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Abstract—Spatio-temporal fusion of MODIS and Landsat data 

aims to produce new data that have simultaneously the Landsat 

spatial resolution and MODIS temporal resolution. It is an 

ill-posed problem involving large uncertainty, especially for 

reproduction of abrupt changes and heterogeneous landscapes. In 

this paper, we proposed to incorporate the freely available 250 m 

MODIS images into spatio-temporal fusion to increase prediction 

accuracy. The 250 m MODIS bands 1 and 2 are fused with 500 m 

MODIS bands 3 to 7 using the advanced area-to-point regression 

kriging (ATPRK) approach. Based on a standard spatio-temporal 

fusion approach, the interim 250 m fused MODIS data are then 

downscaled to 30 m with the aid of the available 30 m Landsat data 

on temporally close days. The 250 m data can provide more 

information for the abrupt changes and heterogeneous landscapes 

than the original 500 m MODIS data, thus, increasing the accuracy 

of spatio-temporal fusion predictions. The effectiveness of the 

proposed scheme was demonstrated using two datasets. 

 

Index Terms—Downscaling, spatio-temporal fusion, image fusion, 

geostatistics, MODIS, Landsat. 

I. INTRODUCTION 

Landsat and MODIS data have been used widely for global 

monitoring, due to their large swath, free availability and regular 

revisit capabilities. The MODIS sensor can revisit the same area 

on a daily basis, which is of great use for timely monitoring of 

rapid changes on the Earth’s surface, such as vegetation 

phenology [1], [2] and land-cover/land-use change [3]. However, 

the spatial resolution of MODIS data (ranging from 250 m to 

1000 m) is often too coarse to provide the information desired 

which may exist at a finer spatial scale than the sensor resolution. 

The Landsat sensor can provide images at a much finer spatial 

resolution of 30 m, but it can only revisit the same area every 16 

days. Furthermore, in most cases, the acquired Landsat data for 

the specific areas can be contaminated by cloud and shadow, 

meaning that obtaining one clean Landsat image per month, in 

many cases, would be considered a good outcome. 

Spatio-temporal fusion involves blending fine temporal 

resolution, but coarse spatial resolution (e.g., 500 m MODIS) 
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data with fine spatial resolution, but coarse temporal resolution 

(e.g., 30 m Landsat) data to create data at both fine temporal and 

spatial resolutions [4]-[6]. It is carried out based on the 

availability of at least one coarse-fine spatial resolution image 

pair (e.g., MODIS-Landsat image pair) acquired on 

approximately the same day or at least one fine spatial resolution 

image that is temporally close to the prediction day. Generally, 

three types of spatio-temporal fusion approaches can be 

identified: image-pair-based, spatial unmixing-based and hybrid 

methods. 

The spatial and temporal adaptive reflectance fusion model 

(STARFM) proposed by Gao et al. [7] is a typical 

image-pair-based approach, and one of the earliest 

spatio-temporal fusion approaches. With at least one coarse-fine 

image pair on temporally close days, STARFM calculates the 

fine spatial resolution reflectance on the prediction day as a 

linearly weighted combination of the coarse temporal changes 

(i.e., the reflectance difference between the available coarse 

images on different days) added to the available fine spatial 

resolution reflectance. Zhu et al. [8] proposed an enhanced 

STARFM (ESTARFM) method to enhance the performance of 

STARFM for heterogeneous landscapes. Different from 

STARFM where the temporal changes of all classes within a 

coarse pixel are assumed to be uniform (i.e., each coarse pixel is 

assumed to be pure), ESTARFM considers the temporal changes 

of each class separately, based on the hypothesis that the change 

rate of a class is stable during the period of interest. STARFM 

was also extended with a version termed spatial temporal 

adaptive algorithm for mapping reflectance change (STAARCH) 

to produce a dense stack of spatially coincident MODIS images 

for mapping forest disturbance [9]. Recently, the sparse 

representation was applied to spatio-temporal fusion. Based on 

two known coarse-fine image pairs, Huang and Song [10] 

developed the sparse-representation-based spatio-temporal 

reflectance fusion model (SPSTFM) to characterize the 

relationship between the coarse-fine temporal changes. The 

trained dictionary was used to predict the unknown fine spatial 

resolution reflectance according to the known coarse temporal 

changes. In their later work, sparse representation was further 

extended to the case where only one image pair is available [11]. 

Specifically, the relationship between the coarse-fine reflectance 

is characterized directly by a dictionary and a two-layer strategy 

is used (an intervening spatial resolution is involved) to cope 

with the large spatial resolution difference between MODIS and 

Landsat. 

The spatial unmixing approaches are usually performed using 

a fine spatial resolution thematic map, which can be obtained by 

standard hard classification of the available fine spatial 

resolution data [12]-[16] or from other sources, such as an aerial 

image [17], or land-use database [18]. Spatial unmixing is 

different from the well-known spectral unmixing. The latter 
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aims to estimate the proportions of each class within the coarse 

pixel and the class endmembers (spectra) are pre-determined (by 

either endmember extraction or referring to supervised 

information), while the former aims to estimate the class 

endmembers (for each band) within each coarse pixel and the 

class proportions are known (calculated from the fine spatial 

resolution thematic map by upscaling). Spatial unmixing is 

performed based on the strong assumption that no 

land-cover/land-use changes occur during the period, and thus, 

the class proportions are constant for each coarse image. Using a 

single fine spatial resolution land-use database LGN5, 

Zurita-Milla et al. [18] produced 30 m Landsat-like images from 

temporally dense, 300 m Medium Resolution Imaging 

Spectrometer (MERIS) images to monitor vegetation seasonal 

dynamics, and also investigated the optimal window size and 

number of classes in spatial unmixing [12]. Amorós-López et al. 

