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Daily Evapotranspiration Mapping using Regression
Random Forest Models

Consuelo Gonzalo-Martı́n, Mario Lillo-Saavedra, Angel Garcı́a-Pedrero, Octavio Lagos and Ernestina Menasalvas

Abstract—Efficient water management in agriculture requires
an accurate estimation of evapotranspiration (ET ). Even though
local measurements can be used to estimate the components of
the surface energy balance, these values cannot be extrapolated
to large areas due to the heterogeneity and complexity of
agricultural and natural land surfaces; and the dynamic nature
of their heat processes. This extrapolation can be done by using
satellite imagery, which provides information in the infrared
thermal band; however, this band is not available in most
current operational remote sensors. Our work hypothesis is that
it is possible to generate a spatially distributed estimation of
ETd without thermal band by using non-parametric models
as Regression Random Forest Models (RRFM). Six Landsat-7
scenes were used to generate the RRFM. Results were evaluated
by comparing the values of ETd provided by RRFM with that
obtained using surface energy balance model. It has been shown
than the results generated by RRFM present a good agreement
with METRIC results, both quantitatively and qualitatively,
especially for agricultural vegetation and forest land covers.
Moreover, it has been detected that the RRFM estimation quality
depends on the meteorological conditions on the days previous to
the satellite register. It can be concluded that the ETd estimated
by the RRFM would be feasible for real applications when the
thermal band it is not available.

Index Terms—Evapotranspiration; Regression Random Forest;
METRIC; Medium resolution satellite images; Remote Sensing.

I. INTRODUCTION

IT is well known that the demand for water is under
growing pressure as the human population grows. Although

this problem has been presented common throughout history,
it is currently becoming more widespread and its impact
more devastating. New threats include the climate change,
which is likely to alter both water availability and water
demand, in particular in agriculture [1]. In this scenario, it
is clear that one of the main challenges of the 21st Century
is the increase in agricultural water productivity [2]. This
situation has triggered the search for solutions to alleviate
the differences between demand and supply in terms of water
quantity, quality and timing. According to the FAO, agriculture
uses approximately 70% of the world’s freshwater supply
[1]. Therefore, accurate information on agricultural water
requirements is crucial for an efficient water management
and productivity. One of the most extensively used way to
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evaluate these requirements is estimating evapotranspiration
values (ET ). ET represents the total amount of water lost
via transpiration and evaporation from the canopy and soil in
an area where crops are growing. ET at the land surface is
considered as the most important process in the determination
of the exchanges of energy and mass among hydrosphere,
atmosphere and biosphere. However, measuring and modelling
daily evapotranspiration (ETd) is not straightforward due to
the natural heterogeneity and complexity of agricultural and
natural land surfaces. Several approaches have been proposed
in the literature to estimate ETd: i) a two-step approach
by multiplying the weather-based reference evapotranspiration
ETr by crop coefficients (Kc) has been researched by several
authors [3]–[5]. Crop coefficients are determined according
to the in-situ type of crop and the crop growth stage [4]; ii)
based on the Penman-Monteith (P-M) equation [6], with crop
to crop differences represented by the use of specific values
of surface and aerodynamic resistances [7]–[12]; iii) and other
approaches extend the P-M single layer model to a multiple-
layer model. A one-dimensional model of crop transpiration
is combined with a one-dimensional model of soil evaporation
in [13]. Unfortunately the aforementioned methodologies for
modelling ETd estimate latent heat fluxes locally and do not
provide a spatially-distributed estimation.

Nowadays it is possible to estimate ETd for different crops,
providing spatial and temporarily distributed information over
a wide area, using information gathered from aircraft or
satellite platforms. Two methods for ETd estimation from
remote sensing data can be found in the literature: i) methods
that use visible and near infrared sensors to extract a vegetation
index (VI) and the surface radiative temperature to estimate
its corresponding skin temperature [14]–[16] and ii) residual
methods using the surface energy balance. These last methods
calculate ETd by subtracting sensible heat and soil heat fluxes
from net radiation [17].

