and ESPO increased the number of identified CPs with
respect to the VV channel by approximately 59%, 43%, and 72%
for 9× 9 multilooking and 66.3%, 59.3%, and 78.6% for 15× 15
multilooking, respectively. Generally, a 15× 15 multilook factor
with a coherence threshold of 0.4 caused a greater coverage
of CPs for all three optimization methods comparing against
9 × 9, and a combination of the 15 × 15 multilook factor with
ESPO appears to be the most successful polarimetric ADInSAR
method in increasing CP density. Moreover, the MCPO indicates
more coverage rather than CPO.

Figs. 5 and 6 illustrate the histograms of |γ| obtained for
single polarimetric channels and the optimized methods. These
histograms were calculated using all pixels in the image. It is
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Fig. 3. Velocity map of selected CP pixels with 9 × 9 multilook factor for (a) HH channel, (b) VV channel, (c) optimized channel produced by MCPO,
(d) optimized channel produced by CPO, and (e) optimized channel produced by ESPO.

Fig. 4. Velocity map of selected CP pixels with 15 × 15 multilook factor for (a) HH channel, (b) VV channel, (c) optimized channel produced by MCPO,
(d) optimized channel produced by CPO, (e) optimized channel produced by ESPO.

TABLE I
NUMBER OF SELECTED CPS OF SINGLE- AND MULTIPOLARIZATION ADINSAR

WITH TWO DIFFERENT MULTILOOK FACTOR

Multilook Factor HH VV MCPO CPO ESPO

9 × 9 14498 12968 20570 18535 22251
15 × 15 5922 5061 8419 8062 9039

clear that all three optimized methods increased the coherence
level with respect to the HH and VV channel.

In order to assess the phase quality and noise phase level
for the polarimetric ADInSAR methods in comparison with the

TABLE II
PERCENTAGE OF SELECTED CPS OF SINGLE- AND MULTIPOLARIZATION

ADINSAR WITH TWO DIFFERENT MULTILOOK FACTOR

Multilook Factor HH VV MCPO CPO ESPO

9 × 9 22.5% 20.1% 31.9% 28.8% 34.5%
15 × 15 25.4% 21.7% 36.1% 34.6% 38.8%

standard ADInSAR methods, noise phase estimation was ap-
plied and analyzed. First, for each ADInSAR method, the CPs
were connected to form a network using Delaunay triangulation,
and double difference phase measurements were constructed as
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Fig. 5. Histograms of |γ | for HH, VV, MCPO, CPO, and ESPO for 9 × 9
multilook factor.

Fig. 6. Histograms of |γ | for HH, VV, MCPO, CPO, and ESPO for 15 × 15
multilook factor.

the differenced phases in space and time for each arc connecting
two CPs. For estimating the contribution of noise to the double
difference phase, a low-pass filter was used. This filter calcu-
lates a weighted mean and then a local fitting of a straight line to
estimate smooth phase and then the noise phase after subtraction
of the smooth contribution. The weight factors ensure that the
nearest points carry the most weight, i.e., the line fit is local and
a Gaussian was used for the weighting function. Therefore, for
each vector of double difference phase, which contains phase
values of an arc in all available interferograms, a vector of con-
tribution of noise was estimated. Subsequently, the maximum
magnitude of vector of noise phase, denoted max-noise, and the
STD of vector of noise phase, named std-noise, were obtained
for each arc.

The estimated max-noise and std-noise for mutual formed
arcs between the polarimetric ADInSAR and standard ADIn-
SAR were then compared to verify the impact of polarimetric
optimization on the noise phase.

The double difference phase in each interferogram includes
the contribution of different phenomena such as deformation, at-
mospheric error, orbital error and residual DEM error, and noise.
Atmospheric error, which results from the atmospheric delay at
the two acquisition times, is strongly correlated in space, and the
double difference phase measurements between nearby CPs do
not contain a significant contribution of atmospheric delay [17],
[18]. In order to achieve more reliable results from noise phase
estimation, the contribution of orbital and residual DEM error
were estimated and subtracted from phase of each CP before
triangulation. The phase error from uncertainty in the DEM is
proportional to the perpendicular component of the baseline, and
was estimated in a least square scene using StaMPS software as
this is the only term that would correlate with baseline [15]. The

Fig. 7. Percentage of decline in number of arcs with max-noise and std-
noise higher than 0.5 (rad) in three optimum channels with respect to HH
channel for 9 × 9 multilook factor in case of (i) residual DEM error reduction,
(ii) orbital error reduction, (iii) residual DEM and orbital error reduction and
(iv) no reduction from phase of CPs. Blue and red columns show the max-noise
and std-noise reduction, respectively.

