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Abstract—Displaying the large number of bands in a hyper-
spectral image (HSI) on a trichromatic monitor is important for
HSI processing and analysis system. The visualized image shall
convey as much information as possible from the original HSI
and meanwhile facilitate image interpretation. However, most
existing methods display HSIs in false color, which contradicts
with user experience and expectation. In this paper, we propose
a visualization approach based on constrained manifold learning,
whose goal is to learn a visualized image that not only preserves
the manifold structure of the HSI but also has natural colors.
Manifold learning preserves the image structure by forcing pixels
with similar signatures to be displayed with similar colors. A
composite kernel is applied in manifold learning to incorporate
both the spatial and spectral information of HSI in the embedded
space. The colors of the output image are constrained by a
corresponding natural-looking RGB image, which can either be
generated from the HSI itself (e.g., band selection from the visible
wavelength) or be captured by a separate device. Our method
can be done at instance-level and feature-level. Instance-level
learning directly obtains the RGB coordinates for the pixels in
the HSI while feature-level learning learns an explicit mapping
function from the high dimensional spectral space to the RGB
space. Experimental results demonstrate the advantage of the
proposed method in information preservation and natural color
visualization.

Index Terms—Hyperspectral image, visualization, manifold
learning, composite kernel

I. INTRODUCTION

Hyperspectral imaging sensors acquire images with tens or
hundreds of light wavelength indexed bands, which enable
more accurate target detection and classification. In order for
human observers to easily interpret and analyze hyperspectral
images (HSIs), it is crucial that the displayed HSIs on the
output device best enable human interaction with them. How-
ever, the large number of bands in an HSI is far beyond the
capability of a trichromatic display device. A common solution
is to consider HSI visualization as a dimension reduction
problem where the number of bands in an HSI is reduced
to 1 for a representative grayscale output or 3 for color
visualization.

A simple way to visualize an HSI is to average all bands
to produce a grayscale image. This approach preserves the
basic scene structure but suffers from metamerism, where
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different high dimensional pixel values (or called spectral
signatures) are assigned with the same output intensity. To
alleviate metamerism, a better way is to present an HSI as a
color image. A straightforward way for color representation is
to select three of the original bands as R, G and B composites.
Some softwares provide interactive tools for users to manually
pick three bands to display [1], [2]. More sophisticated band
selection methods [3], [4], [5] aim to highlight expected fea-
tures so that human perceptual bands or the most informative
bands are selected for visualization.

Band selection methods only take the selected spectrum into
account. As a result, the information in other bands is ignored.
To preserve the information across the full wavelength range,
some HSI visualization approaches use feature transformation
to condense the original spectral bands into three new bands.
Several classic linear dimension reduction methods such as
independent component analysis (ICA) [6] and principal com-
ponent analysis (PCA) [7], [8] have been applied to map the
HSI to a 3-D subspace, whose basis is then rotated so that the
final 3-D coordinates form a plausible RGB image.

Linear methods do not consider the nonlinear characteristics
of the hyperspectral data. To model the nonlinear data structure
in HSIs [9], manifold learning methods have been proposed
to represent the topology of high dimensional HSIs in lower
dimensions for visualization and dimension reduction. Iso-
metric feature mapping (ISOMAP) [9], [10], kernel principal
component analysis (KPCA) [11], Laplacian Eigenmaps [12],
Locality Preserving Projection (LPP) [13] and locally linear
embedding (LLE) [14], [15] have received much attention
because of their firm theoretical foundation associated with
the kernel and eigenspectrum framework.

Similarly, some nonlinear visualization methods aim to
preserve the pairwise distances between pixels. This task is
usually posed as a constrained optimization problem. Mignotte
solved the optimization problem by a nonstationary Markov
random field model [16] and later extended this approach
to preserve the spectral distances and separate dissimilar
features [17]. Edge information is also a significant local
structure. Kotwal and Chaudhuria used a nonlinear bilateral
filter with the edge preserving characteristic to obtain the
weights of bands at each pixel for band image fusion [18].
Meka and Chaudhuri computed the weights at each pixel for
band fusion to maintain edge information and to maximize the
Shannon entropy of the fused image [19].

While most existing methods try to convey as much infor-
mation as possible in the visualization, the HSIs are always
displayed in false colors. In general false-color visualizations
are hard to interpret when object colors are very different from
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Fig. 1. The frameworks of two manifold learning-based methods for HSI visualization. (a) manifold alignment model. (b) The proposed model.

their natural appearance. For example, one may be confused
when the grass is shown in red or the sea is shown in yellow.
Moreover, most data-driven methods suffer the problem of
“inconsistent rendering”, i.e., the same objects/materials being
displayed with very different colors in different visualizations,
which also hinders the interpretation of HSIs. Therefore,
“natural palette” and “consistent rendering” gradually become
two important criteria for evaluating HSI visualization.

Jacobson et al. [20], [21] proposed a fixed linear spectral
weighting envelope to generate consistent natural-looking im-
ages. The spectral weighting envelope is a stretched version
of the CIE 1964 tristimulus color matching functions in the
visible range, which represents human sensitivity to wave-
length. However, the stretched color matching function (CMF)
is too simple to represent the complex physical mechanism
of spectral imaging, which makes it only applicable to some
specific hyperspectral imaging sensors.

Another approach for displaying HSIs with natural colors
was proposed by Connah et al. [22], which takes advantage
of a corresponding RGB image to produce a natural-looking
output image. The method preserves the image structure by
mapping the structure tensor of the HSI exactly to the output
image. To generate natural colors, the gradient of each pixel
in the output image is constrained to be the same with that
of its matching pixel in the corresponding RGB image. This
method requires accurate pixel-wise matching between the HSI
and the corresponding RGB image, which might be difficult
to achieve especially when the two images are acquired by
sensors mounted on different platforms, such as the airplane
and satellite, with different geometrical distortions.

