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Abstract—Synthetic aperture radar (SAR) remote sensing con-
figurations are able to provide continuous measurements on global
scales sensitive to the vertical structure of forests with a high spatial
and temporal resolution. Furthermore, the development of tomo-
graphic SAR techniques allows the reconstruction of the three-
dimensional (3-D) radar reflectivity opening the door for 3-D forest
monitoring. However, the link between 3-D radar reflectivity and
3-D forest structure is not yet established. In this sense, this paper
introduced a framework that allows a qualitative and quantitative
interpretation of physical forest structure from tomographic SAR
data at L-band. For this, forest structure is parameterized into a set
of a horizontal and a vertical structure index. From inventory data,
both indices can be derived from the spatial distribution and the
dimensions of the trees. Similarly, two structure indices are derived
from the 3-D spatial distribution of the local maxima of the recon-
structed 3-D radar reflectivity profiles at L-band. The proposed
methodology is tested by means of experimental tomographic
L-band data acquired over the temperate forest site of Traunstein
in Germany. The obtained horizontal and vertical structure indices
are validated against the corresponding estimates obtained from
inventory measurements and against the same indices derived from
the vertical profiles of airborne Lidar data. The high correlation
between the forest structure indices obtained from these three dif-
ferent data sources (expressed by correlation coefficients between
0.75 and 0.87) indicates the potential of the proposed framework.

Index Terms—Forest structure, synthetic aperture radar,
tomography.

I. INTRODUCTION

FOREST structure is eminently linked to the three-
dimensional (3-D) size, location, and arrangement of trees,

trunks, and branches in a forest [1], [2] and reflects therefore the
forest state and its evolution [3]–[5]. Accordingly, forest struc-
ture is an indicator of forest successional stage and development
as well as sustainability and habitability and is therefore an im-
portant parameter for assessing forest productivity [6], biomass
level, and biodiversity [7]–[9]. Forest structure changes reveal
dynamic processes as growth, regeneration, decay, and natural
or anthropogenic disturbance. Knowledge about such processes
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is important for modeling the function and the evolution of for-
est ecosystems and for developing accurate and robust forest
biomass estimators [10].

The wide range of applications that require forest structure
information imposes a wide range of measurement and observa-
tion requirements. For biomass and carbon applications, yearly
global scale monitoring at spatial resolutions on the order of 1
ha are sufficient [3]. On the other hand, ecology and biodiversity
applications are often addressed at landscape-to-regional level
and require forest structure information at spatial and temporal
scales associated to the occurring changes, i.e., down to single
tree level with monthly to seasonal updates [7].

These requirements cannot be satisfied by the currently
available means of forest monitoring. Traditionally, forest
structure characterization relies on sampling at local scales
by means of field inventory plots or more recently terrestrial
laser scanning techniques able to catch the 3-D arrangement of
vegetation compartments. However, any extrapolation to larger
scales depends on the ability of these measurements to represent
their surrounding landscape. At the same time, in many cases,
the temporal continuity of such plots measurements is very
difficult to be established.

Remote sensing techniques have the potential to overcome—
at least some of—these limitations and to make a significant con-
tribution in qualitative and quantitative monitoring of 3-D forest
structure [3], [7]–[10]. Today, two remote sensing technologies
allow the measurement of 3-D forest information: waveform
Lidar and synthetic aperture radar (SAR) tomography. While
the capabilities and challenges of the different Lidar config-
urations for mapping 3-D forest structure are today well es-
tablished and widely understood, the potential of tomographic
SAR configurations is not fully assessed yet. Note here that
the horizontal variability alone that can be estimated by con-
ventional remote sensing techniques is often not sufficient to
describe unambiguously vegetation structure [10] so that 3-
D descriptors and measurements are required for a complete
characterization.

SAR tomography relies on a set of SAR images acquired
under slightly different incidence angles as for example along
slightly displaced tracks or orbits to estimate the 3-D distribu-
tion of the backscattered power, also known as the 3-D radar
reflectivity. The reconstruction the 3-D radar reflectivity is today
established and has been demonstrated in several experiments
across different forest ecosystems [11]–[15]. The Appendix
summarizes the main tomographic reconstruction algorithms.
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However, the link between the reconstructed 3-D radar reflec-
tivity and the physical forest structure is not as well understood
and far from being established. There are several reasons that
make this task challenging. One of them is related to the interpre-
tation of the reconstructed 3-D radar reflectivity in terms of 3-D
forest structure attributes. Obviously, the 3-D radar reflectivity
depends on the system frequency and polarization employed,
on the acquisition geometry (e.g., incidence angle) used, and on
the (3-D) spatial resolution achieved. The fact that the scatter-
ers “seen” by the radar change with frequency and polarization
makes a generic interpretation of the 3-D reflectivity difficult.
In addition, with decreasing frequency, the scattering contribu-
tion of the ground under the forest adds to the one of the forest
making the interpretation of lower forest components located
close to the ground more difficult. This paper focuses on 3-D
radar reflectivity at L-band, where in general a significant pene-
tration into and through the forest volume is expected implying
scattering contributions from the forest volume and from the
underlying ground.

While forest structure is primarily associated to the geometric
properties of tree and forest stand elements, the radar reflectivity
depends in addition to geometric properties also on the dielectric
properties of the scattering elements of the forest. This makes
the interpretation of the reconstructed 3-D radar reflectivity—
and especially its change—ambiguous. As a consequence, the
estimation of forest structure has to be robust enough to reflec-
tivity variations that are not relevant to structure as for example
caused by rain or temperature gradients [12], [13] while still
remaining sensitive enough to morphological variations.