Fig. 8. Percentage of decline in number of arcs with max-noise and std-
noise higher than 0.5 (rad) in three optimum channels with respect to VV
channel for 9 × 9 multilook factor in case of (i) residual DEM error reduction,
(ii) orbital error reduction, (iii) residual DEM and orbital error reduction and
(iv) no reduction from phase of CPs. Blue and red columns show the max-noise
and std-noise reduction, respectively.

orbital error due to orbit inaccuracies was estimated through
fitting a ramp according to StaMPS software [15]. Therefore,
obtained max-noise and std-noise for ADInSAR methods were
compared in case of 1) residual DEM error reduction, 2) orbital
error reduction, 3) residual DEM and orbital error reduction, and
4) no reduction from phase of CPs. Histograms of the estimated
noise phase demonstrated that the polarimetric ADInSAR de-
creases the number of arcs with max-noise and std-noise higher
than 0.5 (rad) with respect to standard ADInSAR. Therefore,
threshold of 0.5 was selected to compare the noise phase level
of the ADInSAR approaches. Figs. 7–10 show the percentages
of the declines for two multilook factors of 9 × 9 and 15 × 15
and the above four different cases.

As can be seen in the above figures, the proposed multibase-
line coherence optimization method in this paper, MCPO, is
more successful than the other methods, especially CPO, to de-
crease the noise phase. The second performing method in terms
of reducing the noise level is ESPO with achieving slightly less
reduction than what it is gained through MCPO method. With
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Fig. 9. Percentage of decline in number of arcs with max-noise and std-noise
higher than 0.5 (rad) in three optimum channels with respect to HH channel
for 15 × 15 multilook factor in case of (i) residual DEM error reduction,
(ii) orbital error reduction, (iii) residual DEM and orbital error reduction and
(iv) no reduction from phase of CPs. Blue and red columns show the max-noise
and std-noise reduction, respectively.

Fig. 10. Percentage of decline in number of arcs with max-noise and std-noise
higher than 0.5 (rad) in three optimum channels with respect to VV channel
for 15 × 15 multilook factor in case of (i) residual DEM error reduction,
(ii) orbital error reduction, (iii) residual DEM and orbital error reduction and
(iv) no reduction from phase of CPs. Blue and red columns show the max-noise
and std-noise reduction, respectively.

regards to the different reduction cases before noise phase es-
timation, decline of the noise level in case i is more significant
than case iv for the three optimization methods. This can demon-
strate the impact of the polarimetric ADInSAR method on the
residual DEM error estimation. However, the impact of orbital
error removal before noise phase estimation on decreasing the
noise level is negligible mainly due to the high spatial correlation
of orbital error and its insignificant contribution along the short
arcs. Moreover, as it was expected, the results of polarimetric
ADInSAR with 15 × 15 multilook factor are more successful
than 9 × 9 multilook factor in reducing the phase noise due to
selection of larger factor for multilooking.

In order to quantitatively evaluate the results of ADInSAR,
the available levelling observations were used. Because the
levelling observations were not collected exactly within the tem-
poral interval of the radar data used in this study (21 July to
6 October 2013), the available observed data were used instead.
Levelling measurements were obtained with third-order accu-
racy during two epochs on 23 September 2013 and 23 April
2014, which is not exactly contemporaneous with the radar

Fig. 11. Spatial location of levelling stations in the case study, the background
is deformation map estimated using standard ADInSAR (HH channel) with 9× 9
multilook factor.

Fig. 12. Comparison of subsidence vertical velocities inferred from the polari-
metric and standard ADInSAR and levelling measurements along 13 levelling
stations with (a) 9 × 9 multilook window (b) 15 × 15 multilook window.

data set. There are 13 levelling stations in the case study as
can be observed in Fig. 11. Fig. 12 depicts the comparison be-
tween the vertical deformation obtained from the polarimetric
and standard ADInSAR and the levelling measurements. The
reference point is the number 13 levelling station and its near-
est CP for estimated deformation from levelling observations
and ADInSAR, respectively. As shown in this figure, the spatial
pattern of the subsidence obtained from the ADInSAR meth-
ods agree with the levelling measurements along most levelling
stations. It should be mentioned that estimated behavior of sub-
sidence for levelling stations by MCPO and ESPO are highly
correlated. Table III displays the root mean square error (RMSE)
values obtained from all ADInSAR methods and levelling mea-
surements and Tables IV and V show percentages of RMSE im-
provement for the optimum channels with respect to HH and VV
channel, respectively. As it is obvious, the three coherence op-
timization methods developed the RMSE values and estimated
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TABLE III
RMSE (MM/YR) VALUES BETWEEN VERTICAL VELOCITIES OF ADINSAR