We previously proposed a manifold alignment method to
visualize HSI with natural colors [23]. It makes use of the
color and structure information of a corresponding high res-
olution color image (HRCI) to generate natural colors and
fine details in the visualization. The workflow of the manifold
alignment approach is shown in Fig. 1(a). The model first
computes the manifold structures of an input HSI and a
corresponding HRCI, and then projects the two images to a
common embedding space by manifold alignment, where the
matching pixels of the two manifolds are aligned. Finally the

embedding of HSI is mapped from the common space to the
RGB space to generate an natural-looking image.

In this paper, we propose a constrained manifold learning
approach. The method takes advantage of the color informa-
tion of a corresponding natural-looking RGB image, which
may either be generated from the HSI itself (e.g. stacking three
channels from 450-515nm (blue), 525-605 nm (green), and
630-690 nm (red)) or be captured by a different sensor (e.g. a
RGB camera). Our goal is to learn a visualized image that not
only preserves the manifold structure of the input HSI but also
shares the natural colors with the corresponding RGB image.
To achieve this, we combine a local geometry-preserving
manifold learning method with a color constraint. Manifold
learning technique enables the pixels with similar spectral
signatures in an HSI to be displayed with similar colors. The
color constraint is provided by forcing pixels in the output
image to have similar colors with their matching pixels in
the corresponding RGB image. Combining manifold learning
with the color constraint allows our method to generate a final
visualization that facilitates human understanding.

The proposed constrained manifold learning can be done at
instance-level and feature-level, where the “instance” refers to
pixels and the “feature” refers to spectral features in different
spaces. Fig. 1(b) shows the framework of the proposed model.
For illustration purpose, the matching pixels are represented by
the patches centering at the pixels. Instance-level learning is
nonlinear. It directly computes the RGB coordinates of each
pixels in an HSI without assuming any specific transforma-
tions. Feature-level learning is linear. It estimates an explicit
linear mapping function from the high dimensional spectral
space to the RGB space. The mapping function can be directly
applied to visualize other HSIs captured by the same sensor.

The proposed method shares a similar idea with the man-
ifold alignment approach [23]. The difference is that our
method only makes use of the color information of the
corresponding RGB image, thus the computation of the RGB
image’s manifold structure in the manifold alignment model
is no longer needed, which makes our method more efficient.
Moreover, since manifold alignment attempts to fuse two
image structures, an HRCI registered precisely is required in
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order to obtain a desirable result, which limits its usage in
practical applications. The same problem occurs to Connah’s
approach [22], in which accurate pixel-wise matching between
the HSI and the corresponding RGB image is essential.
Different from these two methods, our method is more generic
as it only requires a small set of matching pairs representing
identical or similar class of objects/materials for color con-
straints. Hence, the color information can be provided by the
corresponding RGB images obtained via various sources, or
can even be provided by some color scribbles marked on each
land cover class on the HSI.

Manifold learning methods consider the pixels to be statis-
tically independent, ignoring the spatial relationships among
them, however the spatial contextual information of HSIs has
been demonstrated to be very helpful in HSI processing [24],
[25]. To take advantage of the spatial information, joint
spectral-spatial methods such as Markov random Fields, vec-
tors with stacked spectral-spatial features and morphological
profiles were proposed (See [26] for a comprehensive review).
In this paper, a composite kernel [27] is applied in constructing
the manifold structure of an HSI to incorporate its spectral
and spatial information. The resulting weight adjacency matrix
fuses the spectral similarity and spatial similarity between pix-
els, allowing better structure preservation in the visualization
of the HSIs.

The rest of the paper is organized as follows. Section II
briefly introduces Laplacian Eigenmaps and locality preser-
vation projections (LPP), on which the proposed instance-
level learning and feature-level learning are based, respec-
tively. Section III presents the proposed instance-level and
feature-level constrained manifold learning algorithms for HSI
visualization. The experimental results and analysis are given
in Section IV. Finally, the conclusions are drawn in Section V.

II. MANIFOLD LEARNING FOR DIMENSION REDUCTION

Manifold learning is an effective dimension reduction
method to extract nonlinear structures from high dimensional
data, which has been widely applied in data visualization,
feature extraction, denoising, and distance metrics. Generally,
the goal of manifold learning is to map a p-dimensional data
set X to a lower q-dimensional data set Y while preserving
the intrinsic geometry of the original manifold as much as
possible. Various algorithms such as ISOMAP [28], LLE [14],
Laplacian Eigenmaps [12], LPP [13] and Hessian LLE [29]
have their own representations for a manifold’s geometry.
In this paper, the proposed instance-level and feature-level
learning methods for HSI visualization are based on Laplacian
Eigenmaps and LPP, respectively.

A. Laplacian Eigenmaps

Assume a set of data is represented by a matrix X ∈ Rp×n

where p is the number of features and n is the number of
samples. Let Xi denotes the i-th sample in X. Both Laplacian
Eigenmaps and LPP aim to find a dataset Y ∈ Rq×n such that
Yi “represents” Xi in the q dimensional space with minimum
structure loss. The basic premise is that neighboring points in
the original space should still stay close in the new space.

The first step of manifold learning method is to construct a
weighted graph G = (V,E) to represent the manifold of X.
Each node in G represents a sample in the data set. Let W ∈
Rn×n be the weighted adjacency matrix of G where Wij is
the weight of edge connecting Xi and Xj . Determining which
nodes are connected on the graph is based on the distances
between points in the input space. There are two variations
to construct the edges of graph. One is to connect each node
to all the nodes within some fixed distance radius ε, and the
other connects each node to its k nearest neighbors. In this
paper, the latter method is used, i.e., two nodes i and j are
connected if Xi is among the k nearest neighbors of Xj or
Xj is among the k nearest neighbors of Xi. The weight of
an edge is computed by the heat kernel [30]. The weighted
adjacency matrix W can be constructed by

Wij =

{
K(Xi,Xj) if node i and node j are connected,
0 otherwise.

