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Parcel-based active learning for large extent
cultivated area mapping

Ines BEN SLIMENE BEN AMOR, Nesrine CHEHATA,IEEE Member, Jean-Stéphane BAILLY, Imed
Riadh FARAH and Philippe LAGACHERIE

Abstract—This paper focuses on agricultural land cover map-
ping at a high resolution scale and over large areas from an
operational point of view and from a high-resolution monodate
image. In this context, training data are assumed to be collected
by successive journeys of field surveys and thus, are very limited.
Supervised learning techniques are generally used, assuming
that the classes distribution is constant over the whole image.
However in practice, a data shift often occurs on large areas
due to various acquisition conditions. To alleviate these issues,
active Learning (AL) techniques define an efficient training set
by iteratively adapting it through adding the most informative
unlabeled instances. They can improve the classification process
efficiency while keeping a limited training dataset. The novelty in
this paper is the application of AL techniques on multispectral
images for agricultural land cover mapping, using field sampling
instead of pixel sampling which is rarely done in the literature.
Besides, we proposed a parcel-based active learning scheme
which is suitable for an operational land cover mapping in
cultivated areas since the parcel is an agricultural unit and
field observations are processed at parcel scale. Random Forests
classifier was used. Results were processed on a 6m multispectral
Spot6 image over a 35 km? Mediterranean cultivated area, in
Lebna Catchment, north eastern Tunisia.

The contribution of AL techniques was assessed with compar-
ison to a random and stratified random strategies for sampling
new instances. For iterative sample selection, two criteria are
used and often coupled: uncertainty and diversity. For diversity
metric, a new clustering-based metric was proposed based on a
mean-shift clustering which improved the classification accuracy.
AL techniques showed to be efficient with complex data and fine
land cover legend improving random-based selection up to 10%.
Besides, the maximum of classification accuracy is reached using
mean-shift-BT metric in just 5-day field survey, i.e. 30 days less
compared to the random selection. Finally, results showed that
the finer the definition of land cover classes, the more crucial is
the choice of AL metrics.

Index Terms—Active Learning, object-based, Random Forest,
Uncertainty, Diversity, Multispectral, mean-shift clustering, Agri-
culture

I. INTRODUCTION

Agricultural practices and land cover are major drivers of
water flows in cultivated landscapes. The spatial arrange-
ments and connectivities of cultivated fields have a strong
impact onto the run off and soil erosion at the landscape
and watershed scales [1]. Land cover and use have also a
great impact on water quality [2], [3]. In practice, there is a
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need for agricultural land cover mapping at a scale and extent
that could be integrated into hydrological models to better
simulate the considered hydrological behavior of catchment
and thus improve water resources management. This impact
on hydrological fluxes is mainly required at large extent which
corresponds to water management scale. Besides, the context
of this study is Mediterranean cultivated areas which present
a high level of parcel fragmentation, with small and lineform
parcels (~ 1 ha) which needs to be mapped with a high spatial
resolution imagery.

Remote sensing data and supervised classification tech-
niques even on monodate image are well appropriate for
mapping agricultural land cover at a high resolution scale and
over large areas [4]. In remote sensing classification problems,
the collection of labeled samples can be derived according to
the following: 1) field survey; which is associated to high cost
and requires time, 2) photo-interpretation; which is cheaper
and faster but less accurate, even not appropriate for some crop
discrimination (e.g. barley and wheat), or 3) hybrid solutions;
where both photo-interpretation and ground are used. The
choice of labeling strategy depends on the considered problem
and the image type [5].

For agricultural landscapes, the supervised classification
task has proven to be challenging due to highly unbalanced
data (i.e unbalanced crop surfaces), a high intra-variability of
crop parcels and to data shift issues over large study areas.
Indeed, the classes distribution is assumed to be constant over
the whole image. The classifier model is built locally and
then applied to the whole image. However in practice, a data
shift often occurs on large areas due to various acquisition
conditions for instance. Therefore, the classifier model should
1) exploit more unlabeled samples since labeled samples are
very limited and 2) be adapted by adding the most informative
ones from non-represented areas in the initial training set.

In machine learning literature, two kinds of learning meth-
ods can alleviate the problem of limited training sets. Semi-
supervised Learning (SSL) and Active Learning (AL) methods
allow to use unlabeled data in the classifier model [6]. SSL
methods use both labeled and unlabeled data. No manual
labeling is needed. Many SSL techniques assume a default
principle where closely located data points are likely to share
similar label information. Active Learning (AL) techniques
define an efficient and parsimonious training set by iteratively
adapting it through adding the most informative unlabeled
instances [7]. These instances are then labeled manually before
re-training the classifier.

In agricultural context, with a highly fragmented landscapes
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and a high class intra-variability, manual labeling is required
and neighborhood homogeneity hypothesis can not be as-
sumed. For these reasons, we propose to use active learning
techniques to build iteratively the most efficient learning
sampling that ensures the best classification accuracy.