The following physical and empirical models based on the
surface energy balance (SEB) approach are of interest: SEBI
(Surface energy balance index) [18], TSM (Two-source model)
[19] and ETMA (Evapotranspiration mapping algorithm) [20].
One of the most widely used models is METRIC (Mapping
Evapotranspiration at high Resolution using Internalized Cal-
ibration) model [21], which is based almost entirely on the
SEBAL model (Surface Energy Balance Algorithm for Land)
developed by Bastiaanssen et al. [22]. Both models estimate
crop ETd, by solving the surface energy balance using spectral
information from multispectral satellite images in the optical,
near infrared and thermal ranges. Only remote sensing imagery
that provides spectral information in the thermal band may be
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used as input to these models. Unfortunately, most of current
operational remote sensors do not supply this information.
Therefore, alternative methodologies that allow mapping ETd,
avoiding the need for a thermal band, should be researched
for agricultural water management purposes. Machine learning
methods for forecasting distributed ETd on space and time
are now becoming a promising area of research. In [23]
is proposed an algorithm based on Wavelet Transform and
Support Vector Machines that finds multiple relationships
between input products (i.e. different satellite images) and
output products (i.e. PNS MODIS or Latent Heat Flux (LE)) at
different spatial scales. Even though the method has shown to
achieve a good accuracy in the estimation of these products,
the RMSE values obtained increases with the length of the
forecast, and the method requires thermal information. In
[24] a Relevance Vector Machine was trained with ETd from
METRIC to forecast the ETd during days when Landsat
images are not available. For this task, extrapolated temporal
values of NDVI and LAI, reference evapotranspiration (ETr)
calculated from a weather station and thematic crop classes
were used. These classes were generated through a supervised
classification for each year studied, without considering the
high variability of this kind of cover both from a spatial and
temporal point of view.

Our work hypothesis states in which it is possible to train
non-parametric models fed with values of NDVI and LAI
spectral indexes, ETr values of reference registered through
a meteorological station and thematic classes, to generate a
spatial distributed estimation of ETd, without thermal spectral
data.

The main goal of this paper is to evaluate the ability
of Regression Random Forest Models (RRFM) to estimate
spatially distributed ETd for different thematic classes and
dates where there is not a thermal band available to apply the
surface energy balance models.

The training patterns of the RRFM have been characterized
by features obtained from different dates and different land
covers. Thus for each date, NDVI and LAI indexes, ETr
values obtained from a metereological station and a thematic
map have been used as inputs to the RRFM. The thematic
maps have been generated by the RUSboost algorithm and they
have been included with the aim of considering agricultural
land cover dynamics. Different sets of these features have
been used to investigate and analyze the robustness, accuracy
and general capability of the generated RRFM. The METRIC
model output has been used as the target in the generation of
the RRFM.

This paper is organized as follows. The theoretical de-
scription of the METRIC model, as well as, the machine
learning methods used in this paper (RUSBoost classifier and
Regression Random Forest) are presented in Section 2. The
data sets used for the experimentation phase are described
in Section 3. The methodology proposed is explained and
illustrated in Section 4. The results are presented and discussed
in Section 5. And Section 6 summarises the conclusions
derived from the results.

II. BACKGROUND

A. Surface Energy Balance Model: METRIC

METRIC is a satellite-based image-processing model for
estimating ETd based on algorithms which compute the
surface energy balance components using remotely sensed
surface reflectance in the visible and near-infrared wavebands
and surface temperature (radiometric) from infrared thermal
bands. Using this data and in–situ weather measurements, the
instantaneous latent heat flux (LE, W ·m−2) is calculated for
each image pixel using a surface energy balance model (Eq.
1).

