Loading [a11y]/accessibility-menu.js
High-Resolution Three-Dimensional Displacement Retrieval of Mining Areas From a Single SAR Amplitude Pair Using the SPIKE Algorithm | IEEE Journals & Magazine | IEEE Xplore

High-Resolution Three-Dimensional Displacement Retrieval of Mining Areas From a Single SAR Amplitude Pair Using the SPIKE Algorithm


Abstract:

High-resolution three-dimensional (3-D) displacements of mining areas are crucial to assess mining-related geohazards and understand the mining deformation mechanism. In ...Show More

Abstract:

High-resolution three-dimensional (3-D) displacements of mining areas are crucial to assess mining-related geohazards and understand the mining deformation mechanism. In 2018, we proposed a cost-effective and robust method for retrieving mining-induced 3-D displacements from a single SAR amplitude pair (SAP) using offset tracking (OT) procedures. Hereafter, we refer to this method as the “alternative OT-SAP” (AOT-SAP) method. A key step in the AOT-SAP method is solving the 3-D surface displacements from the AOT-SAP-constructed linear system using routine lower-upper (LU) factorization. However, if the AOT-SAP method is used to retrieve high-resolution 3-D displacements, the dimension of the linear system becomes very large (in the order millions), and a high-end supercomputer is often needed to perform the LU-based solving procedure. This significantly narrows the practical application of the AOT-SAP method, considering the limited availability of supercomputers. In this paper, owing to the banded nature of the AOT-SAP-constructed linear system, we introduce the SPIKE algorithm as an alternative to LU factorization to solve high-resolution mining-induced 3-D displacements. The SPIKE algorithm is a divide-and-conquer direct solver of a large banded system, which can parallelly or sequentially solve a large banded linear system, with a much smaller memory requirement and a shorter time cost than LU factorization. This allows us to retrieve the high-resolution 3-D mining-induced displacements with the AOT-SAP method on either a supercomputer or a standard personal computer. Finally, the accuracy of the retrieved 3-D displacements and the efficiency improvement of the SPIKE algorithm were tested using both simulation analysis and a real dataset.
Page(s): 3782 - 3793
Date of Publication: 27 August 2018

ISSN Information:

Funding Agency:


References

References is not available for this document.