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Abstract

The accurate estimation of grid-scale fluxes of water, energy, and carbon requires consideration of 

sub-grid spatial variability in root-zone soil moisture (RZSM). The NASA Airborne Microwave 

Observatory of Subcanopy and Subsurface (AirMOSS) mission represents the first systematic 

attempt to repeatedly map high-resolution RZSM fields using airborne remote sensing across a 

range of biomes. Here we compare 3-arc-sec (~100-m) spatial resolution AirMOSS RZSM 

retrievals from P-band radar acquisitions over 9 separate North American study sites with 

analogous RZSM estimates generated by the Flux-Penn State Hydrology Model (Flux-PIHM). 

The two products demonstrate comparable levels of accuracy when evaluated against ground-
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based soil moisture products and a significant level of temporal cross-correlation. However, 

relative to the AirMOSS RZSM retrievals, Flux-PIHM RZSM estimates generally demonstrate 

much lower levels of spatial and temporal variability, and the spatial patterns captured by both 

products are poorly correlated. Nevertheless, based on a discussion of likely error sources 

affecting both products, it is argued that the spatial analysis of AirMOSS and Flux-PIHM RZSM 

fields provide meaningful upper and lower bounds on the potential range of RZSM spatial 

variability encountered across a range of natural biomes.

Index Terms—

Soil moisture; hydrologic modelling; radar remote sensing and spatial scaling

I. Introduction

WHILE considerable advances have been made in the global, coarse-scale (>10 km) 

retrieval of surface (top 5-cm) soil moisture [1–3], our ability to measure fine-scale (~100 

m) soil moisture variations beyond the near-surface remains relatively limited [4–5]. Due to 

the significant amount of fine-scale spatial variability typically found in soil moisture fields 

[6–7], and the nonlinear relationship between root-zone soil moisture and water-limited 

fluxes of water, energy, and carbon between the land surface and the atmosphere, this 

shortcoming has significant implications for our ability to model large-scale variations in the 

Earth’s water, energy, and carbon cycles.

At a minimum, accurate statistical descriptions of sub-grid soil moisture variability are 

needed to specify the correct grid-scale relationship between soil moisture and grid-scale 

fluxes [8–10]. The accurate representation of fine-scale soil moisture patterns is also 

important for capturing surface saturation connectively patterns governing streamflow 

generation [11], the design of ground validation protocols for satellite soil moisture products 

[12], the implementation of high-resolution modeling for precision agriculture [13], and the 

assimilation of fine-scale, ground-based soil moisture observations into regional drought 

monitors [14]. Unfortunately, these applications are currently limited by a lack of reliable 

information concerning the statistical variability of fine-scale root-zone soil moisture 

patterns.

The application of L- (0.5 to 1.5 GHz) and C-band (4 to 8 GHz) radar and radiometry on 

airborne platforms is well-established and can be used to derive high-resolution soil 

moisture imagery (see e.g., [15]). However, as with satellite platforms, airborne 

measurements at these wavelengths are limited to providing soil moisture estimates for only 

a thin surface soil layer (on the order of 2- to 5-cm deep), which is not directly reflective of 

deeper, vertically-integrated soil moisture values that drive variations in vegetation stomatal 

conductance (that, in turn, regulate surface fluxes of water, energy, and carbon within water-

limited, vegetated landscapes). The most viable approach for the remote retrieval of high-

resolution root-zone soil moisture is currently P-band (250- to 500-MHz) radar. In particular, 

P-band backscatter observations contain soil moisture information for the top few decimeters 

of the soil column and therefore provide much deeper vertical sampling than 5-cm soil 
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moisture estimates derived from higher-frequency C- and L-band microwave remote sensing 

[4, 16]. Hereinafter the term “root-zone soil moisture” (RZSM) will be applied to vertically 

averaged, volumetric [m3 m−3] soil moisture values within the top 40-cm of the soil column. 

Note that the usage of the term does not imply that vegetation roots are present in only (or 

throughout) the 0- to 40-cm soil layer (see additional discussion in Section II).