LE = Rn −G−H (1)

Where Rn is net radiation (W · m−2), G is soil heat flux
(W ·m−2) and H is sensible heat flux (W ·m−2). To compute
the instantaneous soil heat fluxes G, an empirical relationship
between leaf area index is used in accordance with [21]. Rn

for each pixel, at the time of the satellite overpass, is estimated
using the following equation:

Rn = (1− α)×Rsi +RLi −RLr − (1− ε0)RLi (2)

α representes the broadband surface albedo for each pixel, Rsi

the incoming shortwave solar radiation (W ·m−2), RLi and
RLr are the incoming and outgoing longwave solar radiation
respectively (W ·m−2) and ε0 represents the surface emissivity.

Instantaneous sensible heat fluxes are computed as:

H =
ρ× Cp× dT

rah
(3)

Where ρ is the air density (kg · m−3); Cp the specific heat
capacity of air (1004J · kg−1 ·K−1); rah is the aerodynamic
resistance to heat transport (m·s−1) and dT is the near surface
air temperature gradient (K).

A relationship between the difference in temperature (dT )
(at different heights) and surface temperature (Ts) for two
extreme condition pixels, called anchor pixels (hot and cold
pixels), is defined to estimate sensible heat fluxes. Thus,
through Equation (4) it is possible to obtain the dT of each
pixel for the whole image.

dT = b+ a× Ts (4)

Coefficients a and b are obtained from anchor pixels using
an iterative process proposed in [22] and modified in [21].
Subsequently, dT is used to estimate the sensible heat flux for
each pixel.

The Fraction of the estimated evapotranspiration (ETrF )
is obtained through equation (5). The ETr is defined as the
reference evapotranspiration calculated from data registered
by a metereological station at the instant of the satellite image
capture, and ETinst is the instantaneous ET estimated from
the METRIC model.

ETrF =
ETinst
ETr

(5)

Finally, it is possible to estimate the ETd (mm · day−1)
through ETrF and the reference evapotranspiration for the
daily period (ETr−d) through Equation (6).

ETd = ETr × ETr−dF (6)



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING , VOL. XX, NO. X, XX 2017 3

A complete description of the METRIC model can be found
in [21]. Figure 1 illustrates the whole process of the evapo-
transpiration estimation maps by METRIC.

One of the most critical parameters in the METRIC model
are the anchor pixels. In the first approaches of these models
[21], the selection of these parameters was made by an
operator. But since the different criteria of these operators
can be a source of error, automatic selection methods have
been researched. In this work, the automatic method for the
selection of anchor pixels proposed by [25] has been used.

B. RUSBoost classifier
To include information regarding the temporal variability of

the agricultural covers to be analyzed in the models, a thematic
map has been generated for each date through a supervised
classification, using a RUSBoost classifier.

RUSBoost is a hybrid boosting/sampling method proposed
by [26], which is a state-of-the-art method for learning from
imbalanced datasets. RUSBoost improves the boosting algo-
rithm by resampling training data in order to balance the class
distribution. Unlike other ensemble methods, RUSBoost ap-
plies an under-sampling strategy to remove samples randomly
from the majority class, before the training of each weak
learner algorithm which is part of the ensemble.

Let xi be a point in the feature space X and yi be a
class label in a set of class labels Y . Each of the examples
in the data set (D) can be represented by the tuple (xi, yi).
RUSBoost combines many weak classifiers ht into a strong
classifier Hclass through linear combination. T weak learners
are iteratively trained and added to the Hclass. The final
ensemble is constructed as:

Hclass(x) = arg max
y∈Y

T∑
t=1

ht(x, y) log
1

αt
(7)

where Hclass(x) is the prediction of the classifier Hclass given
the input feature vector x, the resulting class y ∈ Y is the one
that gets the maximum value.