When attempting to relate the reconstructed 3-D radar re-
flectivity to physical forest structure descriptors established in
forestry and/or ecology, one faces a significant discrepancy.
The physical forest structure descriptors are built on individ-
ual tree parameters that do not have a direct correspondence
in the reconstructed 3-D radar reflectivity due to the insuffi-
cient spatial resolution of the SAR configurations that does not
allow individualizing scattering contributions of single trees.
This paper aims to contribute to the interpretation of L-band
3-D radar reflectivity in terms of physical forest structure. In
this sense, a framework that allows the estimation of qualita-
tive and quantitative 3-D forest structure information from 3-D
radar reflectivity reconstructed by SAR tomography at L-band
is proposed. In Section II, forest structure estimation from field
and remote sensing data is discussed and a pair of structure in-
dices that allow the characterization of horizontal and vertical
forest structure is introduced. The two indices allow setting up
a schema for the systematic characterization and quantification
of 3-D forest structure that can be applied on inventory and re-
mote sensing data. In Section III, experimental results obtained
from airborne tomographic SAR data acquired at L-band and
(airborne) Lidar data over the temperate forest of Traunstein in
Germany are presented. The structure indices derived from the
tomographic SAR, the Lidar, and the inventory measurements
are discussed and compared with each other. The advantage of
3-D forest structure information versus forest height informa-
tion only is discussed. The effect of the spatial scale on the

interpretation of the obtained results is also assessed. Finally,
conclusions are drawn in Section IV.

II. FOREST STRUCTURE ESTIMATION

A. Forest Structure Estimation From Field Data

Since both forestry and ecology have been traditionally based
on field data, the discussion on forest structure metrics has been
essentially carried out on an individual tree basis. On plot level,
it is usually approached by estimating different attributes based
on individual trees within the plot, such as height, basal area,
canopy dimensions, species composition, and/or stand density,
which are then used to derive a structure index. Numerous in-
dices have been proposed in the literature, such as the aggrega-
tion index [16], the diametric differentiation index, the mingling
index, the contagion index, or the complex stand index [17].
However, all of them have limitations in the sense that no one
provides a univocal characterization of any possible tree distri-
bution within the stand [18]–[21]. As a consequence, there is not
yet an overall measure able to express forest structure in terms
of forestry or ecology. Nevertheless, despite the difficulties in
defining an index appropriate for a wide span of applications
and forest types, there is a common understanding that in or-
der to express forest structure, two complementary aspects of
forest structure need to be considered, namely the structural
heterogeneity in the horizontal and in the vertical dimension. In
this sense, horizontal structure reflects stand density, whereas
vertical structure accounts for tree size variability.

Regarding horizontal structure, it is worth noting here that
stand density is not exclusively related to the number of trees per
unit area, but rather to site occupancy and therefore tree volume
per area [5]. One standard metric in forest practice is absolute
basal area [22]. But in order to compare stands of different ages,
it is preferable to introduce measures linking space utilization
to tree size [21]. The most common among them is the stand
density index [23], closely related to the basal area. It relates
the stand density with the equivalent density of a stand with an
actual quadratic mean diameter of 25 cm. In the scope of this
paper, this metric is employed for the estimation of horizontal
structure from field data:

HSfield = N

(
Dg

25

)1.605

(1)

expressed in trees per hectare, where N is the number of stems
per hectare and Dg is the quadratic mean diameter at breast
height in cm [24], within the structure window. In the follow-
ing, the area of the structure window, i.e., the size of the polygon
enclosing the trees that are accounted when computing the sta-
tistical quantities defined in (1)–(4) will be referred to as unit
scale. Several subsequent refinements of this index have been
discussed in the literature [25]. Accounting only for the tallest
trees in the stand allows a better characterization of canopy
closure, while being more consistent by assuming the same
allometric relationship between the size and density for all the
trees involved in the estimation. Also, without loss of generality,
HSfield is normalized to its maximum and then 1 − HSfield norm
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Fig. 1. Horizontal and vertical forest structure measures are complementary
and allow the definition of a plane where stands can be projected according
to their structure complexity. As an example, the position of four different
examples of forest stand is shown here.

is employed in order to reflect disorder: 0 indicates low and 1
indicates high structural disorder or complexity.

Vertical structure can be evaluated by the size differentiation,
the Gini coefficient, the Shannon index [26], or as the standard
deviation of tree heights [6], [27], among others. However, due
to the fact that tree height measurements are often not performed,
these indices are usually not possible to be estimated directly
from inventory data. As an alternative, the standard deviation of
tree diameter at breast height (dbh) that reflects as well the tree
size variability [5] has been used that can be directly estimated
from standard inventory measurements. Furthermore, according
to [2] and [4], dbh variability appears to be more sensitive to
successional stages than measures of height diversity alone.
Therefore, in the scope of this paper, vertical forest structure
from field data VSfield is estimated as the standard deviation of
tree dbh:

VSfield = std({dbh}) (2)

expressed in cm, where {dbh} is the ensemble of diameter at
breast height of all the trees included in the structure window,
given in cm. Without loss of generality, the vertical forest struc-
ture descriptor from field data is normalized to its maximum
within the image and becomes unitless.