(1)
where

K(Xi,Xj) = e−
‖Xi−Xj‖

2

t . (2)

As will be illustrated in a later section, the adjacency matrix
can be modified to include the spatial context to better preserve
image information.

The objective of Laplacian Eigenmaps is to find the optimal
Y to minimize the following function:

f(Y) =
1

2

∑
ij

(Yi − Yj)
2Wij . (3)

Minimizing the objective guarantees neighboring samples in
the input space still stay close after dimension reduction.
Equation (3) can be further rewritten in matrix form:

f(Y) =
∑
i

(YiDiiYT
i )−

∑
ij

(YiWijYT
i )

= tr(YDYT − YWYT )

= tr(YLYT ).

(4)

tr(·) denotes the trace of a matrix. L = D−W is the Laplacian
matrix of G where D is a diagonal matrix with Dii =

∑
j Wij .

The optimal Y is given by the matrix of eigenvectors
corresponding to the q lowest eigenvalues of the following
generalized eigenvalue problem

LY = λDY. (5)

B. Locality Preservation Projections (LPP)

LPP is a linear approximation of Laplacian Eigenmaps. Its
objective is to find an explicit linear transformation matrix F of
size p× q to map the data set from the original p-dimensional
space to a q-dimensional space.

The objective function of LPP is formalized as

g(F) =
∑
ij

‖FT Xi − FT Xj‖2W(i, j) (6)
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where FT Xi is the representation of Xi in the low dimensional
space. Equation (6) can be rewritten in matrix form as

g(F) =
∑
i

(FT xiDiixTi F)−
∑
ij

(FT xiWijxTi F)

= tr(FT XDXT F− FT XWXT F)

= tr(FT XLXT F).

(7)

The solution can be found by solving the following generalized
eigenvalue problem:

XLXT F = λXDXT F. (8)

Since the matrices XLXT and XDXT are symmetric and
positive semidefinite, the optimal mapping F is constructed
by the q minimum generalized eigenvectors.

III. CONSTRAINED MANIFOLD LEARNING FOR HSI
VISUALIZATION

The goal of the proposed constrained manifold learning
approach is to display the HSI with natural tones to facilitate
human interpretation and meanwhile preserve the manifold
structure of the HSI as much as possible. The key idea is
to combine the manifold structure of the HSI and the color
information from a corresponding natural-looking RGB image
to generate a new 3-D embedding space for visualization.
More specifically, the method projects an input HSI to the
RGB space by manifold learning and meanwhile constrains
the colors of the pixels in the output image to be similar with
their matching pixels in the corresponding RGB image. This
allows the colors to propagate from the matching pixels to
the rest of the image while preserving the manifold structure.
The proposed constrained manifold learning can be done at
instance-level and feature-level based on Laplacian Eigenmaps
and LLE, respectively.

Assume an input HSI and a corresponding RGB image are
represented by two matrices X ∈ Rp×n and S ∈ Rq×m,
respectively, where p and q are the numbers of spectral bands,
and n and m are the numbers of pixels. The RGB image
has three channels, thus q = 3. The first step of the proposed
method is to obtain the weighted adjacency matrix W ∈ Rn×n

to present the manifold structure of the HSI. Each entry
in W represents the similarity between a pair of pixels in
the high dimensional space. The next step is to construct
the correspondence matrix C ∈ Rn×m to model the pixel-
correspondence between the HSI and the RGB image. We
will introduce the construction of W and C along with the
proposed instance-level learning and feature-level learning in
this section.

A. Construction of Weighted Adjacency Matrix

The heat kernel as in Equation (1) is commonly used to
compute W. Such kernel only takes advantage of the spectral
information and ignores the spatial correlation between pixels.
In [27], a family of composite kernels were proposed account-
ing for the spatial, spectral, and cross-information between
pixels or objects. In these kernels, a pixel entity is redefined
simultaneously both in the spectral domain using its spectral

content and in the spatial domain using feature extraction on
its surrounding area.

In this paper, a weighted summation kernel is utilized,
which is a composite kernel balancing the spatial and spectral
content. Let xsi represent the spectral feature of pixel i, and
xwi represent the spatial feature. Assume that we apply kernel
Ks on the spectral feature and Kw on the spatial feature.

According to Mercer’s theorem, the weighted summation
of two kernels is still a valid kernel. The combined kernel is
represented as

K(xi, xj) = µKs(x
s
i , x

s
j) + (1− µ)Kw(xwi , x

w
j ) (9)

where µ ∈ [0, 1] constitutes a trade-off between the spatial and
spectral information. In our experiment, the spatial features xwi
is result of a Gaussian filter in a given window around pixel
xi, and the spectral features xsi is the actual spectral signature.
Both Ks and Kw are set to the radial basis function (RBF)
kernel, which is defined as

Krbf (x, x′) = e−
‖x−x′‖2

2δ2 . (10)

With the combined kernel, the entity of the weighted adjacency
matrix W is defined as

Wij = K(xi, xj). (11)

Each entity in W is then a fusion of the spectral and spatial
similarities.

B. Construction of Correspondence Matrix

A corresponding RGB image offers the color constraint for
visualization. This image can be obtained from the HSI itself
using some natural-color rendering algorithms such as band
selection from the visible wavelength (450-515 nm (blue),
525-605 nm(green), and 630-690 nm (red)), or by mapping the
visible wavelength part onto a set of color matching functions.
The RGB image can also be captured by a separate device,
such as a RGB camera, on the same scene with the HSI. As
the proposed method only makes use of its color information
but not structure information, the RGB image can even be
captured from a different but similar site with the HSI.