In each iteration t, RUSBoost randomly subsamples the
majority class in training set Dt until a subset D′t with
a desired class distribution is reached. For example, if the
desired class ratio r is 50:50, then the majority class examples
are randomly removed until the numbers of the majority and
minority class examples are equal. Hence a weight αt is
assigned to the weak learner according to the equation:

αt =
εt

1− εt
(8)

where εt represents the pseudo-loss based on the original
training set Dt and it is calculated as:

εt =
∑

(i,y):yi 6=y

Dt(i)(1− ht(xi, yi) + ht(xi, y)) (9)

where Dt represents the weight distribution, and ht(xi, y) the
conditional probability of the class y given the feature vector
xi. Initially, the weight of each example D1(i) is set to 1

n , in
which n is the number of examples in the training set. After
each iteration, the weights are updated as follows:

Dt+1(i) = Dt(i)α
1
2 (1+ht(xi,yi)−ht(xi,y:y 6=yi))
t (10)

and then Dt+1 is normalized to 1.

C. Regression Random Forest

A Regression Random Forest (RRF) is a predictor consisting
of a collection of randomized base regression trees (weak
predictors) ht(x,Θm), in which m ≥ 1 and Θ1, . . . ,ΘN are
independent and identically distributed outputs of a random
vector Θ [27], [28]. The output of these random trees are
combined to form the aggregated regression estimated by
equation 11.

Hregress(x) =
1

T

T∑
t=1

ht(x,Θ), (11)

in which x ∈ Dt and T represents the number of trees in the
forest.

Unlike a classification problem, the output of the RRF takes
on numerical values rather than class labels. The random
vector Θ is used to determine how the successive cuts are
made when building the individual trees and it is assumed to
be independent of x and the training samples Dt [27].

The generalization error for the RRFM depends on the
strength of the individual trees in the forest and the correlation
between them. This error, represented by the Euclidean dis-
tance (Y −Hregress(X))2, converges to a limit as the number
of trees (T ) in the forest becomes larger. A huge number of
RRFM implementations can be found in the literature, which
differ by 1) the way each individual tree is constructed, 2)
the procedure used to generate the modified data sets on
which each individual tree is constructed and 3) the way the
predictions of each individual tree are aggregated to produce
a unique consensus prediction [29].

Random Forest provides some key advantages against other
well known classifiers: it has a non-parametric nature; it
provides higher classification accuracy than other classical
classifier, when the adequate attributes are considered for the
characterization of the training patterns; and it is capable of
determining the importance of the features [30]; moreover,
it is robust against unbalanced classes distribution [31]. The
aforementioned properties led us to choose Random Forest
as the learning technique in this work. An ensemble of T
decision trees for regression has been implemented by using
the Statistics Toolbox from MATLAB R©.

III. MATERIALS AND METHODS

A. Dataset description and pre-processing

The study site is located in the Central Valley in Chile, with
central coordinates of 36o 35′ S and 72o 00′ W. The scene is
composed of a city (Chillán), rivers, mainly different annual
crops and orchards, and alluvial soils, which allows a high
production for different crops. The climate is warm temperate,
with an annual mean temperature of 14o C, a short dry season
and an annual rainfall ranging from 1,000 to 1,300 mm. Six
images were captured by the ETM+ sensor on board the
Landsat-7 satellite (path 233, row 85). They were downloaded
from the USGS Glovis official site (http://glovis.usgs.gov),
with an 1T preprocessing level of standard field correction.
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Fig. 1. Overview of the Evapotranspiration map estimation process.

Table I shows the details (dates and names) of the images
from the summer season that have been used in this research.
The label used to name each image is year–day in the Julian
calendar. The size of the six Landsat-7 scenes is 947x702
pixels. Each pixel represents an area of 30 m x 30 m for
all spectral bands, except for the thermal band. In this case
each pixel represents an area of 60 m x 60 m. A RGB color
composition of the image registered on 12 January 2012 is
displayed in Figure 2. All images used have been preprocessed
in order to ensure the quality of the data used for training
the models. All outlier pixels with NaN and Inf values have
been eliminated, also pixels with outlier ETd values(ETd < 0
and ETd > 11 mm · day−1) and the regions covered by
clouds have been also eliminated. Four different land covers
are presented in the scene: urban, agricultural vegetation, forest
and bare soil.