Using now the horizontal HSfield and vertical VSfield structure
indices, it is possible to define a plane, referred to as HV plane in
the following, on which forest stands can be projected depending
on their structure (see Fig. 1). The complementary aspect of
horizontal and vertical structure can be observed in Fig. 1. Four
stands are projected in the plane defined by their horizontal
and vertical structure. The four stands sketched can only be
unambiguously discriminated when both the horizontal and the
vertical dimensions are accounted for. First, two monolayered
stands have been sketched. They have low vertical structure
because they are mainly constituted by trees of similar size.
The difference between them relies in the horizontal axis, due
to their different density. On the other hand, two multilayered

Fig. 2. (Top row) Example of normalized tomogram along a managed highly
heterogeneous temperate forest. (Left column) Schematic representation of the
trees distributions, (middle column) corresponding reflectivity profiles super-
imposed, and (right column) peaks of the reflectivity profiles, for the four areas
highlighted in the tomogram.

stands have been considered as well. They both have similar high
vertical structure. The difference between them relies again in
the horizontal dimension.

B. Forest Structure Estimation From TomoSAR Data

The objective of this section is to define a framework for the
estimation of forest structure from L-band TomoSAR data. For
this, the definition of structure indices applicable to TomoSAR
data that meet the same notions as the forest structure indices
derived from inventory data discussed in the previous section
will be attempted. The challenge is to circumvent the fact that
individual tree-based measures are usually not possible to be
retrieved with TomoSAR data, which hampers a direct transla-
tion of the metrics employed in ecology and forestry. The main
principles and processing steps in SAR tomography relevant for
this paper are summarized in the Appendix.

1) Physical Interpretation of Reflectivity Profiles: Fig. 2
shows an example of an (normalized) L-band 3-D reflectiv-
ity transect (referred as tomogram in the following) through a
managed temperate forest, crossing stands at different growth
stages. Four different areas are highlighted and denoted by num-
bers. For each of these four areas, a representation of the tree
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distribution as obtained from the field inventory data is given
(left column) and the corresponding reflectivity profiles (middle
column). Looking at the two representations makes evident that
the differences in the 3-D reflectivity profiles reflect the differ-
ences in forest structure for each of the areas. As indicated by the
schematic tree representations, areas 2 and 3 are monolayered
dense stands, whereas areas 1 and 4 are constituted by signif-
icantly more diverse tree sizes. Looking at the reflectivity pro-
files, besides the ground, most of the maxima are concentrated in
a 10 m height range going from 20 to 30 m and from 10 to 20 m
for areas 2 and 3, respectively, whereas they are distributed along
more than 30 m, from 10 to 40 m for both areas 1 and 4. The 3-D
distribution of the local reflectivity maxima (i.e., the reflectivity
peaks) shown in the right column of Fig. 2 is distinctive for the
four different forest structure types considered in this example.

This indicates that the 3-D distribution of reflectivity peaks
at L-band reflects the variability in the distribution of trees.
Even if the physical significance of reflectivity peaks in terms
of forest structure is not established, a number of models and
experiments in the literature support this assumption [28]–[30].
From an experimental perspective, the comparison of vertical
reflectivity profiles at L-band with the height distribution of
trees derived from airborne laser scanning data confirms that
reflectivity peaks are produced at the range of heights occupied
by the branches [31].

The discussion above triggers the idea to define measures of
forest structure based on the (spatial) 3-D distribution of reflec-
tivity peaks ignoring their (absolute) intensity. This choice has
several advantages. First, it allows to attenuate the impact of
radar reflectivity variations due to nonstructural effects. The lo-
cation of the reflectivity peaks appears significantly more robust
than the relative distribution of energy against changes induced
by rain events, temperature gradients, seasonality [13], and/or
the choice of the TomoSAR algorithm itself [32]. This allows
the use of tomographic super-resolution algorithms that allow to
critically improve the vertical resolution beyond the Rayleigh
resolution, by taking into account the associated loss of ra-
diometric accuracy and or consistency. Among all TomoSAR
algorithms in the literature, compressive sensing (CS) provides
the highest super-resolution under the relevant TomoSAR con-
ditions, and for this reason it has been used in the following
(see the Appendix). At the same time, using the distribution of
peaks only allows to reduce the dimensionality of the observa-
tion space required for the definition of a structure metric.

2) Definition of Horizontal and Vertical Forest Structure In-
dices From TomoSAR: The objective of this section is to define
indices of horizontal and vertical structure from the 3-D spa-
tial distribution of the ensemble of reflectivity peaks. These
indices should reflect the same notions of spatial variability of
the canopy cover and tree size distribution as the indices defined
in (1) and (2). Following the discussion in Section II-B1, it can
be assumed that the presence of forest layers at different heights
within a stand is reflected by a higher variability in the height
of the reflectivity peaks. Based on this, it is possible to define
one horizontal and one vertical index of structure from the 3-D
distribution of the reflectivity peaks.

Fig. 3. Definition of top layer for the horizontal structure index and the thresh-
old to remove peaks introduced by the ground scattering contributions.

For the horizontal structure index HS, first the height of the
highest peak in the unit scale hmax is estimated and a top layer
is defined as the range of heights between 0.6hmax and hmax .
The blue layer in Fig. 3 shows the top layer as obtained for the
first area shown in Fig. 2. Once the top layer is defined, the
horizontal structure descriptor is computed as the number of
peaks within the top layer divided by the unit area S. Note that
the definition of the top layer is rather empirical, relying though
on a definition suggested in [33].

Let’s assume P = {p1 , p2 , . . . pO} the set of O reflectivity
peaks in a given unit scale and HP = {h1 , h2 , . . . hM } the set
of M heights at which these peaks are produced. With this, the
horizontal structure index is defined as follows:

HS =
n(Ptop)

S
(3)

where n(Ptop) is the total number of peaks in the top layer.
Without loss of generality and similar to HSfield , HS is

normalized to its maximum HSnorm within the scene and
1 − HSnorm is considered in order to reflect disorder: 0 indi-
cates low and 1 indicates high structural disorder or complexity.