METHODS AND LEVELLING MEASUREMENTS WITH TWO DIFFERENT

MULTILOOK FACTORS

Multilook Factor HH VV MCPO CPO ESPO

9 × 9 16.78 18.16 14.98 15.90 15.24
15 × 15 16.30 18.31 15.68 15.79 15.69

TABLE IV
PERCENTAGE OF RMSE IMPROVEMENT WITH RESPECT TO HH CHANNEL

WITH TWO DIFFERENT MULTILOOK FACTORS

Multilook Factor MCPO CPO ESPO

9 × 9 10.7% 5.26% 9.16%
15 × 15 3.83% 3.1% 3.74%

TABLE V
PERCENTAGE OF RMSE IMPROVEMENT WITH RESPECT TO VV CHANNEL

WITH TWO DIFFERENT MULTILOOK FACTORS

Multilook Factor MCPO CPO ESPO

9 × 9 17.5% 12.4% 16%
15 × 15 14.3% 13.7% 14.27%

the deformation rates more accurately. MCPO, which presented
in this paper, was the best algorithm in terms of improving the
RMSE values and also more accurate deformation estimation.
However, difference between MCPO and ESPO in percentage
of RMSE decline is not significant.

It should be mentioned that the different time intervals cov-
ered by the radar data (21 July to 6 October 2013) and by the
levelling measurements (23 September 2013 to 23 April 2014)
can lead to different estimated rates. Therefore, overlapping the
time of the levelling observations and the radar data acquisitions
leads us to more precisely evaluate the results.

V. CONCLUSION

In this paper, high-rate land subsidence in Tehran basin that
suffers from temporal decorrelation was studied through a com-
bination of polarimetric information and ADInSAR. Recently,
a new generation of radar satellites with different polarimetric
channels has created the potential to optimize the interfero-
metric coherence. Thus, using dual polarization TerraSAR-X
dataset, three different coherence optimization techniques with
9 × 9 and 15 × 15 multilook factors were combined with the
ADInSAR method.

The resulting velocity map of polarimetric ADInSAR ap-
proaches showed all three coherence optimization methods suc-
ceeded in increasing the density of selected CPs with respect to
single-pol ADInSAR. Results with a 15 × 15 multilook factor
and coherence threshold of 0.4 illustrated better improvements
in CP density when compared with a 9 × 9 multilook factor and
a coherence threshold of 0.6. Combination of ADInSAR with
MCPO, CPO, and ESPO increased the number of identified CPs
with respect to VV channel with approximately 59%, 43%, and

72% for 9 × 9 multilooking and 66.3%, 59.3%, and 78.6% for
15 × 15 multilooking, respectively. Therefore, the best coher-
ence optimization method in terms of CP density improvement
appears to be ESPO that improved CP coverage significantly
with respect to HH and VV channel.

In order to check the phase quality for polarimetric ADIn-
SAR results with respect to standard ADInSAR, estimation and
analysis of noise phase were applied. This analysis for mu-
tual formed arcs between polarimetric ADInSAR and standard
ADInSAR showed that the three optimized ADInSAR methods
decreased the noise phase level comparing with standard ADIn-
SAR. The best method in terms of phase quality improvement is
MCPO, which was presented in this paper. Moreover, the bigger
multilook factor which was 15 × 15 in this paper entails less
noise phase level as it was predicted.

Available levelling measurements in the case study were used
to validate the estimated deformation rates through ADInSAR
methods. The comparison confirmed that the three polarimetric
ADInSAR methods were successful to increase accuracy of
deformation estimation with respect to standard ADInSAR. The
best method in terms of developing accuracy of deformation
estimation is MCPO.

One of the most important findings of this paper was better
performance of MCPO in terms of CP density, phase quality,
and deformation accuracy in comparison with CPO. Moreover,
it was concluded that ESPO was much more successful than
MCPO in increasing CP density, although superiority of MCPO
in terms of phase quality and deformation accuracy over ESPO
was not significant.
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