Besides data obtained from the satellite images, other input
data to the METRIC model were obtained from a meteorolog-
ical station.

Data from an Eddy Covariance System (EC), an automatic
weather station, as well as, crop evapotranspiration ETc and
reference evapotranspiration ETo values have been used in
this study to characterise the training patterns. The data
registered by the EC are filtered considering only daily data
and days without precipitation, and they have to fulfil the
three following conditions: Rn > LE, Rn > G, Rn > H .
Once the data have been filtered, further analysis splits into
two parts. The first one calculates the mean of dairy latent
fluxes of the following variables: sensible heat flux, soil heat
flux, net radiation in a row and between rows (all of them

in W ·m2). The second part changes the unit of latent heat
flux from W ·m2 to mm ·h−1. Regarding meteorological data
only daily data are considered. Once crop ETc and reference
evapotranspiration ETo are obtained, data from October to
March of every season are analysed. This analysis corresponds
to choose continuous days (at least three) where ETc , ETo,
air temperature and net radiation are stable, without great
variations. Once the days are selected, evapotranspiration ratio
is calculated.

B. Methodology

In order to achieve the objetive established in the introduc-
tion, we propose a three-step methodology: i) generation of
the RRFM; ii) validation of the models obtained to ensure the
required precision; and iii) estimation of the ETd maps only
using optical information.

Figure 3 illustrates the workflow of the RRFM generation,
as well as the evaluation of these models (steps i and ii).
The raw meteorological and multispectral input data have
been pre–processed eliminating the outliers data, and obtaining
the input features used to train the RRFM. These input
features are {NDV Imap, LAImap, ETr, CLASSmap}. ETr
being the reference evapotranspiration registered through a
meteorological station. The values of the CLASSmap feature
are obtained through the aforementioned RUSBoost classifier.
These values correspond to the four land covers identified in
the study area: urban, agricultural vegetation, forest and bare
soil.
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TABLE I
LIST OF DATES USED IN THE STUDY. THE FIRST ROW SHOWS THE YEAR. THE SECOND ROW SHOWS MONTH/DAY. AND THE NAME OF EACH SCENE IS

DISPLAYED IN THE THIRD ROW AS YEAR-JULIAN DAY.

Year 2012 2013 2014 2015

Date 01/12 01/28 01/31 02/02 18/02 05/02
Name 2012-012 2012-028 2013-031 2014-033 2014-049 2015-036

Fig. 2. RGB color composition of a Landsat-7 scene registered on 12 January
2012.

Each of the training set of values is associated with the
corresponding daily evapotranspiration target value provided
by METRIC (ETMETRIC).

To prove the suitability of the models for estimating the
ETd values from the seen data (data used to train the models)
and the unseen data (real-world case), six different training
datasets have been generated. These datasets have been built
by removing a random date, which is used for testing. The
remaining series of images is used for training the models.

A 10-fold cross validation has been used during the training
phase. Once the models have been generated and evaluated
through the calculation of the RMSE, the best model for each
group of experiments is selected. The best model is defined
as the one that obtains the minimum error in the validation
set. This model is fed with the image that has not been used
for the generation of the maps. Then, the evapotranspiration
estimation errors are evaluated through the R-squared and
the RMSE between the ETd values estimated by METRIC
(ETMETRIC

d ) and the ETd values estimated by the RRFM
(ETRRFM

d ) for each thematic class and for each date being
studied.

Details regarding how the data used by METRIC model has
been registered as well as the ETMETRIC

d values obtained
with our instruments are included in Annex I. In this annex
also is included an analysis of the goodness of fit between
METRIC and field measurements, as well as a fetch analysis
of the EC station. The results of this analysis confirm the
suitability of using METRIC as a reference.