AL has shown a great potential in remote sensing to improve
the efficiency of the classification process while keeping a
limited training dataset [8]. The AL process is conducted
according to an iterative process. At each iteration, the most
informative unlabeled samples are chosen for manual labeling,
and the supervised model is processed with additional labeled
samples. In this way, the unnecessary and redundant labeling
of non-informative samples is avoided, greatly reducing the
labeling cost and time [9]. This is particularly well suited to a
context where the manual labeling is processed by field survey.
Thus, the field sampling should be efficient and parsimonious.

AL techniques are often pixel-based and are processed
by photo-interpretation [8]. In our context, we proposed a
parcel-based active learning scheme which is suitable for an
operational land cover mapping in cultivated areas, since the
parcel is an agricultural unit and field surveys are processed
at parcel scale. Indeed, such object-based approaches are less
time consuming than the classical pixel-based approaches
along in classification task and for field surveys. In this paper,
our goal is to answer these questions : are AL techniques well
suited in agricultural context and using multispectral imagery?
How to propose an operational AL strategy based on parcel
field survey? In which cases, AL techniques are more efficient
(providing a gain in terms of time and quality) than random
sampling strategies ? Is the choice of AL metrics critical ?

Results were processed on a 6m multispectral Spot6 im-
age on a 35 km? Mediterranean cultivated area, in Lebna
Catchment, north eastern Tunisia. An hierarchical land cover
legend was used to assess the contribution of AL techniques
depending on the needed definition of land cover classes. This
paper is organized as follows: in section II, AL techniques and
metrics are detailed, study site and data are presented. The sub
section II-C details the proposed methodology, the random
forest classifier, the chosen features and the experimental
setup. Results are presented and discussed in section III and
IV, respectively. Finally conclusions are drawn.

II. MATERIAL AND METHODS
A. AL state-of-the-art methods

A general AL process can be modeled as an hexatruple of
(L, U, C, F, S, N) where L is the set of labeled samples and U
is the set of unlabeled data. C is the classifier, which is trained
on the labeled training set L. F is a function used to select the
most informative unlabeled samples from U. The AL process
is an iterative process, where the user interacts with the system
by iteratively labeling the most informative samples selected
by the function F at each iteration. At the first iteration, an
initial training set L of few labeled samples is required for
the first training of the classifier C. After initialization, the
function F is used to select a set of samples S from the U,
and the user assigns them the true class label. Then, these
new labeled samples are included into L, and the classifier

C is re-trained using the updated training set. This loop
continues for N iterations [9]. In the literature, most of works
on active learning for remote sensing data are conducted over
hyperspectral data and using the SVM classifier where samples
correspond to pixels [8]. AL techniques are generally based on
individual pixels, batches [8], or superpixels [10] which allows
to decrease calculation time. Up to our knowledge, no work
exists using active learning techniques on agricultural context
using a parcel-based approach. The main question is “What
are the selection methods to be applied in order to choose
the most informative and representative samples?” This point
is crucial for the success of an AL algorithm : the machine
needs a strategy to rank data. Two criteria can be used and
often coupled: uncertainty and diversity. The samples should
be the most informative (i.e uncertain for the current classifier
model) and diverse (i.e non redundant).

1) AL uncertainty metrics: Based on the literature in
remote sensing and in other applications, uncertainty measure
metrics can be grouped into three main families : 1) Sampling
by uncertainty, 2) Sampling by committee and 3) Sampling
by model re-estimation.

In the first family, Sampling by uncertainty, the most
informative unlabeled samples are the most uncertain ones.
Three uncertainty metrics are usually used in literature
(Entropy, Breaking ties (BT) and Class boundaries). Entropy
metric takes into account the posterior class probability and
the most uncertain sample maximizing this entropy [11].
While the Breaking Ties metric is based on the difference
between the two highest posterior class probabilities. The
lower the difference between both highest probabilities,
the lower the confidence of the model. Uncertain sample
minimizes this confidence [8]. [12] introduced the metric
based on class boundaries. Uncertain samples are located
in class boundaries. The large margin classification is the
most known approach based on this principle [8] as for
instance the support vector machines (SVM) methods. The
separation absolute distance of the hyperplane is a simple
way to estimate the confidence of the model for an unlabeled
sample. For large margin metrics, there are Margin sampling
(MS) [13], MultiClass Level Uncertainty (MCLU) [9] and
Significance Space Construction (SSC)[14]. However, the
large margin heuristics are dependent on the SVM classifier.