The vertical structure index VS is defined as follows:

VS = M ′var(H ′
p) (4)

where H ′
P is the vector of size M ′ obtained from HP after

accounting all peaks that appear at the same height only once
and ignoring the peaks of the ground. At lower frequencies, the
presence of the ground scattering contributions introduces re-
flectivity peaks that are not directly related to the forest volume.
In order to exclude the ground induced peaks, a minimum height
is set and peaks below this height are disregarded. In this paper,
the height threshold is set to 5 m (see the red area in Fig. 3),
implying that understory (1–3 m) is also ignored. Finally, the
descriptor of the vertical forest structure VS is normalized to its
maximum VSnorm within the scene.

Several considerations should be raised here. First, while the
majority of peaks occur at the position of the canopies, this is
not always the case. This can be due to sidelobes in the recon-
struction of the vertical reflectivity as a result of a suboptimum
sampling (i.e., number and/or distribution of acquisitions), the
insufficiency of the reconstruction algorithm, or the erroneous
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detection of reflectivity peaks (see the reflectivity profiles in
Fig. 2). As a consequence, it is of advantage to define forest
structure descriptors by means of a statistical measure in order
to be robust enough to false peak detections. In this context,
no reliable information can be extracted from a single peak
and the larger the number of peaks, the more accurate the
estimated height frequency distribution becomes, ensuring a
sufficient number of peaks impose restrictions on the range of
spatial scales that can be employed. The chosen scale should
be large enough to comprise a statistically meaningful number
of trees and small enough to occupy a homogeneous area
in terms of structure. The definition of these bounds is not
straightforward, essentially because they depend on the forest
heterogeneity. For instance, compared to homogeneous stands,
a highly structured stand requires sampling on a larger scale to
reflect its heterogeneity.

Furthermore, the structure indices introduced rely on the
assumption that a group of trees of similar height causes a
reflectivity peak at the height of the common canopy. However,
groups of trees of the same height but different species, might
produce peaks at different heights as a result of the different
crown architecture (i.e., shape) introducing an ambiguity in the
vertical structure index.

Finally, it should be noted that the indices suggested in this
section are not absolute measures. Different systems at different
resolutions might produce a different set of peaks for the same
scene. Since the measure of vertical structure reflects a rela-
tive distribution of peaks in the vertical dimension, it will not
be affected by differences in range and azimuth resolution. The
horizontal one may present lower values with poorer resolutions.
In order to account for this, before estimating the structure mea-
sures, the ensemble of peaks is projected on a geographic grid
always at a resolution of 1 × 1 m. This step allows bringing the
number of peaks identified by systems at different resolutions
to comparable ranges. This framework has already proven its
validity in forest structure changes tracking in a temporal series
of TomoSAR data acquired by systems with different charac-
teristics essentially in terms of resolution (range, azimuth, and
vertical) and viewing geometries [34].

III. EXPERIMENTAL RESULTS ON A TEMPERATE FOREST

A. Description of the Test Site and Available Dataset

In this section, the method suggested for forest structure es-
timation from TomoSAR data at L-band is applied on a tem-
perate forest. The test site considered is Traunstein, a managed
forest located in South-Eastern Germany, recently included in
the ForestGEO network. The location, diameter at breast height
and species of around 16 000 trees were sampled in 2015 in an
area of 25 ha (see the area indicated with a black perimeter in
Fig. 4). In terms of structure, the site is characterized by a spa-
tial structure gradient with different stages of management. The
eastern part is mostly covered by monospecific homogeneous
stands, while the western part is dominated by multilayered
mixed stands.

In May 2017, a tomographic radar dataset at L-band was
acquired over the area in a repeat pass interferometric mode by

Fig. 4. (Top) Map of Lidar heights over the test site and (bottom) Pauli
representation (i.e., using |HH–VV|, |HV| and |HH+VV| as the RGB channels).

TABLE I
MAIN PARAMETERS OF THE TOMOGRAPHIC SAR DATASET

1kz is the vertical wavenumber for the center of the image, 2Rayleigh resolution,
3Before tomographic processing.

the DLR’s F-SAR system [35] (see Fig. 4 bottom). The different
parameters of the dataset are summarized in Table I. In 2016,
airborne Lidar measurements were acquired over the same site
(see Fig. 4 top).

As shown in Table I, the SAR single look complex (SLC) im-
ages have a resolution of 1.2 m in range and 0.6 m in azimuth.
A multilook of 5 × 11 SLC samples in range and azimuth, re-
spectively, is applied in the tomographic processing for the esti-
mation of the covariance matrices, which leads to independent
reflectivity profiles every 6 × 6.6 m. The Appendix summarizes
the main tomographic processing steps employed.

Then, the significant peaks from each reflectivity profile are
identified. In order to do so, several standard approaches have
been tested. Since the local maxima we intend to identify in
the reflectivity profiles have significantly higher amplitude than
spurious peaks caused by noise (as it can be observed in Fig. 2),
no meaningful differences in terms of performance between the
methods have been found in this case. For the results reported in
this paper, the profile is first convolved with a Gaussian wavelet
at two scales. Within the wavelet coefficients, the ones with
amplitude higher than the mean plus three times the standard
deviation are accepted as actual peaks. As already mentioned,
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Fig. 5. Transect across the test site as observed through (a) the Lidar returns
and (b) the peaks of the TomoSAR reflectivity profiles. Corresponding forest
structure indices as estimated from (c) Lidar and (d) TomoSAR, following (3)
and (4) (aggregated Lidar vertical profiles are treated as TomoSAR reflectivity
profiles).

the identified peaks are projected on a geographical 1 × 1 m
grid before the estimation of the structure indices.