Firstly, ETMETRIC
d and ETRRFM

d values, for the whole

image, have been calculated for each date and each the-
matic classes. A different scatterplot of ETMETRIC

d versus
ETRRFM

d has been presented for each date. And in each
of them, the four considered thematic classes have been
differenciated. The corresponding R-square values have been
calculated. To analyze the performance of the values generated
by the RRFM, the RMSE between the ETMETRIC

d and
ETRRFM

d , for each thematic class and for each date being
studied, have been also calculated.

IV. RESULTS AND DISCUSSION

Figure 4 represents the scatterplots obtained by representing
ETMETRIC

d against ETRRFM
d for each date. In each scatter-

plot, the different thematic classes have been identified by a
different color.

Now well, given the large number of pixels to be rep-
resented, four groups have been defined for each thematic
class, based on the mean evapotranspiration value per group.
Thus, each dot represents the mean evapotranspiration value
of each one of the clusters defined for reasons of visualisation.
The horizontal and vertical lines, associated to each dot,
represent the deviation from the mean value produced by the
ETMETRIC

d and ETRRFM
d , respectively. It can be observed

that for the land covers bare soil and urban areas, the deviation
values for both models (METRIC and RRF) are larger than for
agricultural vegetation and forest, but similar for both. On the
other hand, it should be noted that the relation between RRFM
with METRICS models is much more linear in these two last
covers (agricultural vegetation and forest), areas of the special
interest of this work, in particular agricultural vegetation.

The effect of the overestimation (dots above the diagonal)
or underestimation (dots values under the diagonal) can be ob-
served for all dates. These effects may be due to the difficulty
in modelling non-linear natural phenomena considered in the
METRIC model. A more profound analysis would be required
to identify other variables that could improve the models in a
more extended paper.

The R-squared values for each thematic class and each date
corresponding to these scatterplots are included in Table II.
The highest R-squared values, for each date, is shown in
bold type, and the lowest value is shown in underlined type
text. The values of this table corroborate the analysis on the
scatterplots; and also show that the generated model provides
the best estimation for agricultural vegetation, followed by
forest land covers and urban areas and the worst for bare soil.

In order to evaluate the estimation quality depending on
the date, the RMSE has been calculated for each class and
for each date and the average values for each date have
been obtained. Table III summarises the calculated RMSE
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Fig. 3. Overview of the Regression Random Forest Model Generation.

(a) 2012-012. (b) 2012-028.

(c) 2013-030. (d) 2014-033.

(e) 2014-049. (f) 2015-036.

Fig. 4. Scatterplots of ETMETRIC
d against ETRRFM

d for each of the dates analyzed.
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TABLE II
R-SQUARED VALUES.

2012-012 2012-028 2013-030 2014-033 2014-049 2015-036 Average

Urban areas 0.80 0.96 0.27 0.38 0.80 0.47 0.70
Agricultural vegetation 0.97 0.99 0.99 0.93 0.90 0.99 0.96
Forest 0.99 0.99 0.96 0.99 0.88 0.42 0.87
Bare soil 0.26 0.93 0.16 0.63 0.89 0.97 0.64

TABLE III
RMSE VALUES (mm · day−1).

2012-012 2012-028 2013-030 2014-033 2014-049 2015-036 Average

Urban areas 2.48 1.53 1.75 1.17 1.35 1.33 1.60
Agricultural vegetation 2.57 1.60 1.20 1.17 1.03 1.49 1.51
Forest 3.14 2.14 1.10 0.78 0.61 2.35 1.68
Bare soil 2.94 1.23 2.07 0.86 1.08 0.97 1.52