In the second family sampling by committee, the uncertainty
of a sample is measured by considering a learning committee
[8], [11]. Committees can be built in different ways. Either
from a single classifier that generates several models by
varying the learning set (Boosting or bagging)[7] or by
dividing the feature space into subsets or views (sub-
sets of bands)[15] or also by combining several types of
classifiers that generate different models. The algorithm
then selects samples showing maximum disagreement
between the different classification models in the committee.
To measure this disagreement, there are two approaches
(Entropy and Kullback-Leibler (KL) divergence). For entropy,
the committee disagreement is estimated by an entropy
measure on the posterior class probabilities. Maximal
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entropy corresponds to a maximal disagreement between the
committee models i.e. maximal uncertainty. This approach
has two metrics, Normalized Entropy Query-by-Bagging
(nEQB) where the bagging is used to build the committee
[16] and Adaptive Maximum Disagreement (AMD) where
Di & Crawford [17] have generated different views of the
hyperspectral image based on the band correlation index.
According to the divergence of Kullback-Leibler (KL)
approach, the sample that maximizes the Kullback-Leibler
divergence is selected. This approach takes into account the
modification in classes distribution between models. The KL
divergence is then calculated between the class distribution
estimated by a committee model and the mean distribution
estimated by all committee models. Maximal divergence
corresponds to a maximal disagreement between the models
of the committee [18].

Finally, the sampling by model re-estimation family corre-
sponds to methods that quantify the uncertainty of a sample
by estimating the impact of its inclusion in the learning set.
In order to measure this impact, there are three approaches
(minimization of estimated error, Kullback-Leibler-max and
Breaking Ties). The first approach aims to select the sample
that, when added to the learning set, minimizes the classifi-
cation error [19]. While Kullback-Leibler-max tend to select
samples that there inclusion in the training set maximizes
changes of the posterior distribution. The KL divergence is
then calculated between the posterior distributions of the
models with and without the sample [20]. The sample that
maximizes the divergence is selected. The Breaking Ties
approach in this family is applied to the two highest estimated
posterior probabilities in order to evaluate the confidence of
the new model (with the new sample)[8].

2) AL diversity metrics: The diversity measure concerns
the ability of the model to reject redundant samples in the
training. Based on the literature in remote sensing, diversity
metrics can be grouped into three main families : 1) Distance,
2) Angle and 3) Clustering.

The distance-based diversity is based on similarity distances
between the sample spectral vectors [7]. Three metrics are
usually used in literature: close Support Vector (cSV), Most
Ambiguous and Orthogonal (MAO) and Mahalanobis Dis-
tance. In close Support Vector (cSV) measure, the samples
diversity was ensured by choosing samples associated to the
nearest support vectors (cSV). This method ensures diversity
between new samples and the current training set, but does
not guarantee the diversity of samples between them. This
metric is dependent on the SVM classifier. Most Ambiguous
and Orthogonal (MAQO) metric is based on the Kernel function
between two candidate samples which decreases with the in-
crease of the distance between them. This function encourages
the selection of unlabeled samples that are different between
each other [21]. Mahalanobis Distance metric corresponds
to the distance between a sample and the candidate sample
distribution. The highest distance corresponds to the most
diverse sample [22].

The angle-based diversity family is based on measuring a

spectral angle to evaluate the similarity. For instance, Angle-
Based Diversity (ABD) approach measures samples diversity
by considering the angle cosinus between them [9]. Samples
that minimize the cosinus ( maximize the spectral angle) are
selected as the most diverse.

The clustering-based diversity family measures sample di-
versity by spectral clustering. Clustering techniques evaluate
the distribution of the samples in a feature space and group
the similar samples into the same clusters. Since the samples
within the same cluster are correlated and provide similar
information, a representative sample is selected for each clus-
ter. In literature, there are several metrics such as : Cluster
Based Diversity (CBD), Enhanced Cluster Based Diversity
(ECBD), informative hierarchical Margin Cluster Sampling
(hMCS-i) and Fuzzy Kmeans (FKM). In CBD, cluster centers
are selected as the most representative samples [9]. ECBD
method is similar to CBD with an enhanced selection of
representative samples. In [9], K-means [23] was used to
cluster the samples. In [8], the hMCS-i method was explained.
This heuristic aims to exclude from selected samples the most
likely to become a Support Vector. Therefore, the redundancy
affecting samples close to each other in the feature space
among different iterations is controlled. This metric is the
combination of the cSV and ECBD methods and it is also
highly dependent on the SVM classifier. The Fuzzy Kmeans
is a clustering method that calculates a similarity measure
between a sample and a cluster and determines how much
they are alike in multi-variable space [22].

B. Site & data

1) Study site: The study site (Fig.1) is located in the Cap
Bon region in northern Tunisia, 60 km east of Tunis. The study
area covers 35 km? and is included in the Lebna catchment (in
red on Fig.1), which is characterized by a semi-arid climate. It
is mainly rural and devoted to cereals in addition to legumes,
olive trees, natural vegetation for breeding and vineyards.
Besides the cultivated landscape shows a high fragmentation
of the parcels, where up to 80% of parcels are less than 1 ha
with a high intra-parcel variability leading to a high intra-class
variability.

o 10 20
EE Filomelers

Fig. 1: Study area location - Lebna catchment in North Eastern
Tunisia
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2) Satellite image: A Spot-6 multispectral satellite was
acquired on the 21°¢ of March 2016. It has a spatial resolution
of 6 meters, dynamic range of 12 bits per pixel and 4 spectral
bands (B, G,R and NIR). The acquisition conditions were
optimal with 0% cloud cover (Fig.2).