[13], [14] added a new regularization term to the cost function of 

the spatial unmixing to avoid large deviations of the estimated 

endmembers from the pre-defined endmembers extracted from 

the coarse data. Based on the availability of one coarse-fine 

image pair, Wu et al. [15] and Gevaert et al.’s method [16] first 

estimates changes in class endmember spectra from the time of 

the image pair to prediction and then adds the changes to the 

known fine spatial resolution reflectance. 

The abovementioned two types of approaches were also 

combined and some hybrid methods were developed. Xu et al. 

[19] proposed a modified regularized spatial unmixing method, 

in which the regularization term is constructed using the fine 

spatial resolution endmembers that are extracted from the 

pre-STARFM predictions, rather than the coarse endmembers of 

the original coarse data in [13], [14]. Xie et al. [20] applied 

spatial unmixing to decompose the coarse data and STARFM 

was performed on the unmixing-based predictions. Zhu et al. [21] 

proposed a flexible fusion method that first estimates changes in 

class endmember spectra during the period of interest and then 

uses additional neighborhood information, as was done in 

STARFM, to achieve robust prediction. 

Amongst the spatio-temporal fusion approaches, STARFM is 

one of the most widely used methods for blending MODIS and 

Landsat data and has been applied in various domains (e.g., 

forest monitoring, crop monitoring [4] and land surface 

temperature monitoring [22]), appreciating its simple 

implementation. Different from ESTARFM that requires at least 

two coarse-fine image pairs, STARFM can be implemented 

using only one image pair. Compared to spatial unmixing 

methods, STARFM requires less strict assumptions about the 

land-cover/land-use changes during the study period. Similarly 

to other spatio-temporal fusion approaches, when downscaling 

MODIS bands 1 to 7 (except band 5, as the wavelength of this 

band does not match any band of Landsat), STARFM 

downscales the 500 m bands directly to 30 m, which involves a 

large zoom factor of 16. Spatio-temporal fusion of MODIS and 

Landsat data is essentially an ill-posed problem. Such a large 

zoom factor brings great challenges in downscaling, especially 

for restoration of temporal changes (e.g., abrupt changes) and 

spatially heterogeneous landscapes. For abrupt changes, the 

information is not adequately represented in the observed 

Landsat data. For example, in the observed Landsat data, the 

corresponding area may be dominated by a large pure patch (e.g., 

bare soil), but may be broken down into several smaller patches 

of very different classes (e.g., vegetation, water, and impervious 

surface) on the prediction day. In spatio-temporal fusion, the 

restoration of abrupt changes relies mainly on the 

pre-interpolation process (e.g., bicubic interpolation in this 

paper), and the observed Landsat data cannot provide much 

helpful information. A straightforward solution to this issue 

would be to seek as many temporally close Landsat data as 

possible to provide related land-cover boundary information for 

the abrupt changes, but this may be challenging due to cloud 

contamination. The cloud contamination problem is actually a 

key motivation for spatio-temporal fusion. 

It is worth noting that MODIS sensors also produce 250 m 

images in the red (band 1) and near-infrared (band 2) bands. The 

250 m images are free and, thus, there is little data cost to use 

them. The 250 m images provide valuable information at an 

intermediate spatial resolution and are expected to be able to 

decrease the uncertainty in the conventional 500 m to 30 m 

downscaling process (from 250 m to 30 m, the downscaling 

process involves a much smaller zoom factor of 8). 

In this paper, based on the popular STARFM approach, we 

take full advantage of the freely available 250 m information 

provided by MODIS sensors to produce more reliable 30 m 

Landsat-like data. The 250 m data are only available for bands 1 

and 2 and bands 3 to 7 need to be downscaled to 250 m. 

Specifically, the 250 m MODIS bands 1 and 2 are fused with 500 

m bands 3 to 7 to produce the interim 250 m bands 1 to 7. The 

MODIS bands 1 and 2 and bands 3 to 7 have different spectral 

range and a highly reliable image fusion approach is required for 

this issue. In our previous research, area-to-point regression 

kriging (ATPRK) was proposed for fusion of 500 m MODIS 

bands 3 to 7 and 250 m bands 1 and 2 [23]. ATPRK is an 

accurate approach for reproduction of spatial detail in bands 3 to 

7 and is superior to some state-of-the-art benchmark methods. It 

is easy to implement and can perfectly preserve the 500 m 

spectral properties. It accounts explicitly for the size of support, 

spatial correlation, and the point spread function of the sensor. 

Based on the free 250 m MODIS data and the appealing 

advantages of ATPRK (both theoretically and experimentally), 

there exists a clear opportunity to enhance the spatio-temporal 

fusion of MODIS and Landsat data, which is developed in this 

paper. 

The remainder of this paper is organized into four sections. 

Section II introduces briefly the principles of STARFM and the 

image fusion approach used to incorporate the 250 m MODIS 

data in spatio-temporal fusion. The experimental results for two 

datasets are provided in Section III, including validation. Section 

IV further discusses the proposed scheme of incorporating 250 

m MODIS data, followed by a conclusion in Section V. 