The correspondence between an HSI and a RGB image is
represented as a matrix C ∈ Rn×m where

Cij =


1 if the ith pixel in the HSI and the jth pixel in

the RGB image form a matching pair,
0 otherwise.

(12)
To construct the correspondence matrix, we need to find out
a set of matching pixels between the two images. Depending
on the source of the corresponding RGB image, the matching
pairs can be obtained by different ways.

When the corresponding RGB image is generated from the
HSI itself, the two images are already pixel-wise matched.
We can directly use a part/all of the pixels in the images as
matching pairs.

If the corresponding RGB image is captured by a separate
RGB camera on the same site as the HSI, the two images
might have different geometrical distortions. In this case,
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image registration is required to find their matching relation.
In general, the image registration method firstly finds a few
matching pixel pairs, and then uses them to estimate a geomet-
ric transformation model so that the two images are matched in
the same coordinate system. Scale-invariant feature transform
(SIFT) is widely used to detect the matching pixels between
images due to its robustness to changes in scale, orientation
and illumination [31]. To find a set of matching pixels, we
first extract SIFT key-points from each band of the HSI and
the RGB image. The most similar key-points are considered
as matching pairs between the two images. These matching
pairs are then used to estimate a projective transformation for
image registration [32], which is defined as

(x′, y′, 1)T = H(x, y, 1)T, (13)

where {(x, y), (x′, y′)} are the coordinates of a matching pair
between HSI and the RGB image, and

H =

h1 h2 h3
h4 h5 h6
h7 h8 1

 (14)

is the transformation matrix, or called homogaphy matrix. If
we find n matching pairs {(xi, yi), (x′i, y′i)}, i = 1, . . . , n by
SIFT matching, H can be estimated by

min
H

n∑
i=1

‖(x′i, y′i, 1)T −H(xi, yi, 1)T‖2. (15)

However, SIFT feature-based matching is not always precise.
The mismatched pairs will lead to inaccuracies in estimating
H. To deal with this problem, RANdom SAmple Consensus
(RANSAC) technique [32], [33] is widely used to rule out
mismatched pairs and in this way produce a more robust
transformation estimation.

If the HSI and the corresponding RGB image are cap-
tured from different sites, pixels belong to similar type of
objects/materials can be considered as matching pairs. In this
case, interactive tools can be developed for users to manually
pick the matching pairs.

C. Instance-level Constrained Manifold Learning

The proposed instance-level manifold learning builds on
Laplacian Eigenmaps. It has the same goal as Laplacian
Eigenmaps to preserve the local structure of the original data
in the low dimensional data. Besides, it constrains the output
data to be aligned with a referencing data set. In the task
of HSI visualization, a corresponding RGB image is used as
the referencing data set to produce natural colors. Assume an
input HSI and a corresponding RGB image are represented
by two matrices X ∈ Rp×n and S ∈ Rq×m. Let matrix
Y ∈ Rn×3 represents the visualized image to be obtained.
The objective of instance-level learning is to find the optimal
Y that minimizes the following function:

H(Y) =
1

2

∑
ij

‖Yi −Yj‖2 ×Wij + λ
∑
ik

‖Yi − Sk‖2 ×Cik.

(16)
The first term on the right hand side is the same with Laplacian
Eigenmaps, which is to preserve the local structure of the

manifold. For HSI visualization, it encourages pixels with
similar spectral signatures in an HSI to be presented with
similar colors in the visualized image.

The second term is a constraint making the embedding Y to
be aligned with the referencing data set S. For HSI visualiza-
tion, this constraint forces pixels in the output image to have
similar colors with their matching pixels in the corresponding
RGB image. As Cik = 1 if Yi and Sk form a matching pair,
to minimize the objective, Yi should be similar to Sk. The
two terms together allow the target colors to spread from the
matching pixels to the rest of the image while preserving the
manifold structure of the HSI.

The objective function is convex and differentiable. It can
be rewritten as the following matrix form:

H(Y) = tr(YLYT ) + λ tr(YC1YT + SC2ST − 2YCST )
(17)

where C1 is a diagonal matrix with C1(i, i) =
∑

j C(i, j).
C2 is a diagonal matrix with C2(j, j) =

∑
i C(i, j). L is the

Laplacian matrix of the input HSI, which can be obtained by
L = D − W where D is a diagonal matrix with D(i, i) =∑

j W(i, j).
The derivative of the function with respect to Y is

∂H

∂Y
= 2YL + 2λYC1 − 2λSCT . (18)

The optimal Y can be obtained by setting the derivative to
zero:

Y = SCT (
1

λ
L + C1)−1. (19)

Instance-level learning is nonlinear and flexible to deal with
various mappings without assuming any parametric model. It
has been shown that there are multiple sources of nonlinearity
in HSIs [9], which indicates that nonlinear methods might
be more competent than linear models in HSI dimension
reduction and visualization. However, the learning result is
defined only on the pixels in the input HSI, and is hard to be
generalized to visualize new pixels from other HSIs.

D. Feature-level Constrained Manifold Learning

The proposed feature-level manifold learning learns a linear
transformation to find the embedding of the data in a lower
dimensional space. It is based on LPP and further constrains
the embedding to be aligned with a referencing data set. For
HSI visualization, it seeks to learn a linear transformation
matrix F to map the HSI to the RGB space to generate
a natural-looking visualization. A reasonable criterion for
choosing such a transformation is to minimize the following
objective function:

G(F) =
1

2

∑
ij

‖FT Xi − FT Xj‖2 ×Wij

+ λ
∑
ik

‖FT Xi − Sk‖2 × Cik

(20)

where FT Xi is the representation of Xi in the visualized space.
The first term on the right hand side is the same as LPP,

which penalizes the inconsistency between FT Xi and FT Xj
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(a)

(b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 2. HSIs and their corresponding RGB images. (a) The 50th band of the
Washiongton D.C. mall (b) The RGB image of the Washiongton D.C. mall.
(c) The 50th band of University of Pavia. (d) The RGB image of Uiversity
of Pavia. (e) The 50th band of the Moffett Field. (f) The RGB image of the
Moffett Field. (g) The first band of G03. (h) The RGB image of G03. (i) The
first band of D04. (j) The RGB image of D04.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 3. Visual comparison of different visualization approaches on the
Washington DC Mall data set. (a) Stretched CMF. (b) Bilateral filtering.
(c) Bicriteria optimization. (d) Laplacian Eigenmaps. (e) LPP. (f) Manifold
alignment. (g) The proposed feature-level learning. (h) The proposed instance-
level learning.
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when Xi and Xj are similar. The second term enforces the
colors of pixels in the visualized image to be similar to their
matching pixels in the corresponding RGB image .