After choosing a scale, the forest structure indices are then
computed at this scale by applying (3) and (4) from Section II.
This is implemented by means of a sliding window, whose
dimensions correspond to the chosen scale sliding through the
samples in the geographical 1 × 1 m grid. Note that, throughout
the paper, the scale is set to 50 × 50 m (except of Section III-D,
where a multiscale analysis is performed).

A similar analysis has been carried out as well with Lidar data
in the same test site. For the Lidar data, a return is recorded every
0.5 × 0.5 m. First, the 100 returns in 5 × 5 m are combined to
obtain an aggregated vertical profile. Then, each of these profiles
is treated in the same way than the radar ones: The peaks are
identified and the structures are estimated following (3) and (4)
with a sliding window.

Fig. 5 shows a 1 km long transect along the site [indicated by
the white line in Fig. 4 (top)], as seen by both the Lidar (a) and
the TomoSAR (b) systems. At each position of the transect, the
projection of the Lidar returns as well as the TomoSAR peaks

across 20 m are represented. Higher values (yellowish colors)
reflect the co-occurrence of numerous peaks at a given height,
whereas lower values (bluish colors) imply that no peaks are
detected there. It is worth clarifying here that Figs. 2 and 5,
besides covering different sites, are showing different variables:
Fig. 2 shows the normalized reflectivity, whereas Fig. 5 shows
the aggregation of reflectivity peaks. Four areas are highlighted
in this plot, numbered from 1 to 4, from East to West. For in-
stance, Area 1 corresponds to a homogeneous monolayer stand
of spruces. For this young stand, most of the peaks are concen-
trated in a limited range of heights and only a few ones appear
beneath this dominant layer. In Area 2, the dispersion in the
vertical distribution of peaks is slightly increasing, reflecting
the transition to a multilayered stand. Area 3 is essentially con-
stituted by very low vegetation, irregularly scattered in space.
Finally, at the western part of the plot, Area 4 comprises an
older stand, with a significantly higher structure complexity
that is consistently reflected in a wider distribution of peaks. By
comparing the distribution of the Lidar returns with one of the to-
mographic peaks along the transect, the differences between the
different areas in this example appear clearer in the TomoSAR
transect. The Lidar returns appear mostly concentrated at the top
of the canopy, in a similar way all along the transect. For exam-
ple, the main difference between Areas 4 and 1 is that the returns
in Area 4 are a few meters higher, but they are not significantly
more scattered in the vertical dimension than the ones in Area 1.
This is reflected in the values of the horizontal and vertical forest
structure indices in this transect [see Fig. 5(c) and (d)].

B. Results

The maps of horizontal and vertical structure are estimated
in the site for the three different sources of data available at a
structure scale of 50 × 50 m. First, the horizontal and vertical
structures from the field data are computed following (1) and
(2), respectively. Then, the horizontal and vertical structures for
the two sources of remote sensing data are estimated according
to (3) and (4). The resulting maps of horizontal and vertical
forest structure are shown in Figs. 6 and 7. Despite several local
dissimilarities, the general spatial patterns for the three maps
are similar. In terms of horizontal structure, the test site is quite
homogeneous, apart from the central area with low and scattered
vegetation. In terms of vertical structure, a gradient of increasing
complexity from East to West is distinctly noticeable.

The discrepancies between the different maps are mainly due
to differences in resolution and viewing geometries affecting in
particular stand borders. Such an example is shown in Fig. 8,
which shows the area within the square indicated in Fig. 4.
When the vertical structure is estimated from field data, a local
maximum can be observed in the map. When estimated from
Lidar, this maximum is spread over a much larger area and
when estimated from TomoSAR, no vertical structure maxima
are retrieved in this point. According to field data, in this area,
as shown in Fig. 8, there are three isolated tall trees surrounded
by very low vegetation. This should increase locally vertical
structure, but the impact of these trees in the three maps appears
to be very different. In the field data, in most of the sliding
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Fig. 6. Maps of horizontal forest structure, as estimated from (top) field,
(middle) Lidar and (bottom) TomoSAR data.

windows covering these trees, the number of tall trees is low
with respect to the number of smaller trees. On the contrary,
for the Lidar data, since big trees produce more returns than the
smaller ones, their presence will be exaggerated and spread over
the area of the structure window. Lastly, in the tomographic
SAR reconstruction, the tall trees could not be detected (see
Fig. 8), essentially because of insufficient spatial resolution
after multilook (6 × 6.6 m).

The correlations between the different maps are shown in
Fig. 9. Correlations are slightly better for the horizontal than
for the vertical structure estimators, which are reasonable
because the vertical measure involves a second-order moment,
whereas the horizontal one reflects first-order statistics. It can
be observed from the maps and the correlation plots that across
the site, structure types are unevenly distributed: Both for the
horizontal and the vertical, most of the site exhibits similarly
low values and very high values are concentrated in a small area.
Also, especially for the vertical structure, transitions between
areas with different structure are smoother than with Lidar and
TomoSAR. In this sense, the higher sensitivity of the field data
to vertical structure variations is due to the difference in accu-
racy of the measurements involved: Vertical structure estimated
from field data according to (2) is sensitive to variations of dbh
in the range of cms, whereas Lidar and especially TomoSAR are
constrained by the vertical resolution of the system, which is on
the order of several meters. Besides this, it can be observed that

Fig. 7. Maps of vertical forest structure, as estimated from (top) field, (middle)
Lidar, and (bottom) TomoSAR data.