Ines BEN AMOR 2016

Fig. 2: Study area SPOT-6 satelitte image

3) Ground Truth data : First, the parcels boundaries were
digitized using a Pleiades image (2m MS) from 2013. The
ground truth was obtained by a 24-day field survey during
the period of maximal growth vegetation (April 2016). The
area has been divided to tiles (The tile corresponds to 600m *
600m). Adjacent tiles could be processed in one day. Observa-
tions were made either directly in the parcel (in case of high
ambiguity on the crop type) or using pair of binoculars from
high altitude point of view for non-ambiguous crops (such
as coriander or beans). During our field campaign, almost
60 parcels could be labeled per day considering 4 adjacent
tiles. The land cover observations were made at the parcel
scale over 3198 parcels. The whole dataset is then used to
find the best strategy for the active learning. An hierarchical
legend was used, that is inspired from Corine land cover
legend and adapted to the local context (TABLE I). In this
work, we focused on the more semantically accurate levels,
i.e. Level 3 (L3) which has 19 classes and Level 4 (L4) with
24 classes. The corresponding ground truth maps and legends
are illustrated in figures Fig.3 and 4, respectively. One can
observe that the distribution of classes is highly unbalanced
which is challenging for the land cover classification task.
The differences between both levels correspond to more L4
sub-classes of arable land class, which is the major class on
our study site. In order to clarify some ambiguities between
classes: for level 4, Fodder parcels were distinguished from
Cereals since they are observed in field as parcels under
pasture. In addition, the landscape is very fragmented with
a high variability of parcel surfaces.

C. Methodology

In this section, the proposed methodology will be presented
as well as the chosen classifier, features and the selected AL
state-of the art metrics. The proposed mean-shift clustering

TABLE I: L3 and L4 Land cover legend.

L3 land cover legend

[ L4 land cover legend

Continuous urban fabric

Continuous urban fabric

Discontinuous urban fabric

Discontinuous urban fabric

Industrial or commercial units

Industrial or commercial units

Road and rail networks

Road and rail networks

Arable land

Cereals

Pulse crop

Vegetable

Fodder

Fallow

Plowed land

Vineyards

Vineyards

Fruit trees and berry plantations

Fruit trees and berry plantations

Olive groves

Olive groves

Pastures

Pastures

Heterogeneous agricultural areas

Heterogeneous agricultural areas

Forests

Forests

Shrub and/or herbaceous vegeta-
tion

Shrub and/or herbaceous vegeta-
tion

Natural grassland

Natural grassland

Moors and heathland

Moors and heathland

Sclerophyllous vegetation and gar-
rigues

Sclerophyllous vegetation and gar-
rigues

Other open spaces

Other open spaces

Bare rock

Bare rock

Inland marshes

Inland marshes

Water bodies

Water bodies

L3 land cover legend

I Continuous urban fabric
I Discontinuous urban fabric
B Industrial or commercial units
I Road and rail networks
Arable land
B Vineyards
Fruit trees and berry plantations
Olive groves
Pastures
Heterogeneous agricultural zones
Forests
Shrub and/or herbaceous vegetation
Natural grassland
Moors and heathland
B Sclerophyllous vegetation and garrigues
[ Other open spaces
Bare rock
Inland marshes
Water bodies

Fig. 3: Study area ground truth (Level 3)

diversity metric will be introduced. Finally the experimental

setup will be presented.

Assuming that:

e L; : Set of labeled training parcels in the iteration ¢
o U;: Set of unlabeled training parcels (candidates)
o T': Fixed set of test parcels (validation)

o (' Classifier

e Iy, : Function to select the most uncertain parcels
e Fp;,: Function to select the most diverse parcels

e Sun; : Set of uncertain
(uncertain Batch)

selected parcels per iteration

o S; : Set of final selected parcels per iteration (Batch)

e N : Number of iterations
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L4 land cover legend

I Continuous urban fabric
Il Discontinuous urban fabric
B Industrial or commercial units
Il Road and rail networks
Cereals
Pulse crop
Vegetable
N Fodder
Fallow
Plowed land
I Vineyards
Fruit trees and berry plantations
Olive groves
Pastures
Heterogeneous agricultural zones
Forests
Shrub and/or herbaceous vegetation
Natural grassland
Moors and heathland
I Sclerophyllous vegetation and garrigues
[ Other open spaces
Bare rock
Inland marshes
[ Water bodies

Fig. 4: Study area exhaustive ground truth (Level 4)