This objective function is also convex and differentiable. It
can be rewritten in matrix form as

G(F) = tr(FT XLXT F)

+ λ tr(FT XC1XT F + SC2ST − 2FT XCST ).
(21)

The derivative of the function with respect to F is

∂G

∂F
= 2XLXT F + 2λXC1XT F− 2λXCST . (22)

The optimal F minimizing the objective function can be
obtained by

F = (X(
1

λ
L + C1)XT )−1XCST . (23)

The main difference between instance-level and feature-
level methods is that the former is nonlinear while the latter
is linear. More specifically, instance-level learning directly
computes the coordinates of samples in the low dimensional
space. It does not assume any explicit transformations between
the two spaces. The feature-level learning builds connections
between features rather than instances, thus the learning result
can be generalized to new test instances. In the task of HSI
visualization, the projection function learned from a pair of
HSI and RGB image can be directly applied to visualize other
similar HSIs acquired by the same imaging sensor. Assume a
mapping function F is learnt from an HSI X. For another HSI
X′ captured by the same sensor as X, the visualized image
Y′ of X′ can be obtained by Y′ = FT X′. Since the same
types of objects shall have similar spectral responses with
the same sensor, the same/similar objects in X and X′ will
be presented by consistent and natural colors. This scenario
is very helpful when users require a quick overview of a
batch of HSIs generated by the same imaging sensor, since
the projection function learning only need to be undertaken
once.

Another advantage of feature-level learning is that it is faster
than instance-level method since it only requires to estimate
the q × 3 parameters in the transformation matrix. More
specifically, to solve Equation (23), feature-level learning only
needs to compute the inverse of a p×p matrix, where p is the
number of channels in the HSI. The instance-level learning,
however, needs to compute the inverse of a n × n matrix in
Equation (19), where n is the number of pixels in the HSI.
The inversion of a matrix of size n×n has a time complexity
of O(n3). Since the construction of the graph Laplacian has a
time complexity of O(pn log n) where p << n, instance-level
learning has a time complexity of O(n3) and feature-level
learning has a time complexity of O(pn log n).

IV. EXPERIMENTS

The experiments are conducted on several HSI data sets
captured by aerobat/satellite-based or ground-based hyper-
spectral imaging sensors. Their corresponding RGB images
are obtained from their own spectra or from other RGB
cameras. We compare our method against some state-of-the-art

HSI visualization approaches including stretched CMF [20],
LPP [13], bilateral filtering [18], bicriteria optimization [17],
Laplacian Eigenmaps [12] and manifold alignment [23]. Both
subjective visual judgment and objective metric are used to
evaluate the visualization results.

A. Experimental Settings

Five HSI data sets used for experiments are introduced
in this section. As their spectral ranges cover most of the
visible wavelengths, their corresponding RGB images can
be generated by stacking three channels from the visible
wavelengths.

The first HSI data set was taken over the Washington
D.C. mall by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) sensor. The data consists of 191 bands
after noisy bands removed. The size of each band image
is 1208 × 307. Fig. 2(a) shows its 50th band image. Its
corresponding RGB image was constructed by the 12th, 35th
and 41st bands in the visible wavelength ranges, and is shown
in Fig. 2(b).

The second HSI data set was acquired over the University
of Pavia, Italy by the ROSIS-03 (Reflective Optics Systems
Imaging Spectrometer) hyperspectral sensor. The data consists
of 103 bands after removing the noisy bands, and the size of
band image is 610×340. Fig. 2(c) shows its 50th band image.
The corresponding RGB image was generated by its 10th, 31st
and 46th bands, is shown in Fig. 2(d).

The third data set was captured by the Airborne Vis-
ible/Infrared Imaging Spectrometer (AVIRIS) over Moffett
Field, California at the southern end of San Francisco Bay.
The data consists of 224 bands. Each band image has the size
of 501× 651. Its 50th band image is shown in Fig. 2(e). The
corresponding RGB image was generated by its 6th, 17th and
36th bands and is shown in Fig. 2(f).

The other two HSI data sets named “G03” and “D04”
were captured by a ground-based OKSI hyperspectral imaging
system mounted with a tunable LCTF filter. Each data set
has 18 bands ranging from 460nm to 630nm at 10nm
interval. The size of each band image is 480× 640. Fig. 2(g)
and Fig. 2(i) show the first band images of G03 and D04,
respectively. The corresponding RGB images generated by
their 3rd, 9th and 13th bands are shown in Fig. 2(h) and
Fig. 2(j), respectively.

In the experiments, the corresponding RGB images were
converted to the uncorrelated Lαβ space before they are used
for HSI visualization. Lαβ aspires to perceptual uniformity,
and its L component closely matches human perception of
lightness. Besides, the Lαβ space minimizes the correlation
between channels, which makes it more appropriate than the
RGB space for color processing. To obtain a set of matching
pairs as the color constraint, we randomly selected 10% of the
pixels in the HSI, and then find their matching pixels in the
corresponding RGB images.