Average (date) 2.78 1.62 1.53 0.99 1.05 1.53

values. In this table, the values in bold represent the lowest
values of RMSE for each date, while the highest values are
underlined. It can be observed that the average RMSE is
similar for most dates, with the exception of the 2012-012
and 2014-033. Analyzing the different factors that can justify
this behavior, it should be noted that in the 2012-012 case, the
maximum temperature was of 32◦C, slightly lower than the
day before (35◦C), moreover four days before (8th February)
the maximum precipitation of this month was registered (13.2
mm·day−1). While, in 2014-033 there were not precipitations
in the days before and the maximum temperature was 24◦C.
These two different situations have a strong influence in the
selection of the anchor pixels, specially the cold pixel. Figure
5 shows the Evapotranspiration map provided by METRIC
(Figure 5a) for the image 2012-012 and the corresponding
Evapotranspiration map provided by the RRFM (Figure 5b).
This dataset have been selected because according Table II and
III, it presents the highest error for all considered datasets.
The comparison between both maps allows appreciating a
high similarity between them. It should be noted that, once
again, the areas of higher difference correspond in the image
with urban areas and bare soil. While the areas with lowest
differences correspond with agricultural vegetation and forest.

To analyze the differences between METRIC and RRFM
estimations for the particular case of agricultural vegetation
landcover, a particular comparison has been carried out for
the scene labeled 2012-012, restricted to this landcover. ETd

values larger than ( ˆrms ± σ) have been considered outliers
and coloured in red; while values smaller than this threshold
have been considered normal values and colored in green. All
these points have been spatialised and superimposed on the
thermal band of this scene (Figure 6). This visualisation allows
observing that the outliers present a lower surface temperature
(darker values in the scene) than the surrounding areas, which
may be because outlier areas had recently been irrigated.

The proposed methodology presents the characteristic limi-
tations of most regression models based on machine learning.
All these models only can predict the values that they learn
during the training phase. In this sense, it is critical that the

(a) ETMETRIC
d .

(b) ETRRFM
d .

Fig. 5. Evapotranspiration maps, corresponding to a scene labeled 2012-012,
obtained by METRIC (a) our RRFM (b).

training set includes the whole spectrum of the values that
could be predicted. This kind of limitation is derived from the
available training data.

V. CONCLUSION

The ultimate goal of this paper was to provide a model
based on RRF that generates daily Evapotranspiration maps
when there are not enough data to apply the SEB models. This
goal has been achieved as it is shown by obtained results. It
has been shown than the generated models by RRF present
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Fig. 6. Outliers superimposed on the thermal band of the scene.

a good agreement with METRIC models, especially for agri-
cultural vegetation landcover (overlineR− square = 0.96)
and forest (R− square = 0.87). The spatially distributed
visualisation of the evapotranspiration estimated by METRIC
and RRFM shows a great similarity between both maps, since
the areas of higher difference correspond with urban areas and
bare soil; while the areas with lowest differences correspond
with agricultural vegetation and forest. In other words, the
generated RRFM are valid for green vegetation. However, it
has been detected that the RRFM estimation quality depends
on the meteorological conditions on the days previous to the
satellite register. Since, METRIC is based on a balance of
energy, it is able to detect this phenomenon, while RRFM
is not able to detect this because it is mainly based on
NDVI, and this index is completely altered by the presence
of water in the covers. It can be concluded that the ETd

estimated by the RRFM would be feasible for real applications.
Nevertheless, further investigations have to be done, mainly
in applying other machine learning models, and integrating
complementary information for the enrichment of the models.
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PID–07).