II. METHODS 

In this paper, the advanced ATPRK approach is used to fuse 

250 m bands with 500 m bands of MODIS to produce the interim 

250 m MODIS data. Such a fusion process is conducted for all 

MODIS data during the period of interest. With the 250 m 

MODIS and 30 m Landsat image pairs on temporally close days, 

STARFM is performed on the 250 m fused MODIS data on the 

prediction date to produce the 30 m Landsat-like data. The 

principles of ATPRK and STARFM are introduced briefly 

below. 
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A. ATPRK 

ATPRK was also shown to outperform 13 current 

state-of-the-art benchmark methods in pan-sharpening in our 

previous work [24]. Based on its advantages and encouraging 

performance, ATPRK is adopted for image fusion of MODIS 

data (fusing 500 m bands with 250 m bands). 

ATPRK is a two-step approach including regression 

modelling and area-to-point kriging (ATPK)-based residual 

downscaling. In the first step, the fine spatial resolution (250 m) 

prediction for each observed 500 m coarse band is a linear 

transformation of the fine spatial resolution band (e.g., 250 m 

PAN-like band). For MODIS image fusion, a 250 m PAN-like 

band needs to be selected for each 500 m band based on the 

correlation coefficient [23]. The coefficients are determined by 

the regression model built between the observed 500 m band and 

the corresponding PAN-like 250 m band (the 250 m band needs 

to be upscaled to 500 m). In the second step, the residuals (at a 

spatial resolution of 500 m) between the regression prediction 

and the original coarse data are calculated. The 500 m residuals 

are then downscaled to 250 m using ATPK, and the estimated 

250 m residuals are added back to the 250 m prediction of the 

first step to produce the final 250 m result. Further details on 

ATPRK can be found in our previous work [23], [24]. 

In ATPRK, the second step (i.e., ATPK-based residual 

downscaling) aims to perfectly preserve the original 500 m data. 

It is an iterative process that increases the computational cost of 

ATPRK. In this paper, for fast fusion of the 500 m and 250 m 

bands, an approximate version of ATPRK is considered. In 

spatio-temporal fusion, there exists an unavoidable reflectance 

inconsistency between the images acquired by different sensors. 

Thus, the 500 m MODIS data do not necessarily need to be 

perfectly, but rather need to be sufficiently, preserved in the 250 

m predictions before being downscaled to the 30 m Landsat 

resolution. On this basis, a simple and fast bicubic interpolation 

method is applied in the second step of ATPRK instead. The 

approximate version with bicubic interpolation in the second 

step can satisfactorily preserve the 500 m MODIS data (always 

with a CC between the 250 m predictions and 500 m original 

data close to 1), and more importantly, greatly expedite the 

fusion process. 

B. STARFM 

For a given time t0, the Landsat-like image L(x, y, t0) is 

estimated as 

 
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where w is the size of a spatially neighboring window (in units of 

Landsat pixels), x and y are coordinates of the pixels, n is the 

number of temporally neighboring images, M means MODIS 

data, L means Landsat data, and L(x, y, tk) and M(x, y, tk) are an 

image pair at time tk. W is a weight for neighboring pixels and it 

is a function of three factors: the spectral difference between the 

MODIS and Landsat reflectance of the image pair, temporal 

difference between the MODIS reflectance on different days, 

and the spatial distance between Landsat pixels. Further details 

on the approach can be found in [7]. In this paper, w was set to 31, 

and 20 spectrally similar pixels were considered in each moving 

window. 

In the proposed scheme, the MODIS data in (1) are 250 m data 

produced using ATPRK, rather than the 500 m data in the 

original STARFM. Fig. 1 illustrates the flowchart of 

incorporating 250 m MODIS information in spatio-temporal 

fusion, where the example involves two pairs of 

MODIS-Landsat images at t1 and t3 are available for prediction 

of the 30 m Landsat 8 image at t2. Note that the wavelength of 

Landsat 8 bands 2-7 (i.e., blue, green, red, NIR, SWR1 and 

SWR2 bands) corresponds to MODIS bands 3, 4, 1, 2, 6 and 7, 

respectively. 
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Fig. 1 A flowchart illustrating the proposed scheme of incorparating 250 m 

MODIS images in spatio-temporal fusion of MODIS and Landsat 8 data. 

 

In (1), for compatibility in image size, the MODIS images 

need be interpolated to the Landsat spatial resolution (30 m) 

beforehand. This process can be achieved using the simple 

bicubic interpolation. Using the original 500 m MODIS images, 

the interpolation involves a zoom factor of 16, but the factor 

greatly reduces to 8 when the interim 250 m MODIS images are 

used as inputs in the proposed scheme. The much smaller zoom 

factor is, thus, able to decrease the uncertainty in downscaling. 

The proposed method was tested using two datasets; one 

covers a tropical forest area in Amazon, while the other covers 

an irrigation area in Coleambally, New South Wales, Australia. 

The results are reported in the following section. 

III. EXPERIMENTS 

A. Experiment on the Amazon forest dataset 

In this experiment, two Landsat 5 and MODIS surface 

reflectance image pairs covering a tropical rainforest in the 

Amazon were used. They were acquired on 13 June 2001 and 21 

July 2003. MODIS data from the daily surface reflectance 

products MOD09GA (500 m) and MOD09GQ (250 m) were 

used. To illustrate the performance of the proposed method in 

restoring abrupt changes, two sites experiencing noticeable 

deforestation were selected for testing. The two sites cover areas 

of 10 km by 10 km (site 1) and 20 km by 20 km (site 2), 

respectively. Figs. 2(a) and 2(b) show the two MODIS images 

and Figs. 2(i) and 2(j) show the two Landsat 5 images for site 1, 

while Figs. 3(a) and 3(b) show the two MODIS images and Figs. 