B. Visual Comparison

Fig. 3 shows the visual comparison of different visualization
approaches on the Washington D.C. mall data. It can be seen
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(a) (b) (c) (d)

(e) (f) (g) (h) Nonlinear

Fig. 4. Visual comparison of different visualization approaches on the University of Pavia data set. (a) Stretched CMF. (b) Bilateral filtering. (c) Bicriteria
optimization. (d) Laplacian Eigenmaps. (e) LPP. (f) Manifold alignment. (g) The proposed feature-level learning. (h) The proposed instance-level learning.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Visual comparison of different visualization approaches on the Moffett Field data set. (a) Stretched CMF. (b) Bilateral filtering. (c) Bicriteria
optimization. (d) Laplacian Eigenmaps. (e) LPP. (f) Manifold alignment. (g) The proposed feature-level learning. (h) The proposed instance-level learning.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Visual comparison of different visualization approaches on the G03 data set. (a) Stretched CMF. (b) Bilateral filtering. (c) Bicriteria optimization. (d)
Laplacian Eigenmaps. (e) LPP. (f) Manifold alignment. (g) The proposed feature-level learning. (h) The proposed instance-level learning.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Visual comparison of different visualization approaches on the D04 data set. (a) Stretched CMF. (b) Bilateral filtering. (c) Bicriteria optimization. (d)
Laplacian Eigenmaps. (e) LPP. (f) Manifold alignment. (g) The proposed feature-level learning. (h) The proposed instance-level learning.

that both the output images of the proposed instance-level
and feature-level manifold learning methods have very natural
colors similar to the corresponding RGB image in Fig. 2(b),
which makes our results much easier to understand. Also, the
details in the HSI are well presented by our method. Note
that the result of manifold alignment (Fig. 3(f)) also has very
natural colors. Compared to manifold alignment which fuses
two image structures, the proposed method does not require
a corresponding RGB image that is registered precisely, thus
it is more flexible in choice of the color constraints. Besides,
the proposed method also saves the time to compute the graph
Laplacian for the corresponding RGB image, which is required
for manifold alignment.

The comparative results on the University of Pavia, Moffett
field, G03 and D04 data sets are given in Fig. 4-7, respec-
tively. Likewise, in these experiments our approaches not only
produce natural-looking visualizations but also preserve the
details in the original HSIs. For example, Fig. 5 shows the
visualizations of Moffett field, in which the roads in our
results are more distinguishable than other manifold learning-
based methods such as the Laplacian Eigenmaps, LPP and
manifold alignment. In Fig. 7, the proposed manifold learning
approaches can display the clouds clearly, which are not
shown or less easy to perceive in some other results such
as those of bilateral filtering and bicriteria optimization. It
is concluded that the proposed method is able to generate a
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(a) (b) (c)

Fig. 8. A sub-image of Washington DC Mall data and the ground truth.

trees

gravel

meadows

asphalt

metal sheets

bricks

bituman

shadows

bare soil

(a)

Fig. 9. The ground truth of University of Pavia data set.

trichromatic image with natural colors while preserving the
spectral information and manifold structure of HSI, with the
color information provided by the HSI itself.

C. Quantitative Comparison via Classification

There is no universally accepted standard for quantitative
assessment of HSI visualization. In our experiments, we used
classification as a quantitative measurement for visualization,
based on the assumption that if the visualized image with
reduced spectral dimensions has higher classification accuracy,
it preserves more information of the original HSI. We per-
formed classification on the visualized images using support
vector machines (SVMs) equipped with the RBF kernel on
the Washington DC Mall data set and the University of Pavia
data set. The parameters of SVM were tuned by 5-fold cross
validation. The classification accuracy is assessed with overall
accuracy (OA), average accuracy (AA), and kappa coefficient
of agreement (κ).

The experimental settings for each data set are described as
follows:
• Washington DC Mall Data Set: we used a sub-image with

the size of 305 × 280 to perform the experiment. The
sub-image and the ground truth map are shown in Fig. 8,
which contains 14266 labeled samples. The number of
labeled samples in each class is shown in Table I. We
randomly chose 10, 30, 70 labeled samples per class as
the training set, and used all the remaining samples as
the test set.

TABLE I
NUMBER OF LABELED SAMPLES FOR EACH CLASS IN THE WASHINGTON

DC MALL DATA SET.

Class Labeled Samples
Grass 3133
Road 4146
Roof1 1067
Roof2 1928

Shadow 1013
Roof3 818
Trail 1096
Tree 1065

TABLE II
NUMBER OF LABELED SAMPLES FOR EACH CLASS IN THE UNIVERSITY OF

PAVIA DATA SET.

Class Training / Testing
Trees 524 / 3064

Gravel 392 / 2099
Meadows 540 / 18649
Asphalt 548 / 6631

Metal sheets 265 / 1345
Brciks 514 / 3682

Bituman 375 / 1330
Shadows 231 / 947
Bare soil 532 / 5029

• University of Pavia Data Set: The ground truth map is
shown in Fig. 9 where the training set contains 3921
samples and the test set contains 40002 samples. The
number of training and testing samples in each class is
shown in Table II. We randomly selected 1%, 10%, and
100% samples from the training set to train the classifier.

As one of our baseline, we also performed classification
on the corresponding RGB images, which were generated by
band selection from the visible wavelength range of the HSIs.
The classification results of compared visualization methods
on two data sets are reported in Table III and Table IV,
respectively. All the experimental results are obtained by
randomly selecting training samples 10 times and averaging
the testing results. In most cases both the proposed feature-
level and instance-level manifold learning methods have better
classification performance than other approaches, indicating
that the composite kernel applied in manifold learning is
very helpful in information preservation. It can also be seen
that instance-level learning method produces slightly higher
accuracies than feature-level learning in most cases, which
indicates the nonlinear structure in the HSIs is well preserved
by instance-level method.