Fig. 8. Area in the white square in Fig. 4.

the structure estimated from Lidar shows a better correlation
with the field data than the one estimated from TomoSAR
for the horizontal dimension (r = 0.87 versus r = 0.83), but
slightly worse for the vertical one (r = 0.75 versus r = 0.77).
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Fig. 9. Correlations between horizontal (left column) and vertical (right col-
umn) forest structures as estimated from Field, Lidar, and TomoSAR data.

C. 3-D Versus Height Only Forest Structure Estimation

In order to assess the advantages of employing tomographic
SAR for forest structure estimation with respect to only height in
the same conditions of spatial resolution, a simple test is carried
out by estimating forest structure only taking into account the
highest peak for each range and azimuth position instead of
the complete vertical distribution of peaks. It is assumed here
that the highest reflectivity peak is the closest one to the top of
the canopy. Using the highest peaks only, horizontal and vertical
structures can be estimated according to (3) and (4) following the
same procedure as before. The maps of horizontal and vertical
structure obtained are shown in Fig. 10. A lower sensitivity
when compared to the structures, estimated from the whole set
of peaks (see Figs. 6 and 7), can be observed essentially in the
high vertical structure region, in the West part of the site. This
is reflected as well in the correlation plots shown in Fig. 11:
Vertical structure is underestimated when considering only the
highest peak and the underestimation is more important for
higher structure values.

Four areas considered uniform in terms of structure according
to field data and optical imagery available are defined. These
four areas are shown in Fig. 4 (top). From East to West, the
area in the blue polygon is a monolayer dense stand. The orange

Fig. 10. Maps of forest structure estimated from the highest peak of the
reflectivity profiles. (Top) Horizontal and (bottom) vertical forest structure.

Fig. 11. Correlations between the structures as estimated from the complete
set of peaks of the TomoSAR reflectivity profiles and from only the highest one.

polygon is of similar structure besides a few older trees to its
western border increasing complexity. The green polygon is a
very heterogeneous area with only a few scattered trees. Lastly,
the red area comprises an older stand with a larger diversity in
terms of trees dimensions and thus higher vertical structure.

Fig. 12 shows the distribution of the indices in the HV plane
for these four areas, considering the whole set of peaks and
considering only the highest peak, at 50 × 50 m. When only
the highest peak is considered, the reduction in sensitivity in the
vertical dimension induces a vertical shrinkage of the signatures
of the different areas, supporting the reduction of sensitivity to
vertical structure observed from the maps in Fig. 10 and the
correlation plots in Fig. 11.

D. Discussion on Scale

As already mentioned in Section II-B2, forest structure is
inherently linked to scale and as a consequence the estimation
of forest structure might vary with scale. Also, the measure
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Fig. 12. Signatures of the horizontal and vertical forest structure indices in
the HV plane for four different polygons at different growth stages (young
monolayer stand in blue, older mainly monolayer stand in orange, heterogeneous
area with scattered trees in green, and multilayered stand in red), estimated using
the whole set of peaks of the TomoSAR reflectivities (left) and using only the
highest one (right), at 50 × 50 m.

of forest structure can be considered meaningful only within a
range of scales. This range is bounded on the lower limit by
the spatial variability of the scene and the spatial resolution of
the sampling source. In fact, since the indices proposed rely on
statistical measures, in order to ensure statistical significance, a
minimum number of samples is required, both in terms of trees
within the area considered and in terms of independent SAR
observations. Too fine scales are not adequate to provide statis-
tically significant values and, even within a uniform area, esti-
mated forest structure may differ from sample to sample. On the
other extreme, the upper limit of the valid scales is determined
by the maximum correlation length of the stand. If the scales
considered are larger than the size of the areas regarded as being
uniform, the resulting estimates result from the mixing of diverse
structures types and are therefore biased. Furthermore, besides
the statistical considerations, ecological significance should also
be accounted for. In that sense, it should be noted that the rela-
tions between forest species and 3-D vegetation structure may
occur at spatial scales finer as 1 ha 5 and therefore scales of
1 ha or finer are required for many ecological applications.

In order to illustrate the evolution of structure estimates across
scales in the site considered, the indices of horizontal and ver-
tical forest structure for the three sources available (field mea-
surements, Lidar, and TomoSAR data) are estimated according
to (1)–(4) at scales ranging from 25 × 25 m to 150 × 150 m.
The distribution of the values of estimated forest structure in the
HV plane for three different scales (25 × 25 m, 75 × 75 m, and
150 × 150 m) in the four areas regarded as uniform in terms of
structure and defined in the previous section is shown in Fig. 13.

Regardless of the source of data, it can be observed that at a
scale of 25 × 25 m, the dispersion of values within polygons
considered uniform in terms of structure is high. It can thus
be deduced that especially in the red polygon with the highest
vertical structure, cells of 25 × 25 m are too fine to sample
its representative diversity. This large dispersion would hamper
as well the classification of polygons, since the distribution of
their values of horizontal and vertical structures appears close to
each other or even overlapped in the HV plane. When the scale

Fig. 13. Signatures of the horizontal and vertical forest structure indices in
the HV plane for four different polygons at different growth stages (young
monolayer stand in blue, older mainly monolayer stand in orange, heterogeneous
area with scattered trees in green and multilayered stand in red), as estimated
from field, Lidar, and TomoSAR data, at three different scales.

increases to 75 × 75 m, the dispersion of values within poly-
gons is significantly reduced and the distributions for the dif-
ferent polygons drift apart from each other, favoring classifica-
tion based on structure characterization. The standard deviation
within the predefined polygons further decreases if the scale in-
creases to 150 × 150 m, for the three sources of data. However,
the four different signatures start to shrink again and become
meaningfully less distinct. In fact, the elongated morphology
of the test site considered in this paper together with its rapid
spatial variability (see Fig. 4) allows only a few windows larger
than 1 ha still covering uniform trees distributions.