3(c) and 3(d) show the two Landsat 5 images for site 2. The task 

of spatio-temporal fusion in this experiment was to predict the 

30 m Landsat 5 image (including blue, green, red, NIR, SWR1 

and SWR2 bands) on 21 July 2003, where the MODIS images on 
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the two days and the 30 m Landsat image on 13 June 2001 were 

used as inputs, and the true 30 m Landsat image on 21 July 2003 

was used as reference in accuracy assessment. 

The 500 m bands were first fused with the 250 m bands using 

ATPRK and the 250 m fused results for site 1 are shown in Figs. 

2(c) and 2(d). It is clear that the 250 m fused images present 

more detailed information than the original 500 m images and 

clearer boundaries can be observed. Using bicubic interpolation, 

both 500 m and 250 m MODIS images were then downscaled to 

30 m, which was used as the inputs of STARFM, as shown in 

Figs. 2(e)-2(h). Again, the interpolation results produced from 

the 250 m images are visually more informative than those from 

the 500 m data. Based on STARFM, the 30 m Landsat 

predictions of the two different schemes (i.e., using the original 

500 m and 250 fused MODIS images) are shown in Figs. 2(k) 

and 2(l). The results for site 2 are displayed in Fig. 3. 

The two blue patches representing abrupt changes (i.e., 

deforestation) from 13 June 2001 and 21 July 2003 in Fig. 2 

were used for comparison of the two different schemes. 

Obviously, using the 250 m images, the two patches were more 

satisfactorily restored than those from the 500 m images where 

the patches appear as circle-like shapes. This is because the 

boundaries can be characterized by more pixels in the 250 m 

image in Fig. 2(d) than in the 500 m image in Fig. 2(b). When 

interpolated to 30 m, the 250 m neighboring pixels can provide 

more support than the 500 m neighboring pixels. As shown in 

Fig. 2(h), the 30 m interpolation results of the two patches are 

more accurate than those in Fig. 2(f). Based on the more reliable 

30 m interpolation results in Figs. 2(g) and 2(h), a more accurate 

spatio-temporal fusion result was produced in Fig. 2(l). The 

advantages of the proposed scheme of using 250 m images can 

be also be observed clearly in the result for site 2, where abrupt 

changes in Fig. 3(f) are more accurately restored than in Fig. 

3(e). 
 

 
(b)                           (b)                           (c)                            (d) 

 
(e)                           (f)                            (g)                            (h) 

 
(i)                           (j)                             (k)                            (l) 

Fig. 2 The 30 m Landsat results for site 1 (10 km by 10 km) of the Amazon forest 

dataset (green, red and NIR bands as RGB). (a) and (b) are 500 m MODIS 
images on 13 June 2001 and 21 July 2003. (c) and (d) are 250 m fused MODIS 

images on 13 June 2001 and 21 July 2003. (e) and (f) are the 30 m bicubic 

interpolation results of (a) and (b). (g) and (h) are the 30 m bicubic interpolation 
results of (c) and (d). (i) and (j) are the 30 m Landsat 5 images on 13 June 2001 

and 21 July 2003. (k) and (l) are the 30 m STARFM-derived Landsat images on 

21 July 2003 using the original 500 m MODIS images and the 250 m fused 

MODIS images (with the aid of the MODIS-Landsat image pair on 13 June 

2001), respectively. 

 

Quantitative assessment of the 30 m results for the two sites is 

exhibited in Table 1. Three indices are used, including the root 

mean square error (RMSE), correlation coefficient (CC), and 

universal image quality index (UIQI) [25]. The ideal values for 

RMSE, CC and UIQI are 0, 1 and 1, respectively. For all six 

bands, the 250 m fused images lead to a smaller RMSE and 

larger CC and UIQI. It should be noted that the accuracy gains of 

using 250 m images for the red and NIR bands are larger than for 

the other four bands. For example, for site 2, the CCs of the red 

and NIR band increase by 0.033 and 0.045, but increase by 

around 0.01, 0.02, 0.01 and 0.01 for the blue, green, SWR1 and 

SWR2 bands. The reason is that the red and NIR bands are 

available at 250 m in the MODIS products, but the other four 

250 m bands were produced by downscaling where uncertainties 

exist. Regarding the mean of the CC, the gains of using the 250 

m images are 0.015 and 0.02 for sites 1 and 2, respectively. 
 

  
(a)                                                     (b) 

  
(c)                                                     (d) 

  
(e)                                                     (f) 

Fig. 3 The 30 m Landsat results for site 2 (20 km by 20 km) of the Amazon forest 

dataset (green, red and NIR bands as RGB). (a) and (b) are 500 m MODIS 

images on 13 June 2001 and 21 July 2003. (c) and (d) are the 30 m Landsat 
images on 13 June 2001 and 21 July 2003. (e) and (f) are the 30 m 

STARFM-derived Landsat 5 images on 21 July 2003 using the original 500 m 

MODIS images and the 250 m fused MODIS images (with the aid of the 
MODIS-Landsat image pair on 13 June 2001), respectively. 