It should be noted that although our visualized images are
visually similar to their corresponding RGB images generated
by band selection from the visible wavelength range, the
classification accuracies of the former ones are greatly higher
than the latter ones. This indicates that our method have fused
the information from all the spectral bands rather than just
three selected bands in the visible wavelength range.

D. Quantitative Comparison in terms of preservation of dis-
tance

As pointed out in [20], one of the design goals for HSI
visualization is “smallest effective differences”, which means
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TABLE III
CLASSIFICATION RESULTS ON THE WASHINGTON DC MALL DATA SET.

RGB band CMF Bilateral Bicriteria Laplacian LPP Manifold Feature-level Instance-level
selection filter optimization Eigenmaps alignment learning learning

10 training samples OA(%) 86.78 88.42 88.66 79.90 81.13 87.50 87.43 89.09 90.50
per class AA(%) 84.49 86.53 84.66 73.48 76.80 83.35 85.47 87.39 89.27

κ 84.09 86.01 86.25 75.69 77.27 84.83 84.88 86.84 88.55
30 training samples OA(%) 90.78 92.46 91.19 82.92 84.07 90.98 91.49 92.52 93.64

per class AA(%) 89.88 92.17 88.92 76.94 80.80 89.34 90.65 92.06 93.17
κ 88.89 90.90 89.36 79.29 80.80 89.09 89.75 90.97 92.32

70 training samples OA(%) 91.29 93.51 92.84 84.12 85.46 91.66 92.42 93.40 94.55
per class AA(%) 90.64 93.15 90.82 79.03 83.33 90.14 91.86 93.12 94.38

κ 89.50 92.15 91.34 80.77 82.48 89.90 90.86 92.03 93.42

TABLE IV
CLASSIFICATION RESULTS ON THE UNIVERSITY OF PAVIA DATA SET.

RGB band CMF Bilateral Bicriteria Laplacian LPP Manifold Feature-level Instance-level
selection filter optimization Eigenmaps alignment learning learning

1% OA(%) 60.54 61.15 63.30 53.31 60.33 62.97 62.94 66.09 61.03
training samples AA(%) 63.05 66.04 68.73 57.52 64.78 68.62 66.83 68.25 67.41

κ 49.51 50.53 53.18 41.81 49.93 52.83 52.36 55.95 50.74
10% OA(%) 67.46 70.79 70.43 58.79 68.06 69.20 70.97 72.10 72.60

training samples AA(%) 69.27 72.99 73.21 66.02 68.67 71.76 72.81 72.85 74.58
κ 57.00 61.15 60.99 48.17 57.90 59.51 61.44 62.57 63.71

100% OA(%) 70.56 74.33 70.33 65.97 68.78 70.08 72.10 73.08 74.22
training samples AA(%) 71.66 75.15 74.89 70.05 71.93 74.34 74.52 73.91 76.17

κ 60.68 65.41 61.08 55.78 58.90 60.59 63.00 63.96 65.69

TABLE V
PRESERVATION OF DISTANCE.

CMF Bilateral Bicriteria Laplacian LPP Manifold Feature-level Instance-level
filter optimization Eigenmaps alignment learning learning

Washington DC Mall 0.6339 0.8895 0.8439 0.7324 0.6264 0.5397 0.6342 0.6330
Pavia University 0.8101 0.8362 0.9030 0.8815 0.9211 0.8948 0.9052 0.8810

Moffett Field 0.7523 0.9043 0.8685 0.6884 0.9020 0.5021 0.9041 0.8992
G03 0.9819 0.9884 0.9855 0.9557 0.9841 0.9870 0.9902 0.9620
D04 0.9077 0.9754 0.9402 0.6672 0.8248 0.9294 0.9417 0.9404

TABLE VI
RUNNING TIME (IN SECONDS).

CMF Bilateral Bicriteria Laplacian LPP Manifold Feature-level Instance-level
filter optimization Eigenmaps alignment learning learning

Washington DC Mall 2.28 557.80 46.42 2444.41 1921.45 2086.49 1755.08 1901.49
Pavia University 1.47 176.67 23.39 658.293 260.77 302.75 262.49 263.20

Moffett Field 2.13 497.69 37.87 1576.63 1257.05 1341.81 1222.79 1310.71
G03 1.13 45.08 30.50 1135.51 105.46 126.23 101.98 118.65
D04 1.09 45.24 30.36 590.63 101.89 123.71 102.82 130.41

Average 1.63 264.50 33.69 1281.10 729.32 795.61 689.03 744.89

visual distinctions are no larger than needed to effectively
show relative differences. We apply the metric of Preservation
of Distances proposed in [34] to evaluate the visualization
results, which measures the consistency of the perceptual color
distances in the visualized image and the Euclidean distances
in the original HSI. Let x be the vector of all pairwise
Euclidean distances of the pixels in the high-dimensional
spectral space, and let vector y be the corresponding pairwise
Euclidean distances of the pixels in the visualized images
in Lαβ space. The preservation of distance is defined as a
correlation-based metric γ, which is defined as the following
formula:

γ =
xT y/|x| − x̄ȳ
std(x) · std(y)

(24)

where |x| denotes the number of elements in x, and x̄ and
std(x) denote the mean and standard deviation, respectively.
In the ideal case, the normalized correlation equals 1, and the
closer the correlation is to 1, the better the distance in the high
dimensional space is preserved in the perceptual color space.

Table V shows the results of the compared methods in terms
of preservation of distance. Compared with CMF and manifold
alignment which also aim to generate natural-looking visual-
izations, the proposed method has higher score in preserving
the spectral distance of pixels in the perceptual color space.
Our method also has competitive performance compared with
other methods such as Bilateral filter, Laplacian Eigenmaps,
and LPP.

It should be noted that when applied to the Washington
DC Mall data set, the manifold learning based methods
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(a) RGB image of Washington DC mall from Google Earth.

(b) Visualization by the proposed instance-level learning.