Algorithm 1 : Parcel-based AL algorithm
141
L; < L (initial training set)
while i < N do
Train the classifier C' with the training set L;;
Predict the unlabeled samples in Uj;
Validate predictions in iteration ¢ (accuracy measure OA
and Kappa), using test set 7'
for each candidate (unlabeled parcel) z in U; do
Evaluate the user defined function Fi;,;
end for
Rank candidates in U; according to the score of Fyy;
Select the most uncertain parcels Sy, ;
for each uncertain selected parcel x in Sy, do
Evaluate the user defined function Fp;,;
end for
Rank candidates in Sy, according to the score of Fp;y;
Select the Batch S;;
Assign labels to the Batch S; by a user;
Remove the Batch from candidates : U; 11 < U; \ S;
Add the Batch to the training : L;y1 < L; US;
14 1+1
end while

1) Classifier : Random Forest : The proposed method-
ology is generic and can be applied to different classifiers
since they provide a posterior class probability. In [4], the
Random Forests (RF) and Support vector machines (SVM)
performances were compared on various datasets in a similar
context: high spatial resolution and large scale agricultural en-
vironment. Authors showed that RF classifier is more efficient
than SVM in this specific application case.

RF [24], is a modification of bagging applied with decision
trees. It can achieve a classification accuracy comparable to
boosting [24] or SVM [25]. This classifier is a combination
of tree predictors built from multiple bootstrapped training
samples. For each node of a tree, a subset of features is
randomly selected. Then, the best test in the node is calculated
with an evaluation measure over the subset of features. For

classification, each tree gives a unit vote for the most popular
class at each input instance. The final label is determined by
a majority vote of all trees.

2) AL metrics: As presented in section II-A, there are
several AL methods that allow to choose the most informative
samples in terms of uncertainty and diversity. With respect
to our thematic context and operational constraints, some AL
state-of-the-art metrics were chosen to be tested. First, since
the methodology should be independent from the classifier, all
large margin based metrics were not considered since they are
based on SVM classifier.

In addition, since the labeling is made by field surveys, our
initial training set is very limited. Thus, for uncertainty metric,
the two last families based on sampling by committee and
Sampling by model re-estimation were not considered since
they are not robust to a small initial training sets [8]. Therefore,
we selected sampling by uncertainty family and we kept two
metrics that are entropy and breaking ties (BT).

As for diversity metrics, hMCS-i and cSV metrics were
not considered since they are dependent of SVM classifier.
Angle-based metric ABD has an additional calculation cost.
MAQO is not effective with a multi-class problem. Thus the
kept distance-based metric is Mahalanobis distance [26]
although is it parametric. As for the clustering-based metrics
three metrics could be selected in our context (CBD, EBCD
and FKM) but they require the pre-definition of the number
of clusters. The number of clusters may be set to the batch
size. However, since in the case of field labeling, larger
batches are preferred [8], this parameterization (according
the number of clusters to the batch size) highly increases the
clustering computing time. To resume, the selected reference
AL metrics in our context are Entropy [11] and Breaking Ties
[8] as uncertainty measures and the Mahalanobis distance
[26] as a diversity measure.

The new proposed AL diversity metric is a clustering-based
one. The mean-shift algorithm [27] was chosen since it is a
non-parametric clustering technique which does not require a
prior knowledge of the number of clusters.

Mean-shift clustering is a procedure for locating the
maxima of a density function given discrete data sampled
from that function[28]. It is useful for detecting the modes
of this density. This is an iterative method, and it starts with
an initial estimate x. Let a kernel function K(z; — x) be
given. The first question, then, is how to estimate the density
function given a sparse set of samples. One of the simplest
approaches is to just smooth the data by convolving it with a
fixed kernel of width h. Given n data points x;,i = 1,2, ..., n,
the multivariate kernel density estimate obtained with kernel
K and h the mean-shift parameter called the bandwidth [27]:

f(z):éK<xhzi> M

Once f(x) has been computed from equation (1), the
local maxima can be found using gradient ascent or any
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optimization technique.

After mean-shift clustering of uncertain batch Sy, each
unlabeled sample is associated to a single cluster. Euclidean
spectral distances between each sample and its corresponding
centroid are calculated. All samples are ordered by increasing
distances. The closest samples (Card(S;)) to their centroid
with regard to the spectral distance are selected as the most
diverse.

3) Data description: In [4] the authors compared different
input feature (spectral bands, spectral and textural index) and
proved that the most important features for agricultural land
cover mapping are the spectral bands and the Normalized
Difference Vegetation Index (NDVI). In our parcel-based
approach, the attributes were derived per parcel by calculating
the mean and standard deviation of the spectral values (B,
G, R, NIR) of all parcel pixels and similarly for the NDVI
feature.Thus, ten features were used as input of the random
forest classifier.

4) Experiments: For AL methods, the data was split into
three independent datasets using a stratified random method:
a train set (labeled data), a candidate set (unlabeled data) and
a test set (validation data). These sets are kept the same for
all AL approaches. Tables II and III resume the experimental
setup for land cover legend at levels 3 and 4, respectively. One
can observe that the class distribution is highly unbalanced.
Besides, for some minor classes, only one training sample
(parcel) is used. The most present class correspond to arable
land.