 

Table 1 Quantitative assessment for the Amazon forest dataset based on the 
STARFM method 
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Bands 

Site 1 Site 2 

500 m 

MODIS 

250 m 

MODIS 

500 m 

MODIS 

250 m 

MODIS 

RMSE 

Blue 0.0075 0.0074 0.0097 0.0094 

Green 0.0085 0.0083 0.0142 0.0135 

Red 0.0123 0.0113 0.0230 0.0190 

NIR 0.0280 0.0264 0.0315 0.0282 

SWIR1 0.0212 0.0208 0.0404 0.0384 

SWIR2 0.0228 0.0223 0.0451 0.0437 

Mean 0.0167 0.0161 0.0273 0.0253 

CC 

Blue 0.7424 0.7509 0.8468 0.8578 

Green 0.7499 0.7601 0.8728 0.8881 

Red 0.8293 0.8562 0.9038 0.9362 

NIR 0.8107 0.8362 0.7992 0.8442 

SWIR1 0.8316 0.8401 0.9069 0.9163 

SWIR2 0.8556 0.8636 0.8819 0.8908 

Mean 0.8032 0.8178 0.8686 0.8889 

UIQI 

Blue 0.7037 0.7147 0.8408 0.8525 

Green 0.7080 0.7222 0.8461 0.8640 

Red 0.8215 0.8517 0.8994 0.9334 

NIR 0.8101 0.8360 0.7979 0.8439 

SWIR1 0.8245 0.8346 0.9021 0.9128 

SWIR2 0.8506 0.8597 0.8791 0.8883 

Mean 0.7864 0.8031 0.8609 0.8825 

B. Experiment on the Coleambally dataset 

Three pairs of Landsat 8 and MODIS surface reflectance 

images covering a 28 km by 28 km area in Coleambally, 

Australia were used in this experiment. They were acquired on 6 

July 2013, 14 August 2013 and 8 September 2013, respectively. 

For the MODIS data, the eight-day composite surface 

reflectance products MOD09A1 (500 m) and MOD09Q1 (250 m) 

were used. The three pairs of images are shown in Fig. 4. We 

predicted the 30 m Landsat image from the MODIS image on 14 

August 2013, based on the availability of the two 

MODIS-Landsat image pairs on 6 July 2013 and 8 September 

2013. The ESTARFM method was also performed as a 

benchmark method in this experiment. The true 30 m Landsat 

image on 14 August 2013 was used as a reference. 

Fig. 5 shows the 30 m Landsat predictions on 14 August 2013 

based on the two methods (STARFM and ESTARFM) coupled 

with two schemes (using 500 m and 250 m MODIS images). The 

results for two 1.5 km by 1.5 km heterogeneous sub-areas 

(marked in yellow in Fig. 5(a)) are shown in Fig. 6 to facilitate 

visual comparison. Using the 250 m fused images, the 30 m 

results produced for all two sub-areas are much closer to the 

references than those produced using the original 500 m images. 

For example, in sub-area S1, for both STARFM and ESTARSM, 

some green pixels were incorrectly predicted as blue pixels 

using the 500 images, but were restored adequately using the 

250 m images. The main reason for the phenomenon is that the 

size of the patches of interest is smaller than one 500 m pixel. 

They cannot be reproduced accurately when bicubic 

interpolation is performed on the 500 m pixels (where support 

from the neighboring 500 m pixels is limited), and 250 m 

pixel-based interpolation is more reliable as more neighboring 

250 m pixels are available to support the interpolation. In 

addition, amongst all predictions, STARFM with the 250 m 

image produces the result closest to the reference. 

Table 2 lists the RMSE, CC and UIQI for the entire study area. 

The quantitative assessment also supports the findings of visual 

inspection. First, the 250 m images can produce fusion results 

with a smaller RMSE and larger CC and UIQI than the original 

500 m images. More precisely, the gains in mean CC are 0.008 

and 0.015 for STARFM and ESTARSM, respectively. For 

STARFM, the increase in UIQI for the blue, green, red, NIR, 

SWR1 and SWR2 bands is 0.010, 0.005, 0.024, 0.029, 0.010 and 

0.006, respectively. Similarly to the results in Table 1, the 

accuracy gains for the red and NIR bands are larger than for the 

other four bands. Second, the accuracy of STARFM is greater 

than that of ESTARFM in both schemes. As mentioned in [26], 

for areas where temporal variance is dominant (as in the study 

area here), STARFM is more suitable. ESTARFM is more 

suitable for areas dominated by spatial variance. 
 

   
(a)                                    (b)                                    (c) 

   
(d)                                    (e)                                    (f) 

Fig. 4 The 30 m Landsat 8 and 500 m MODIS images for the Coleambally 
dataset (green, red and NIR bands as RGB). (a), (b) and (c) are 30 m Landsat 8 

images on 6 July 2013, 14 August 2013 and 8 September 2013. (d)-(f) are the 

corresponding MODIS images for (a)-(c). 
 

S2

S1

   
(a)                                    (b)                                    (c) 

  
(d)                                    (e) 

Fig. 5 The 30 m Landsat 8 results for the Coleambally dataset (green, red and 

NIR bands as RGB). (a) is the 30 m true Landsat 8 image on 14 August 2013 (the 

marked yellow sub-areas are used for analysis in Fig. 6). (b) and (c) are the 30 m 
ESTARFM-derived Landsat 8 images on 14 August 2013 using the original 500 

m MODIS images and the 250 m fused MODIS images (with the aid of the 

MODIS-Landsat image pairs on 6 July 2013 and 8 September 2013), 
respectively. (d) and (e) are the 30 m STARFM-derived Landsat 8 images on 14 

August 2013 using the original 500 m MODIS images and the 250 m fused 

MODIS images, respectively. 
 