From 2012 to 2015, the NASA Airborne Microwave Observatory of Subcanopy and 

Subsurface (AirMOSS) mission successfully deployed a P-band radar on an airborne 

platform over a variety of North American biomes [16]. The mission leveraged synthetic 

aperture radar (SAR) processing to produce 3-arc-sec (~100-m) P-band backscatter imagery 

of 10 North American study sites. Level 1 backscatter products acquired at each site were 

processed into a Level 2/3 RZSM data product (hereinafter “AirMOSS L2/3”). These 

retrievals provide RZSM information at an unprecedented combination of spatial extent, 

temporal coverage, vertical sampling depth, and horizontal resolution.

Paralleling the development of soil moisture remote sensing technologies has been the 

growth of high-resolution (30–100 m), spatially-distributed, three-dimensional hydrologic 

models (ostensibly) capable of capturing RZSM spatial variability at a comparable set of 

spatial scales [17]. These models explicitly represent the lateral flow of water due to 

topographic forcing. Since topographic variability can usually be captured in high-resolution 

digital elevation models (DEMs), they capture at least a fraction of the processes governing 

the high-resolution distribution of soil moisture across natural landscapes. When forced with 

high-resolution land cover and soil texture products, they can also capture RZSM patterns 

arising from fine-scale spatial variations in soil hydraulic parameters and vegetation 

characteristics. However, efforts to independently validate RZSM fields generated by high-

resolution models have generally yielded mixed results. While some modelling studies 

appear successful in replicating observed soil moisture variability (see e.g., [7]), others 

suggest that models systematically underestimate such variability [18]. However, as 

discussed below, such verification is difficult. Here, we will focus on RZSM results 

generated by one such model, the Flux-Penn State Integrated Hydrologic Model (Flux-

PIHM) [19].

These two approaches, high-resolution 3-D hydrologic modeling and airborne-based P-band 

radar remote sensing, represent (arguably) the only two credible means of estimating 

spatially-continuous RZSM fields at fine spatial resolutions. While the temporal 

characteristics of both approaches can be evaluated against individual point-scale 

observations (see, e.g. results presented in Section III.A below), existing ground-based soil 

moisture networks generally do not provide the required combination of dense spatial 

sampling and large-scale extent required to fully validate spatial predictions made by either 

product [12]. As a result, the only viable evaluation strategy for spatially-distributed RZSM 

information provided by modeling and P-band remote sensing (over large spatial extents) 

lies in their mutual comparison. To the best of our knowledge, such comparisons have not 

yet been described in the literature. Below we attempt to fill this gap by comparing the 

temporal and spatial variations of 3-arc-sec (~100 m) RZSM fields acquired from both Flux-

PIHM modeling and AirMOSS remote sensing retrievals.
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Section II provides background information on both approaches and the AirMOSS study 

sites. RZSM time and space variability comparisons are presented in Section III, discussed 

in Section IV, and summarized in Section V.

II. Data and Approach

The AirMOSS mission deployed a P-band synthetic aperture radar on a NASA Gulfstream-3 

aircraft. The instrument imaged fully polarimetric (HH, VV, HV, and VH) backscatter over a 

~25 km × ~100 km rectangular mosaic area containing each of the study sites shown in 

Figure 1. Since the goal of the mission was an improved estimate of North American net 

ecosystem exchange of carbon between the land surface and atmosphere, study sites were 

chosen specifically to represent a broad range of North American biomes.

Nine AirMOSS sites are considered here: (1) the Tonzi Ranch site (TZ) in central California, 

(2) the Metolius site in eastern Oregon (OR), (3) the Marena Oklahoma Soil Moisture Active 

Passive (SMAP) In Situ Testbed (MOISST) site in central Oklahoma (OK), (4) the Howland 

(HW) Forest site in Maine, (5) the Harvard Forest (HF) site in Massachusetts, (6) the Duke 

Forest (DF) site in North Carolina, (7) the Chamela (CH) site in Mexico, (8) the Boreal 

Ecosystem Research and Monitoring Sites (BERMS) forest (BF) site in Saskatchewan, and 

(9) the Walnut Gulch site in southeastern Arizona (AZ). AirMOSS science flights started in 

August 2012 and finished in September 2015 after logging more than 1200 total flight hours. 