TABLE II: Experimental setup for L3 land cover legend with
19 classes.

Classes Train Cand Test set  Total
set (L) set (U) (T)
Continuous urban fabric 1 5 1 7
Discontinuous urban fabric 4 156 16 176
Industrial or commercial units 1 0 0 1
Road and rail networks 1 8 1 10
Arable land 72 2320 247 2639
Vineyards 1 0 0 1
Fruit trees and berry planta- 1 9 1 11
tions
Olive groves 4 123 13 140
Pastures 1 24 3 28
Heterogeneous agricultural ar- 1 5 1 7
eas
Forests 1 4 0 5
Shrub and/or herbaceous vege- 1 20 2 23
tation
Natural grassland 3 71 8 82
Moors and heathland 1 14 1 16
Sclerophyllous vegetation and 1 4 1 6
garrigues
Other open spaces 1 14 2 17
Bare rock 1 0 0 1
Inland marshes 1 23 3 27
Water bodies 1 0 0 1
Total 98 2800 300 3198
Percentage % 3,06 87,56 9,38 100
The RF classifier has been applied with T' = 50 trees

, the number of considered features per node has been
fixed to the mean square of total feature number [24], i.e.

6

TABLE III: Experimental setup for L4 land cover legend with
24 classes.

Classes Train Cand Test set  Total
set (L) set (U) (T)
Continuous urban fabric 1 5 1 7
Discontinuous urban fabric 4 156 16 176
Industrial or commercial units 1 0 0 1
Road and rail networks 1 8 1 10
Cereals 26 859 91 976
Pulse crop 17 474 51 542
Vegetable 7 202 22 231
Fodder 20 755 80 855
Fallow 1 23 2 26
Plowed land 1 7 1 9
Vineyards 1 0 0 1
Fruit trees and berry planta- 1 9 1 11
tions
Olive groves 4 123 13 140
Pastures 1 24 3 28
Heterogeneous agricultural ar- 1 5 1 7
eas
Forests 1 4 0 5
Shrub and/or herbaceous vege- 1 20 2 23
tation
Natural grassland 3 71 8 82
Moors and heathland 1 14 1 16
Sclerophyllous vegetation and 1 4 1 6
garrigues
Other open spaces 1 14 2 17
Bare rock 1 0 0 1
Inland marshes 1 23 3 27
Water bodies 1 0 0 1
Total 98 2800 300 3198
Percentage % 3,06 87,56 9,38 100

M = 3. Classification accuracies, overall accuracy (OA)
and Kappa (K), were averaged over 50 runs of Random Forest.

AL approaches were also applied with a random and
a stratified random approaches for iterative unlabeled
sample selection. Besides, different reference AL metrics
for uncertainty and diversity were combined and tested
so that six AL approaches were tested for selecting new
samples (batch) as following: Random, Stratified Random,
Mahalanobis-Entropy, Mahalanobis-BT, Mean-shift-Entropy
and Mean-shift-BT.

The proposed mean-shift based diversity has been param-
eterized as follows: the width h = 20 and the used kernel
function is “epanechnikovKernel”, which is a discontinuous
parabola kernel with a restricted support that is recommended
with the blurring mean-shift version.

3
K(m) = *(1 — 172)1(‘90‘31)

1 2)

Where [(,) is the indicator function that gives 1 when z is
true and O if not. As for AL parameterization, for each
iteration ¢, the added samples (batch) have to be labeled by
field survey. Thus, we fixed the batch size to 65 parcels (S;)
which corresponds approximately to a one day field survey.
First, the size of uncertainty batch Sy, is fixed to 200 and
then the 65 more diverse unlabeled parcels S; are selected The
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maximal number of iterations N was fixed to 40 in order to
use all the candidates.

III. RESULTS

R library was used for experiments [29]. Package mean-shift
was used to run the corresponding diversity metric.

A. Comparison of AL approaches

As mentioned above, six AL approaches were compared.
Figures 5 and 6 illustrate the curves of overall accuracy
for all approaches for both land cover levels: L3 and L4,
respectively. As for X axis, bottom axis shows the number of
training parcels at each AL iteration. The number of iteration
appears on the top x-axis, which nearly equals the number
of field days. Red and black transparent polygons show the
95% confidence bounds for random and stratified random
approaches calculated over 500 random batches per iteration.
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Fig. 5: Comparative curve of metrics OA for Level 3

First, on figure 6, one can observe that generally AL
metrics do better with few iterations than random selection
of samples for level 4. Among all AL metrics, only the
proposed Mean-shift-BT AL metric exceeds the confidence
interval of Stratified Random and improves overall accuracy
up to 3.3% at 6t" iteration. Besides, the mean-shift-BT AL
metric has the faster OA improvement curve since the first
iterations in comparison with other AL metrics. However,
when comparing classification accuracies for level 3 and level
4, one can observe that the initial OA is enhanced up to 9.7%
for level 4, while it is slightly enhanced for level 3 reaching
3.6%. This means that the contribution of AL approaches is
higher for finer land cover legends, i.e. for a finer definition
of land cover classes. Moreover, for Level 3, all AL metrics
lead to very similar results, while for level 4, the mean-shift-
BT highly improves the overall accuracy with comparison to
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Fig. 6: Comparative curve of metrics OA for Level 4

other AL metrics. Thus, the choice of AL metrics is more
crucial with a finer definition of land cover classes.