Table 2 Quantitative assessment for the Coleambally dataset 

 

Bands 

ESTARFM STARFM 

500 m 
MODIS 

250 m 
MODIS 

500 m 
MODIS 

250 m 
MODIS 

RMSE 

Blue 0.0101 0.0099 0.0085 0.0083 

Green 0.0113 0.0111 0.0104 0.0103 

Red 0.0189 0.0177 0.0173 0.0160 
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NIR 0.0479 0.0415 0.0519 0.0459 

SWIR1 0.0483 0.0476 0.0383 0.0375 

SWIR2 0.0425 0.0420 0.0337 0.0331 

Mean 0.0298 0.0283 0.0267 0.0252 

CC 

Blue 0.8011 0.8043 0.8217 0.8315 

Green 0.7670 0.7692 0.7857 0.7901 

Red 0.8075 0.8327 0.8285 0.8532 

NIR 0.8923 0.9197 0.8883 0.9162 

SWIR1 0.6851 0.6824 0.7236 0.7339 

SWIR2 0.7939 0.7880 0.8023 0.8098 

Mean 0.7911 0.7994 0.8084 0.8225 

UIQI 

Blue 0.7878 0.7929 0.8152 0.8249 

Green 0.7659 0.7682 0.7855 0.7898 

Red 0.8026 0.8264 0.8245 0.8483 

NIR 0.8909 0.9189 0.8817 0.9101 

SWIR1 0.6768 0.6748 0.7209 0.7306 

SWIR2 0.7644 0.7618 0.7904 0.7967 

Mean 0.7814 0.7905 0.8030 0.8167 

 

 

     
(a1)                                            (b1)                                            (c1)                                            (d1)                                            (e1) 

     
(a2)                                            (b2)                                            (c2)                                            (d2)                                            (e2) 

Fig. 6 The 30 m Landsat 8 results for the two heterogeneous sub-areas marked in yellow in Fig. 5(a). Lines 1 and 2 are the results for sub-areas S1 and S2 marked in Fig. 

5(a). (a)-(e) have the same meanings as in Fig. 5. 

 

IV. DISCUSSION 

In this paper, the freely available 250 m MODIS bands 1 and 2 

were used as additional information for enhancement of 

spatio-temporal fusion of MODIS and Landsat data. The 

experiments in Section III show that the proposed scheme of 

incorporating 250 m MODIS images is able to reproduce more 

abrupt temporal changes (e.g., the two blue patches in Fig. 2(j)) 

and heterogeneous landscapes (Fig .6). Abrupt changes can be 

captured more adequately using the 250 m images on the 

prediction day than using the 500 m images alone, thus, 

providing more support in bicubic interpolation and 

post-spatio-temporal fusion. The proposed solution to enhance 

spatio-temporal fusion of MODIS and Landsat data has several 

advantages. 

1) The 250 m data has little data cost as such data are totally 

free. Moreover, the 250 m data are acquired at exactly the 

same time as the 500 m data, and are available for any 

500 m MODIS images that need to be downscaled. 

2) The ATPRK-based image fusion approach is accurate 

[23], [24], easy to implement and can be automated and 

built into the well-known STARFM software 

straightforwardly. The approximate version of ATPRK 

greatly expedites the process of fusion of 500 m and 250 

m MODIS images (the computational costs for the two 

datasets in the experiments are only several seconds). 

These advantages facilitate technically the incorporation of 

250 m data and enhancement of spatio-temporal fusion. Thus, 

the proposed scheme has great value in practice. 

By incorporating the 250 m information, the spatio-temporal 

fusion of MODIS and Landsat data is actually divided into a 

two-step fusion process: from 500 m to 250 m and from 250 m to 

30 m. In the traditional spatio-temporal fusion process, this first 

step (i.e., from 500 m to 250 m) is accomplished mainly by 

simple interpolation without any additional information. In the 

proposed scheme, information from the 250 m bands 1 and 2 is 

borrowed. The adopted image fusion approach (i.e., ATPRK in 

this paper) is more reliable than bicubic interpolation, which can 

undoubtedly increase the accuracy of this first step in the 

traditional spatio-temporal fusion process. However, it should be 

noted that the advanced ATPRK approach has uncertainties. For 

example, the regression model built from the coarse images 

might not be universal for fine spatial resolution images. Such 

uncertainties in incorporating the 250 m images motivate the 

development of more reliable image fusion approaches for 

further enhancement of spatio-temporal fusion of MODIS and 

Landsat data in future research. 

In this paper, the popular STARFM method was considered as 

the fundamental spatio-temporal fusion approach, as it does not 

require strong assumptions of a stable land-cover/land-use 

distribution and can be performed using only one 

MODIS-Landsat image pair (rather than at least two pairs in 

ESTARFM). It would be interesting to consider incorporating 

250 m images using other spatio-temporal fusion approaches, 

such as spatial unmixing-based methods, particularly for areas 

experiencing no (or very few) land-cover/land-use changes. 

Compared to another image-pair-based approach ESTARFM, 

STARFM is more suitable for cases where temporal variance 



 

 

7 

was dominant [26]. In the experiment on the Coleambally 

dataset, the temporal variance was dominant for the study area 

and, thus, STARFM produced greater accuracy. It would be 

worthwhile to consider using 250 m data for ESTARFM in cases 

where spatial variance was dominant. 

The scheme of incorporating 250 m MODIS data was 

investigated for enhancing the fusion of 500 m MODIS and 30 m 

Landsat data in this paper. MODIS data can also be fused with 

other fine spatial resolution (but coarse temporal resolution) data, 

such as SPOT and the new Sentinel-2 data [27], to produce daily, 

fine spatial resolution data for global monitoring. In these new 

spatio-temporal fusion problems, the proposed scheme of 

incorporating 250 m MODIS data would also have great value in 

increasing the accuracy. 