See Table 1 for a complete list of over flights conducted at each site.

Two separate algorithms were employed to convert AirMOSS L1 HH and VV backscatter 

imagery into a 3 arc-sec (~100-m) AirMOSS L2/3 retrieved RZSM product [20]. The first, 

hereinafter referred to as the “University of Southern California” or “USC” algorithm, was 

designed for single-species forests and lightly vegetated grassland/savannas landcover 

present in the TZ, OR, BF, AZ, and OK sites. The second, referred to as the “Jet Propulsion 

Laboratory” or “JPL” approach was designed specifically to handle mixed-forest land cover 

and applied at the HW, HF, DF, and CH sites. Since each algorithm was applied only to sites 

containing (suitable) land surface conditions for which it was designed, no cross-comparison 

results are available. However, additional details for both algorithms are given below.

Both AirMOSS L2/3 algorithms retrieve a vertically-continuous soil moisture profile. 

AirMOSS RZSM results discussed below are based on the vertical integration of these 

profiles within the top 40 cm of the soil column. As noted above, the use of this terminology 

does not imply that all plant roots are contained within this vertical layer. Instead, a 40-cm 

depth was selected to correspond (roughly) to the maximum validation depth of AirMOSS 

L2/3 RZSM retrievals (see Section III.A below).

A. The USC AirMOSS L2/3 RZSM Retrieval Algorithm

To model the radar response over the TZ, OR, BF, WG and OK sites, the USC AirMOSS 

L2/3 RZSM retrieval algorithm employs a discrete-scatterer model which assumes a single-

species forest with horizontal homogeneity within a radar pixel while allowing for vertical 

heterogeneity by introducing a trunk layer and a canopy layer [21, 22]. The trunk layer is 

represented by vertical dielectric cylinders, and the canopy layer contains randomly 
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distributed large and small dielectric cylinders representing branches. Leaves in the canopy 

layer are represented by disks (for deciduous forests) or cylinders (for coniferous forests) 

and are assumed to be randomly distributed throughout the canopy. The radar model 

calculates the total backscattered power as the sum of the power from several contributing 

mechanisms, namely: (1) scattering from the crown layer, (2) scattering from trunks, (3) 

double-bounce scattering between the crown layer and the ground, (4) double-bounce 

scattering between trunks and the ground, and (5) backscattering from the ground (where the 

ground is modeled as homogeneous layers of soil).

The soil moisture profile is assumed to be the only unknown in the corresponding retrieval 

algorithm. Other parameters characterizing the radar pixel (i.e., soil texture, vegetation 

parameters and structural information) are considered known as ancillary data layers. The 

vertical soil moisture profile is assumed to have the quadratic form az2 + bz + c, where z [m] 

is the depth within the soil column, and the coefficients a, b and c are depth-constant 

unknowns to be retrieved [20].

Note that the retrieval of these three unknowns based on two backscatter observations (HH 

and VV) makes the inverse problem ill-posed. Accordingly, upper and lower bounds are 

defined for each unknown coefficient based on available in-situ soil moisture data at each 

corresponding AirMOSS site [20,23]. A simulated annealing algorithm adapted from [24] is 

then used to minimize a cost function based on the difference between measured and 

calculated backscattering coefficients. Due to specific AirMOSS system properties 

(including attenuation of P-band signals, observed signal-to-noise ratio, system noise floor, 

and calibration accuracy), a 45-cm validity depth is assumed for formal verification 

performed at the BF, OR, OK, TZ, and WG sites [20]. For additional validation details, see 

Section III.A below and [20].

B. The JPL AirMOSS L2/3 RZSM Retrieval Algorithm

The two-step JPL AirMOSS L2/3 RZSM retrieval algorithm was applied to retrieve RZSM 

for mixed-forest land cover conditions existing at the HF, HW, DF, and CH AirMOSS sites. 