For the following illustrations, 6! and 12"¢ iterations were
selected as a compromise between a good overall accuracy
for both levels and an acceptable amount of field survey days,
which correspond almost to 5-day and 11-day field survey,
respectively.

B. Land cover maps

For the all metrics, a zoom of prediction maps in
1274 iteration (11-day field survey) are displayed as well as
the corresponding ground truth map for L4 land cover in Fig.7.

Fig.7 confirms that parcels are better classified using AL
metrics than Random and Stratified Random strategies. Indeed,
on corresponding prediction maps Fig.7-(a) and Fig.7-(b) some
classes still do not appear even after the model improvement
(12" ijteration) such as Moors and heathland and Inland
marshes classes for random strategies. While these classes
are well predicted with other AL metrics and especially with
the proposed mean-shift-BT metric (Fig.7-(f)).Besides, one
comparing prediction maps in Fig.7, one can observe that
mean-shift-BT result is the most similar visually to the ground
truth map ( Fig.7-(h)), which confirms first quantitative results
of the comparative curve (Fig.6).

For the best proposed AL metric mean-shift-BT, global
prediction maps in 6" and 12"¢ iterations are displayed as
well as the global ground truth map for L4 land cover in Fig.8.

Fig.8 illustrates that the AL classification is improved
between the 6" and 12"¢ iteration for the process, especially
for the Inland marshes class. Note that, in the 6" iteration,
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Fig. 7: Zoomed prediction maps for L4 in the 12"¢ iteration
using several methods to select informative parcels for AL.
(a)Random, (b)Stratified Random, (c)Mahalanobis-Entropy,
(d)Mahalanobis-BT, (e)mean-shift-Entropy, (f)mean-shift-BT.
(g)L4 land cover legend and (h)L4 zoomed ground truth map.

samples are always carried out to the majority class Fodder
which is not the case in the iteration 12.

C. Per-class classification accuracies (producer’s accuracy)

For the best AL metric mean-shift-BT, the producer’s accu-
racy in 6! and 12"¢ iterations are displayed in Table IV.

First, one can observe that some classes have no parcels in
the test set (table III). This is due to the fact that our dataset
is highly unbalanced and contains only one parcel for those
classes. Contrary to other works that eliminate such minor
classes [4], we decided to keep the integral of the dataset,
since it is an operational study case. Thus, when a unique
parcel is available per class, it is used in the training set.
For the corresponding classes, no classification accuracy is
measured and it was symbolized by ”-” in table IV. Table
IV shows the classification accuracy measures per class. AL
improves the classification accuracy between both iterations
for different representative (major) classes (In bold in table
IV). The overall accuracy increases by 6%, 5% and 4% for

L4 land cover legend

Il Continuous urban fabric
I Discontinuous urban fabric
B Industrial or commercial units
Il Road and rail networks
Cereals
Pulse crop
Vegetable
B Fodder
Fallow
Plowed land
I Vineyards
Fruit trees and berry plantations
[ Olive groves
Pastures
Heterogeneous agricultural zones
Forests
[0 Shrub and/or herbaceous vegetation
Natural grassland
Moors and heathland
I Sclerophyllous vegetation and garrigues
[ Other open spaces
Bare rock
Inland marshes
B Water bodies

()

Fig. 8: Global maps using mean-shift-BT metric (a) Prediction
map at 6" iteration (5-day field survey), (b) Prediction map
at 1279 iteration (11-day field survey) and (c) L4 land cover
ground truth map.

Discontinuous urban fabric, Cereals and Vegetable classes,
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TABLE IV: Producer’s accuracy for mean-shift-BT metric.

Classes 6" iteration 12" jteration
Continuous urban fabric 0 0
Discontinuous urban fabric 0.87 0.93
Industrial or commercial units - -
Road and rail networks 0 0
Cereals 0.86 0.91
Pulse crop 0.58 0.56
Vegetable 0.36 0.40
Fodder 0.62 0.62
Fallow 0 0
Plowed land 0 0
Vineyards - -
Fruit trees and berry plantations 0 0
Olive groves 0.30 0.30
Pastures 0 0
Heterogeneous agricultural areas 0 0
Forests - -
Shrub and/or herbaceous vegeta- 0 0
tion

Natural grassland 0.12 0.12
Moors and heathland 0 0
Sclerophyllous vegetation and 0 0
garrigues

Other open spaces 0 0
Bare rock - -
Inland marshes 0 0
Water bodies - -
Global OA 0.634 0.638
Global Kappa 0.520 0.526

respectively.