IV. CONCLUSION

A framework for qualitative and quantitative forest structure
estimation from tomographic SAR measurements at L-band has
been proposed. It is based on a pair of complementary indices for
the characterization of horizontal and vertical structure. In order
to ensure the physical interpretation and ecological relevance,
the indices have been derived in correspondence to structure
indices already established in forestry and ecology studies. The
fact that the indices used in forestry and ecology are defined
in terms of individual tree parameters while conventional SAR
measurements are not able—in terms of spatial resolution—to
distinguish single trees had to be accounted. A methodology to
derive the two indices from 3-D radar reflectivity reconstructed
by tomographic SAR techniques has been proposed and de-
scribed step by step. The methodology relies on the evaluation
of the location of the (local) maxima of the reconstructed vertical
reflectivity profiles. The main reason for this is that the locations
of the reflectivity maxima are less prone to variations induced
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by nonstructural effects as for example by changing seasonal
and weather conditions than the reflectivity values itself.

The proposed methodology has been applied on airborne to-
mographic SAR data acquired at L-band over the temperate for-
est of Traunstein in Germany and validated against the structure
indices obtained from airborne Lidar and field inventory data.
The validation of the forest structure maps obtained from the
radar data against the ones derived from the field inventory data
revealed a meaningful correspondence. Reaching a good agree-
ment between the maps generated from the two data sources is
necessary to ensure the incorporation of the estimations gener-
ated by SAR systems in ecology studies, for example, through
assimilation into existing models.

The framework as defined by the two indices allows:
1) the systematic interpretation of the 3-D radar reflectivity

in terms of physical forest structure. This is not always an
intuitive task because of the dependency of radar reflec-
tivity on system parameters as well as on the geometric
and dielectric properties of the forest;

2) the direct comparison of forest structure estimates from
field inventory data to estimates derived from radar and
even Lidar measurements.

Indeed, the proposed framework has proven to be suitable for
Lidar measurements. The forest structure maps as estimated by
means of radar and Lidar are comparable, despite the differences
in resolution and acquisition geometry. This not only supports
the significance of the proposed framework but also establishes
a basis to combine the information provided by radar and Lidar.

It should be noted here that the quantitative characterization
of forest structure by means of the proposed framework un-
avoidably incurs a loss of structure information, since a 3-D
notion is projected into a 2-D space defined by the two indices,
whose orthogonality is not guaranteed in any case (or scale).
In this sense, further validation is necessary to entirely assess
the limitations of the framework proposed when it comes to a
complete representation of forest structure.

In order to assess the value added by the availability of full
3-D information when compared to the information provided by
forest height alone, forest structure maps generated by account-
ing only the highest maximum of the reflectivity profiles have
been generated. The considerable loss of sensitivity to vertical
structure variations in these maps reinforces the importance of
3-D radar reflectivity estimates.

Finally, the evolution of the obtained forest structure estimates
has been evaluated over a range of spatial scales. The main
result was the understanding that the choice of scale has to
be meaningful with respect to the structural complexity of the
underlying stand or forest. For a complex highly heterogeneous
stand, estimates at very fine scales (smaller than 25 × 25 m) are
affected by a high dispersion. The dispersion decreases rapidly
toward 50 × 50 m and beyond which is in agreement with the
common understanding that the spatial distribution of trees at 0.5
to 1 ha scales renders a meaningful estimate of the complexity
of a stand. The upper bound is given by the maximum scale
at which the stand can still be considered uniform in terms of
structure.

Further validation and possible refinements of the proposed
methodology require sites and data with spatial and temporal
diversity, i.e., a variety of forest scenarios with different charac-
teristics and temporal variability. Regarding spatial variability,
the proposed methodology has been already successfully vali-
dated in a number of tropical test sites in Gabon [36]. Temporal
variability is important for assessing the sensitivity to temporal
and spatial changes in forest structure and the robustness to non-
structural variations. In this context the proposed methodology
has been tested on a time series of tomographic acquisitions con-
ducted over temperate forests and proven to be robust enough to
nonstructural variations and sensitive enough for tracking forest
structure changes due to management practices [34].

APPENDIX

PRINCIPLES OF SAR TOMOGRAPHY AND

COMPRESSIVE SENSING

Consider a tomographic acquisition composed by M (repeat-
pass) tracks over the same scene. Given a range and azimuth
coordinate, the SLC pixel amplitudes ym , m = 1, . . . ,M of a
single-polarimetric channel can be arranged in a column vector
y as follows:

y = [y1 , y2, . . . , yM ]T . (A.1)

In the multipolarimetric case, the same operation can be re-
peated for each one of the P available polarimetric channels
(P = 3 for a fully polarimetric acquisition). Then, a PM -
dimensional SLC data vector yp is obtained by stacking the
single-polarimetric data vectors one on top of the other.