First, vertically averaged soil moisture, above ground biomass, and surface roughness 

heights were simultaneously estimated using a Levenberg-Marquardt nonlinear least-squares 

optimization method. Second, vertically averaged soil moisture was converted into a 

vertically distributed soil moisture profile. The Levenberg-Marquardt method is a nonlinear, 

least-squares curve fitting approach defined here by:

S(W , ε, s) = Σi = 1
n σpqi − f(W , ε, s) 2

(1)

where σpqi is the polarimetric backscattering radar cross-section coefficient; W is the above-

ground biomass; ε is the dielectric constant of the ground, and s is the root-mean-squared 

height of the ground surface roughness. The optimization procedure was based on the 

minimization of the distance S between AirMOSS-observed backscatter values and a 

forward-scattering model.
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The forward model is a simplified radar backscattering coefficient based on fitting a 

physical-scattering mechanism to the data. It consists of three backscattering terms: (1) 

“direct”, (2) “direct reflect”, and (3) “ground” where the direct term is scattering from the 

crown and trunk of tress; direct reflect is the double-bounce scattering interaction between 

trees and the ground, and the ground term is the direct scattering from the ground. These 

three terms sum to equal the total polarimetric cross-section:

σpq = direct + direct reflect + ground (2)

and are parameterized as:

direct = ApqW αpq cos θ 1 − exp − BpqW βpq

cos θ (3)

direct reflect = CpqW δpqσpq sin θ exp − BpqW βpq

cos θ (4)

ground  = Spq exp − BpqW βpq

cos θ (5)

where σpq = |Rpq|2(exp[−4k2s2cos2θ]) [–]; W is biomass [Mg/ha]; Rpq is the Fresnel 

reflection coefficient of the ground for polarization pq; pq denotes polarization which can be 

VV, HH, HV, or VH; s is the root-mean-square height of the rough ground [m]; k is the wave 

number [m−1]; θ is the radar incidence angle, and Spq is the scattering cross-section from the 

rough ground using [25]. The coefficients α, β, and δ are polarization-dependent shape 

coefficients which depend on tree geometry parameters such as trunk height and diameter, 

branch length and diameter, and leaf size/density. Likewise, the coefficients A, B, and C are 

polarization-dependent weights which determine the relative and absolute contribution of 

(3–5). Here these coefficients were determined using previously obtained data which 

matches with ground observations/measurements.

The second step of the JPL RZSM algorithm was the retrieval of the soil moisture profile. 

This was based on a look-up table approach where polarimetric backscattering coefficients 

were pre-computed based on vertically distributed soil texture information. The solution was 

the profile candidate associated with the closest fit to the observed backscattering 

coefficients. For further details, see [26].

C. The Flux-Penn State Integrated Hydrologic Model

The Penn State Integrated Hydrologic Model (PIHM) is a multi-process, multi-scale 

hydrologic model where major hydrological processes are fully coupled using a semi-

discrete finite volume method [27–28]. For channel routing and overland flow, which is 

governed by the St. Venant equations, both the kinematic and diffusion wave approximations 

are included. For saturated groundwater flow, the 2-D Dupuit approximation is applied. For 
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unsaturated flow, two options can be applied: 1) a 1-D vertically integrated form of Richards 

equation or 2) a shallow groundwater assumption in which unsaturated soil moisture is 

dependent on groundwater level.

The original soil water balance for PIHM has recently been modified. In the new model 

version, renamed “Flux-PIHM”, the original PIHM unsaturated-saturated zone soil water 

balance is coupled with vertical soil water flux processes taken from the Noah land surface 

model [29] to redistribute soil moisture across multiple soil layers [19, 23]. See Figure 2 for 

a diagram of Flux-PIHM water and energy flux processes. Note that flow within the 

unsaturated zone remains 1-D (vertical-only), while 2-D (i.e., lateral flow) aspects of Flux-

PIHM are confined to the saturated zone.