ANNEX I

First in this work, to evaluate ETd values estimated by
METRIC a field of 3.7 ha blueberry orchard, located at 36o 37

′

15.67” S, 71o 53
′

57.65” W, 125 m a.s.l. was considered. The
soils in this site were formed from volcanic ashes (Andisols)
with a silt loam texture. In 2006 blueberries, variety Legacy,
were planted with a standard spacing of 1 m in a row and
3 m between rows. The selected area of the field has 3.333
plants per hectare, irrigated by a drip irrigation system, with
2 emitters per plant and a discharge of 2.2 L · h−1. An Eddy
Covariance System was installed at this site to measure all
energy balance components at 30-min intervals. To measure
net radiation (over the crop row and between rows), two
radiometers were used (NR-Lite2, Kipp & Zonen, Delft, the

Netherlands). Soil heat fluxes were monitored by 4 plates
(2 on the row and 2 between rows) (Huxseflux HFP01SC,
Campbell Scientific, Logan, UT, USA) at 8 cm depth. Soil
temperature was measured by 4 thermocouples for soil heat
flux plate (TCAV, Campbell Scientific, Logan, UT, USA),
positioned at 2, 4, 10 and 14 cm depth. The sensible heat
was measured by a sonic anemometer 3D (CSAT3, Campbell
Scientific, Logan, UT, USA) and by a fine wire thermocouple
(FW3, Campbell Scientific, Logan, UT, USA). The latent
heat was monitored using a sonic anemometer with a gas
analyzer (EC150, Campbell Scientific, Logan, UT, USA).
Air temperature and relative humidity were measured by an
HMP45C probe (Campbell Scientific, Logan, UT, USA). The
soil water content was monitored using an analog data logger
(Em5b, Decagon Devices, Pullman, WA, USA), 2 sensors
(EC- 5, Decagon Devices, Pullman, WA, USA) at 5 and 11
cm depth, 3 sensors (10HS, Decagon Devices, Pullman, WA,
USA) at 20, 30, and 40 cm depth and 7 sensors (Watermark,
Irrometer, Riverside, CA, USA), 4 of them at 10, 25, 40 and
55 cm depth on the row and 3 of them at 10, 25 and 40 cm
depth between rows. Canopy temperature was monitored by an
infrared radiometer (SI-400, Apogee Instruments, Logan, UT,
USA), located at 2 m high and precipitation was measured by
a rain gauge (Texas electronics TE525, Campbell Scientific,
Logan, UT, USA). Then, with the aim of comparing the
ETMETRIC

d obtained with our instruments into the blueberry
orchard and values estimated in other published works, a
footprint (source weight function) was calculated using the
model proposed by [32]. The fetch for stable and unstable
conditions as well as the Xpeak (Peak distance from measuring
point to the maximum contributing source area (m) have been
calculated. As shown in Figure 7 the analysis indicated that
under unstable conditions 91% cumulative normalised flux
measurements is obtained at nearly 150 m lengths. In order
to analyse the reliability of measurements based on the EC
system, energy balance closure was evaluated ((see Figure 8).
The linear comparison between available energy (Rn−G) and
turbulent energy fluxes (H + LE) ) showed a slope of 0.83
and a coefficient of determination (R2) of 0.98. To reduce the
EC imbalance the Bowen ratio method for recalculating the
turbulent energy fluxes was used.

Different surface energy balance models has been evaluated
in the central irrigated valley of Chile to estimate ETd

from satellite images by several recent studies. In this area
METRIC has been evaluated by [33] in sugarbeet, comparing
ET estimations with measurements from a SEB system, by
[34] in sugarbeet and cherry, and by [35] and [36] over
a drip irrigated vineyard. Similarly, others surface energy
balance models have been evaluated. [33] evaluates a surface
energy balance model for partially vegetated surfaces over a
sugarbeet field; [37] evaluated ETd estimations over a drip-
irrigated olive orchard by using thermal and multispectral
cameras placed on a UAV; and [38] over a drip irrigated merlot
vineyard. All evaluation showed that SEB models were able
to estimate evapotranspiration from satellite images. In this
study ETd estimations with METRIC was compared with EC
measurements, this analysis showed a RMSE value of 1.47mm
·day−1 similar to previous studies.
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(a) (b) (c)
Fig. 7. Footprint analysis of Eddy Covariance measurements. a) Fetch for stable conditions. b) Fetch for unstable conditions. c) Xpeak.

Fig. 8. Energy balance closure.
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