Since each image is acquired from a slightly different angu-
lar position, a scatterer at a given height z introduces a phase
difference among the acquisitions. The vertical sensitivity of
the phase difference between two acquisitions is expressed by
means of the vertical wavenumber defined as follows [37]:

kz =
4πB⊥

λ r sin(θ)
(A.2)

where λ is the wavelength,r is the distance to the scatterer, θ
is the incidence angle, and B⊥ is the orthogonal distance be-
tween the tracks corresponding to the two acquisitions projected
in the direction orthogonal to the line of sight. Let kz max be the
wavenumber with maximum B⊥, and kz min the one with mini-
mum B⊥. The value of kz max is related to the Rayleigh vertical
resolution δz as [37]

δz =
2π

kz max
(A.3)

which is conventionally used as a reference in SAR tomography.
kz min gives the nonambiguous height interval hamb as [37]

hamb =
2π

kzmin
. (A.4)

In order to avoid ambiguities in the estimated vertical dis-
tribution of the backscattered power (reflectivity profile), hamb
should be higher than the maximum forest height of the scene.
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The phase differences of each of the acquisitions are collected
in the so-called z-dependent steering vector at a given height z
defined as follows:

a (z) = [1, ejkz 2 z , ejkz 3 z , . . . , ejkz M
z ]T (A.5)

where kzm
, m = 1, . . . , M , is the vertical wavenumber for the

mth acquisition with respect to the reference one, here placed in
correspondence of the first image for which it results kz1 = 0.
In the multipolarimetric case, the (PM × PM)-dimensional
covariance matrix R associated to yp is as follows:

R = E{ypyp
H }. (A.6)

In (A.6), E{·} denotes the statistical expectation, and (·)H

the Hermitian (i.e., transpose conjugate) operator. It should
be noted that the estimation of the expectation of a stochastic
process requires several realizations of that process, which is
generally not available in real datasets. Therefore, under the
assumption of ergodicity, the statistical expectation in (A.6)
is approximated by averaging neighboring pixels within a
range-azimuth (multilook) cell.

Several (model-based and not) tomographic algorithms can
be employed to estimate the reflectivity profiles using R and
a(z) [31], [38] on a set of heights {zi}H

i=1 within an interval of
interest. In the general multipolarimetric case, it is of interest to
estimate a set of (P × P )-dimensional polarimetric covariance
matrices {T (zi)}H

i=1 . Their P diagonal elements collected for
the H heights form the reflectivity profiles in the P polarimet-
ric channels. Different algorithms are characterized by different
height resolution capabilities beyond the Rayleigh limit (A.3).
However, the improvement in the achievable resolution can in-
trinsically reduce the radiometric accuracy, especially in the
imaging of volume scatterers.

The estimation of the reflectivity profiles is based on the
inversion of the Fourier relationship existing between them and
the covariances in (A.6) [11], [37]. Following the derivation in
[39], such relationship can be expressed by means of a linear
system as follows:

R′ = φT ′. (A.7)

In (A.7) R′ is (M 2 × P 2)-dimensional matrix resulting from
a proper permutation of the elements of the polarimetric-
multibaseline covariance matrix (A.6): Each row represents
for each of the M 2 interferometric pairs, the different P 2

polarization combinations, after ordering the elements of the
(P × P )-dimensional polarimetric matrices as vectors. Further
details on the permutation are given in [39]. φ is an (M 2 × H)-
dimensional matrix obtained by collecting the steering vec-
tors (A.5) calculated for the H heights [39]. Finally, T ′ is an
(H × P 2)-dimensional matrix that contains the elements of the
unknown matrices {T (zi)}H

i=1 on each row [39]. Since in an
usual tomographic configuration the number of acquisitions is
limited, it results in M 2 � H . As a consequence, the linear
system in (A.7) is highly underdetermined.

In order to estimate the vertical reflectivity profiles by solving
the linear system in (A.7), in this paper we make use of an
algorithm based on CS [40]. Essentially, the CS theory states
that a signal can be reconstructed under the Nyquist sampling

rate provided that it is sparse, meaning that it has a low number
of nonzero coefficients, and the matrix φ fulfills the restricted
isometry property [40]. Thus, a CS algorithm can cope with
the underdetermination of the system (A.7) and can resolve
scatterers at heights closer than the resolution limit in (A.3).

In general, the sparsity condition is too restrictive and most of
the signals of interest do not fulfill it. However, the application
of CS can be easily extended to compressible signals, which are
signals that produce a sparse representation when projected in
a fixed sparsifying basis.

Since some level of correlation is expected between adjacent
rows in T ′ (i.e., consecutive heights), it is reasonable to assume
that a sparse representation of T ′ may be obtained through a
projection on a given basis. This has already been explored in
[41], where it has been proven that the projection into an appro-
priate wavelet basis provides a sparse expansion of the reflectiv-
ity profiles in a forest scenario. Hence, by denoting with w the
(H × H)-dimensional matrix of the wavelet projection, the vec-
tor of the sparse wavelet coefficients α results in the following:

α = wT ′. (A.8)

With this, (A.7) can be rewritten as follows:

R′ = φw−1α. (A.9)

In this paper, we suggest to estimate α by solving (A.9)
through a disciplined convex programming, which can be for-
malized by means of the following constrained minimization
problem:

min‖α̃‖2,1 subject to ‖R′ − φw−1 α̃‖F ≤ ε (A.10)

under the additional condition that every row of T ′ (i.e., each
polarimetric covariance matrix) must be positive semidefinite.
In (A.10), α̃ are the estimated wavelet coefficients, ε is an up-
per bound for the error allowed in the estimation, ‖ · ‖2,1 and
‖ · ‖F are a mixed (2,1) and a Frobenius norm, respectively.
In the scope of this paper, the proposed approach has been im-
plemented in Python and employs the CVXPY packages [42].
With the estimated coefficients α̃ from (A.10), the estimated
polarimetric covariance matrices T̃ ′ and finally the reflectivity
profiles can be obtained.
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