However, the table IV also presents some zeros for certain
classes. They mainly correspond to minor classes having very
few parcels in the test set (unrepresentative classes) such as
Sclerophyllous vegetation and garrigues class that has only
one parcel in the test set. In such cases, if the model does
not properly predict the class, the corresponding per-class
accuracy will be zero.

This may explain the differences between maps (Fig.8)
and precision per class in table IV. Indeed, visually, one
can see different prediction improvements for Inland marshes,
Road and rail networks and Moors and heathland classes for
instance while the corresponding per-class accuracies are equal
to zero or do not evolve, respectively between iterations in
table IV.

IV. DISCUSSION
A. AL contribution

The proposed parcel-based AL methodology was applied on
a Mediterranean cultivated area of 35 km? has been classified
with an accuracy close to 65%. In a such context, these results
are judged acceptable for a land cover map from a monodate
image compared to other similar work such as in [4] where
the accuracy is about 77% with a finer definition of land cover
classes, identifying some crop types and using multi-temporal
spot5 images. Indeed, using solely spectral information AL
improved the results, in comparison with random sampling,
up to 10% for a fine definition of land cover classes i.e. a fine
land cover legend (level 4). This improvement is comparable
to the one in [10], which integrates spatial information. Results

confirm that in the finer definition of land cover classes, the
more important is the contribution of AL techniques.

B. AL mean-shift-BT contribution

Besides, for land cover mapping at level 3, all AL metric
gave very similar results while the proposed metric mean-
shift-BT highly improved the results in comparison with other
AL metrics (cf. figure 6). When comparing the results of
different metrics (i.e. at level 4 on figure 6), one can note
that the proposed metric mean-shift-BT allows to reach the
maximum of classification accuracy after 5-day filed survey.
More field observations will increase the cost without leading
to significant classification improvement. In addition, one can
observe that mean-shift diversity metric when combined to
different uncertainty measures lead to different results (cf.
Figure 6). Indeed, when Combined to BT uncertainty measure,
mean-shift clustering give better results than using entropy
uncertainty. This can be explained by the fact that BT is
based on the difference between the two highest posterior class
probabilities while Entropy takes into account all posterior
class probabilities. Thus, the latter may be more disturbed by
high intra-variability parcels that will lead to many non-zero
posterior class probabilities. This results are similar to those
in [8], where entropy and BT uncertainty metrics were tested
with the SVM classifier on three dataset. Results showed that
BT metric is more efficient than entropy one.

C. Operational Strategy

To resume, in the operational agricultural land cover map-
ping at a fine definition of land cover classes (level 4)
and based on a labeling by field surveys i.e very limited
training set, active learning techniques are recommended with
the proposed mean-shift-BT metric as sampling metric. Our
results also showed that 5-day survey may be sufficient to
highly improve the results (up to 10%) and that more field
observations may not be necessary. In practice, one limitation
is the sub-representativeness of classes problem. In fact, our
dataset is highly unbalanced and therefore some classes are not
represented in the test set. However, this problem is standard
in literature especially for agricultural areas and our choice
was to keep the whole dataset for validation.

V. CONCLUSION

The novelties of this work is the application of AL
techniques for agricultural land cover mapping, using in-field
observations which is rarely done in the literature. We assess
the contribution of AL techniques in agricultural context by
suggesting an operational parcel-based active learning scheme
which is suitable for agricultural land cover mapping at a
high and large cultivated areas, using a VHR monodate image
contrarily to previous works that generally used hyperspectral
data. In addition, the proposed methodology is independent
from the classifier, provided that posterior class probabilities
can be calculated which also differs from existing works that
are dependent of large margin classifier, i.e. SVM classifier.
The method is operational since we assume that the labeling
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is processed by field survey. Thus, the initial labeled data is
very limited (98 parcels for 24 classes). Besides, field survey
observations are made at the parcel scale which justifies
our strategy choice. Finally the number of AL iterations
was correlated to the number of field survey days. The
contribution of AL techniques was assessed with comparison
to a random and stratified random strategies for sampling new
samples. State of the art AL metrics were used and compared.
We proposed a new clustering-based methodology based on
mean-shift algorithm that doesn’t need a prior knowledge
of cluster number. This metric is recommended, combined
with Breaking ties uncertainty measure, since it improved
the classification accuracy results when using finer definition
of land cover classes (level 4). Otherwise, at level 3, all
AL techniques gave similar results and has not improved
random-based AL. Results confirm that in the finer definition
of land cover classes, the more important is the contribution
of AL techniques.

As future work, an operational in-field strategy will be
investigated with regard to two major points: 1) the choice
of the initial training samples and 2) the integration of spatial
information by including the cost transportation [5] [30] and
using in-field point of views.
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