The 250 m data incorporation (i.e., ATPRK) and 

spatio-temporal fusion (i.e., STARFM) are performed separately 

in the proposed methodology. The uncertainty from the first step 

can be propagated directly to the second step. It is not clear how 

such uncertainty will affect the final predicted 30 m Landsat data. 

In future research, it would be interesting to develop a one-step 

spatio-temporal fusion approach to integrate the 500 m, 250 m 

and 30 m data in a single process, where one might expect to be 

able to gain greater control over the propagation of uncertainty 

(i.e., the uncertainty from processing the three different datasets 

can be controlled jointly). 

The Landsat sensors (i.e., Landsat 7 and 8) can provide a 15 m 

panchromatic (PAN) band. The 15 m PAN band can be fused 

with the 30 m multispectral bands to produce 15 m 

pan-sharpened Landsat images [28]. The 15 m information is 

helpful for mapping of small objects, such as residential 

buildings and roads in urban areas. It would be of great interest 

to downscale the MODIS data further to 15 m based on the 

availability of the 15 m pan-sharpened Landsat images on 

temporally close days. As the target fine spatial resolution 

increases, however, uncertainty always increases as well. On the 

one hand, the 15 m available Landsat images on temporally 

close days were not observed in real data, but produced by 

pan-sharpening, a process which unavoidably introduces 

uncertainty. On the other hand, compared to the 30 m target 

resolution, 15 m means that a larger number of sub-pixel 

reflectance values need to be predicted and a larger solution 

space is involved. Thus, the reliability of the spatio-temporal 

fusion process may decrease. This issue provides a promising 

avenue for future research. 

V. CONCLUSION 

In this paper, to reduce the uncertainty inherent in the 

spatio-temporal fusion of 500 m MODIS and 30 m Landsat data, 

the freely available 250 m images acquired by MODIS were 

incorporated into the fusion process. The advanced ATPRK 

approach was used to fuse the 250 m bands with the 500 m bands 

to produce the interim 250 m seven-band MODIS data. The 

popular STARFM approach was then applied to fuse the 250 m 

MODIS and 30 m Landsat data. The ATPRK-based sharpening 

step makes full use of the 250 m observed MODIS data and 

yields a reliable interim product for input to the 

post-spatio-temporal fusion step. The 250 m fused images 

present more detailed spatial information than the original 500 m 

images (see Figs. 2(a)-2(d)), which is beneficial for restoration 

of abrupt changes and heterogeneous landscapes in 

spatio-temporal fusion. Experiments on two datasets show that 

the proposed scheme of incorporating 250 m MODIS images 

can produce more accurate spatio-temporal fusion results at 30 

m resolution. It is especially advantageous in restoring abrupt 

temporal changes and heterogeneous landscapes. 

The 250 m data are free and ATPRK can be automated and 

readily built into the well-known STARFM software. Therefore, 

the proposed scheme of incorporating 250 m data in 

spatio-temporal fusion has great potential application value and 

should see widespread adoption. 

REFERENCES 

[1] S. Ganguly, M. A. Friedl, B. Tan, X. Zhang, and M. Verma. “Land surface 

phenology from MODIS: Characterization of the Collection 5 global land 
cover dynamics product,” Remote Sensing of Environment, vol. 114, no. 8, 

pp. 1805–1816, 2010. 

[2] X. Y. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. F. Hodges, F. 

Gao, B. C. Reed, and A. Huete. “Monitoring vegetation phenology using 

MODIS,” Remote Sensing of Environment, vol. 84, no. 3, pp. 471–475, 

2003. 
[3] M. C. Hansen, R. S. DeFries, J. R. G. Townshend, and R. Sohlberg. 

“Global land cover classification at the 1km spatial resolution using a 

classification tree approach,” International Journal of Remote Sensing, vol. 
21, pp. 1331–1364, 2000. 

[4] F. Gao, T. Hilker, X. Zhu, M. Anderson, J. G. Masek, P. Wang, and Y. 

Yang. “Fusing Landsat and MODIS data for vegetation monitoring,” IEEE 
Geoscience and Remote Sensing Magazine, vol. 3, pp. 47–60, 2015. 

[5] H. K. Zhang, B. Huang, M. Zhang, K. Cao, and L. Yu. “A generalization of 

spatial and temporal fusion methods for remotely sensed surface 
parameters,” International Journal of Remote Sensing, vol. 36, no. 17, pp. 

4411–4445, 2015. 

[6] B. Chen, B. Huang, and Bing Xu. “Comparison of Spatiotemporal Fusion 
Models: A Review,” Remote Sensing, pp. 1798–1835, 2015. 

[7] F. Gao, J. Masek, M. Schwaller, and F. Hall, “On the blending of the 

Landsat and MODIS surface reflectance: Predicting daily Landsat surface 

reflectance,” IEEE Transactions on Geoscience and Remote Sensing, vol. 

44, no. 8, pp. 2207–2218, 2006. 
[8] X. Zhu, J. Chen, F. Gao, X. Chen, and J. G. Masek. “An enhanced spatial 

and temporal adaptive reflectance fusion model for complex heterogeneous 

regions,” Remote Sensing of Environment, vol. 114, pp. 2610–2623, 2010. 
[9] T. Hilker, M. A. Wulder, N. C. Coops, J. Linke, J. McDermid, J. G. Masek, 

F. Gao, and J. C. White. “A new data fusion model for high spatial- and 

temporal-resolution mapping of forest based on Landsat and MODIS,” 
Remote Sensing of Environment, vol. 113, pp. 1613–1627, 2009. 