(c) RGB image of G03 captured by
an SLR digital camera.

(d) Visualization by the proposed
instance-level learning.

Fig. 10. Visualization with a RGB image captured by a different camera.

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Visualizations of similar HSIs generated by reusing the projection
function of G03. (a) The first band of F02. (b) The visualization of F02. (c)
The first band of G02. (d) The visualization of G02. (e) The first band of
G04. (f) The visualization of G04.

(a) 0.1% matching pairs (b) 1% matching pairs

(c) 10% matching pairs (d) 100% matching pairs

Fig. 12. Visualizations of University of Pavia data set with different numbers
of matching pairs between the HSI and the corresponding RGB image.

including Laplacian Eigenmaps, LPP, manifold alignment,
and the proposed method have not so good performance in
terms of preservation of distance. One reason we believe is
that these manifold learning methods focus on preserving the
manifold’s local similarity rather than the manifold’s global
distance distribution, i.e., they can make pixels with similar
spectral signatures to be displayed with similar colors, but
can not guarantee that pixels with larger spectral differences
to be displayed with more distinct colors. Another reason
may be that both the proposed method and the manifold
alignment method incorporate the color information of the
corresponding RGB image into the visualization while in some
cases the pairwise distances between pixels in the RGB images
are not consistent with those in the HSI, which leads to
the inconsistency of pairwise Euclidean distance between the
visualization and the HSI.

E. Running time comparison

Time costs of the compared methods are summarized in
Table VI. The experiments were carried out on 2.4 GHz Intel
Xeon CPU (E5-2680 v4) running Linux with 64GB of RAM.
We can see that manifold learning-based methods (Lapla-
cian Eigenmaps, LPP, manifold alignment and the proposed
method) are more time consuming compared with other meth-
ods, which is mainly due to the computation of the adjacency
matrix W in the high dimensional spectral space. The proposed
feature-level learning is faster than manifold alignment (both
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are linear models) since it does not need to compute the graph
Laplacian of the corresponding RGB image. Note that once the
mapping function from high dimensional spectral space to the
color space is acquired by feature-level learning, the mapping
function can be applied to visualize another HSI captured by
the same sensor and this process only takes about 0.02 second.
It should also be noted that the computation of W in manifold
learning methods can be efficiently implemented using the
parallel abilities of a graphic processor unit (GPU) and can
be greatly accelerated.

F. HSI Visualization with the Corresponding RGB Image
Captured by RGB Camera

The corresponding RGB images in the previous experiments
were obtained by stacking the R, G, and B channels from the
visible wavelength of the HSI. When the spectral range of an
HSI does not cover the visible wavelength, we can use a RGB
image captured on the same or similar site as the HSI through
other sources such as a RGB camera mounted on a different
platform or the same platform as the HSI sensor. For example,
Fig. 10(a) shows the RGB image of Washington DC mall
obtained from the Google Earth. Fig. 10(b) shows the result of
the proposed instance-level learning with the color constraint
provided by this RGB image. Another corresponding RGB
image (Fig. 10(c)) of the G03 data set was captured by a Nikon
D60 SLR digital camera. The visualization result produced
with this image is shown in Fig. 10(d). We can find that both
results have natural colors and are very easy to interpret.

G. Generalizing Projection Function to Visualize Other HSIs

The proposed feature-level manifold learning method learns
an explicit projection function from the high dimensional
spectral space to the RGB space. The projection function
can be directly reused to visualize semantically similar HSIs
captured by the same hyperspectral imaging sensor. In this
experiment, the projection function derived from the G03 data
set and its corresponding RGB image was applied to visualize
three HSI data sets named “F02”, “G02”, and “G04”, which
were captured by the same imaging sensor as G03. Fig. 11
shows their first band images and the visualized RGB images.
It can be seen that the visualizations of these HSIs have natural
colors after applying the projection function. Besides, the same
objects are presented with consistent colors across these three
images.

H. Parameter setting

There are two main related parameters in our model. The
first one is the number of matching pixel pairs between the
HSI and the RGB image, which we denote as c. The second
one is the λ in Equations (16) and (20), which is the weight
assigned to the color constraint. We empirically set λ = kn/c
in all our experiments, where n is the number of pixels in
the input HSI and k is the number of neighboring pixels in
constructing adjacency graph. An intuitive explanation is that
when c is small, a relatively large weight is required for the
color constraint to be effective. As c grows, the weight of

color constraint should be tuned down to better preserve the
manifold structure of the HSI.

To analyze the impact of c, we did experiments on the
University of Pavia data set with different percentage of pixels
designated as matching points. Fig. 12 displays the visualized
results of the proposed instance-level learning with different
numbers of matching pairs. We can see that when the number
of matching pairs is very small (0.1% as shown in Fig. 12(a)),
the colors of the visualized image is not very desirable. There
is no significant visual difference as the number of matching
pairs varies from 1% to 100%. This experiment shows that a
small number of matching pairs are sufficient for our approach
to generate a fairly good visualization result.

V. CONCLUSIONS

A constrained manifold learning approach is proposed to
display HSIs with natural colors. The key idea is to construct
a color representation of an input HSI by manifold learning
with the color constraint provided by a corresponding RGB
image. We applied a composite kernel in manifold learning to
better preserve the image structure of the HSIs. The proposed
manifold learning can be done at instance-level and feature-
level. Instance-level learning can achieve nonlinear embedding
results, thus it can preserve more information than feature-
level learning, as can be seen from its higher accuracies in the
the classification experiments. Feature-level learning learns a
linear mapping function from the high dimensional spectral
space to the RGB space. It is faster and the learnt mapping
function can be directly applied to visualize similar HSIs
captured by the same imaging sensor. In addition, our methods
also perform well in terms of preservation of the spectral
distances, especially when comparing with other methods that
follow the same goal of representing HSIs in natural colors.
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