[10] B. Huang and H. Song. “Spatiotemporal reflectance fusion via sparse 

representation,” IEEE Transactions on Geoscience and Remote Sensing, 
vol. 50, pp. 3707–3716, 2012. 

[11] Song, H. & Huang, B. (2013). Spatiotemporal satellite image fusion 

through one-pair image learning. IEEE Transactions on Geoscience and 
Remote Sensing, 51, 1883–1896. 

[12] R. Zurita-Milla, J. G. P. W. Clevers, and M. E. Schaepman. 

“Unmixing-based Landsat TM and MERIS FR data fusion,” IEEE 
Geoscience and Remote Sensing Letters, vol. 5, no. 3, pp. 453–457, 2008. 

[13] J. Amorós-López, L. Gómez-Chova, L. Alonso, L Guanter, R. Zurita-Milla, 

J. Moreno, and G. Camps-Valls. “Multitemporal fusion of Landsat/TM and 
ENVISAT/MERIS for crop monitoring,” International Journal of Applied 

Earth Observation and Geoinformation, vol. 23, pp. 132–141, 2013. 

[14] J. Amorós-López, L. Gómez-Chova, L. Alonso, L. Guanter, J. Moreno, and 
G. Camps-Valls. “Regularized multiresolution spatial unmixing for 

ENVISAT/MERIS and Landsat/TM image fusion,” IEEE Geoscience and 

Remote Sensing Letters, vol. 8, no. 5, pp. 844–848. 2011. 
[15] M. Wu, C. Wang, and L. Wang. “Use of MODIS and Landsat time series 

data to generate high-resolution temporal synthetic Landsat data using a 

spatial and temporal reflectance fusion model,” Journal of Applied Remote 
Sensing, vol. 6, 2012. 

[16] C. M. Gevaert and F. J. García-Haro. “A comparison of STARFM and an 

unmixing-based algorithm for Landsat and MODIS data fusion,” Remote 
Sensing of Environment, vol. 156, pp. 34–44, 2015. 

[17] Y. T. Mustafa, V. A. Tolpekin, and A. Stein. “Improvement of 

spatio-temporal growth estimates in heterogeneous forests using Gaussian 



 

 

8 

bayesian networks,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 52, no. 8, pp. 4980–4991, 2014. 

[18] R. Zurita-Milla, G. Kaiser, J. G. P. W. Clevers, W. Schneider, and M. E. 

Schaepman. “Downscaling time series of MERIS full resolution data to 

monitor vegetation seasonal dynamics,” Remote Sensing of Environment, 

vol. 113, 1874–1885, 2009. 
[19] Y. Xu, B. Huang, Y. Xu, K. Cao, C. Guo, and D. Meng. “Spatial and 

temporal image fusion via regularized spatial unmixing,” IEEE Geoscience 

and Remote Sensing Letters, vol. 12, no. 6, pp. 1362–1366, 2015. 
[20] D. Xie, J. Zhang, X. Zhu, Y. Pan, H. Liu, Z. Yuan, and Y. Yun. “An 

improved STARFM with help of an unmixing-based method to generate 

high spatial and temporal resolution remote sensing data in complex 
heterogeneous regions,” Sensors, vol. 16, 2016. 

[21] X. Zhu, E. H. Helmer, F. Gao, D. Liu, J. Chen, M. A. Lefsky. “A flexible 

spatiotemporal method for fusing satellite images with different 
resolutions,” Remote Sensing of Environment, vol. 172, pp. 165–177, 2016. 

[22] H. Shen, L. Huang, L. Zhang, P. Wu, C. Zeng. “Long-term and fine-scale 

satellite monitoring of the urban heat island effect by the fusion of 
multi-temporal and multi-sensor remote sensed data: A 26-year case study 

of the city of Wuhan in China,” Remote Sensing of Environment, vol. 172, 

pp. 109–125, 2016. 

[23] Q. Wang, W. Shi, P. M. Atkinson, and Y. Zhao, “Downscaling MODIS 

images with area-to-point regression kriging,” Remote Sensing of 

Environment, vol. 166, pp. 191–204, 2015. 

[24] Q. Wang, W. Shi, and P. M. Atkinson, “Area-to-point regression kriging 

for pan-sharpening,” ISPRS Journal of Photogrammetry and Remote 

Sensing, vol. 114, pp. 151–165, 2016. 
[25] Z. Wang and A. C. Bovik. “A universal image quality index,” IEEE Signal 

Processing Letters, vol. 9, pp. 81–84, 2002. 

[26] I. V. Emelyanova, T. R. McVicar, T. G. Van Niel, L. T. Li, and A. I. J. M. 
van Dijk. “Assessing the accuracy of blending Landsat–MODIS surface 

reflectances in two landscapes with contrasting spatial and temporal 

dynamics: A framework for algorithm selection,” Remote Sensing of 
Environment, vol. 133, pp. 193–209, 2013. 

[27] M. Drusch, et al. “Sentinel-2: ESA’s optical high-resolution mission for 

GMES operational services,” Remote Sensing of Environment, vol. 120, pp. 
25–36, 2012. 

[28] B. Chen, B. Huang, and B. Xu. “Fine land cover classification using daily 

synthetic Landsat-like images at 15-m resolution,” IEEE Geoscience and 
Remote Sensing Letters, vol. 12, no. 12, pp. 2359–2363, 2015. 

 

 