For our Flux-PIHM application, four soil layers with (spatially-fixed) depths of: 0–10 cm, 

10–40 cm, 40–100 cm, and 100–200 cm were utilized, and RZSM results were based on the 

weighted averaging of the top two Flux-PIHM soil layers to obtain an integrated 0–40 cm 

RZSM value. For cases in which the total soil depth (to bedrock) was deeper than 200 cm, 

an additional soil layer was added. Meteorological inputs into Flux-PIHM consisted of 

hourly precipitation, air temperature, relative humidity, wind velocity, solar radiation, 

longwave radiation, and air pressure observations. For sites in the United States, this data 

was obtained from the hourly North American Land Data Assimilation Version 2 

(NLDAS-2) forcing dataset [30]. Local tower-based meteorology observations and 

topographic corrections to solar radiation, precipitation, and air temperature were also used. 

For sites outside of the NLDAS-2 domain (i.e., BR and CH), baseline forcing data at hourly, 

0.50° × 0.67° (latitude by longitude) resolution were acquired from the Modern-Era 

Retrospective analysis for Research and Applications (MERRA) with gauge-corrected 

precipitation taken from the MERRA-Land product (based on the daily, 0.5° Climate 

Prediction Center (CPC)-Global-Unified rain gauge analysis) [31].

Pedologic, topographic, geologic, and vegetation parameters (e.g., leaf area index, 

aerodynamic roughness length, and a vegetation canopy interception storage factor) for 

Flux-PIHM were derived from a 30-m United States Geologic Survey digital elevation 

model (DEM), a bedrock elevation map, the Soil Survey Geographic Database (SSURGO) 

soil texture classification [32], and the National Land Cover Database (NLCD) 2011 land 

cover classification [33]. Watershed delineation, stream definition and the horizontal 

variations in the depth of constraining layers were based on the DEM and bedrock map. 

These maps were then ingested into the PIHMgis tool [34] to obtain a fixed triangulated 

irregular network (TIN) mesh for each site. The mean size of TIN elements was constrained 

to the range 1002–3002 m2. Parameter lookup tables were defined to assign physical 

parameters to individual TIN elements based on characteristics identified in these maps. 

Specifically, Flux-PIHM requires vertical soil hydraulic conductivity, porosity, residual 

porosity, horizontal area fraction of macro-pore, vertical area fraction of macro-pore, macro-

pore depth, macro-pore horizontal hydraulic conductivity, macro-pore vertical hydraulic 

conductivity, and the van Genuchten alpha and beta parameters [35].

As noted above, baseline values for these parameters were based on the SSURGO soil 

classification. However, whenever possible, such values were updated using local in situ soil 
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texture and hydraulic parameter measurements. In particular, limited soil water retention 

point data available at select sites were incorporated into the Rosetta model [36] to provide 

improved estimates of soil hydraulic parameters. Nevertheless, the uncertainty in these 

numerous horizontal and vertical physical parameters for any given site is impossible to 

quantify. Limited model calibration was also performed on a site-by-site basis to select soil 

hydraulic properties optimizing model predictions of stream flow for specific storm events in 

2012 and 2013. Note that the Flux-PIHM calibration did not use the ground-based soil 

moisture observations described in Section II.D thereby ensuring the validity of the 

validation results presented below. Flux-PIHM simulations were initialized from uniform 

conditions on 01 January 2009 and spun-up for nearly four years until the start of AirMOSS 

data collection in late 2012.

The spatial domain of Flux-PIHM simulated was defined as a series of closed hydrologic 

basins (with sizes on the order of 100–1000 km2) selected to maximize overlap with 

AirMOSS over-flight coverage (see Figure 3). Nevertheless, spatial discrepancies remain 

between the Flux-PIHM modeling domain and AirMOSS spatial coverage (see Figure 3b). 

Therefore, all statistics sampled below are based solely on areas of overlapping Flux-PIHM 

and AirMOSS L2/3 coverage.

D. Ground Observations

As noted above, our primary aim is the comparison of AirMOSS and Flux-PIHM RZSM 

estimates at the AirMOSS sites. However, we will also review validation results against a set 

of independent, ground-based soil moisture observations collected within the BF, TZ, DF, 

HW, CH, and OR sites. Each instrumented site consisted of one so-called “super profile” 

station, which included instrumentation for a full radiation balance and soil heat flux, in 

addition to the instrumentation for profile soil water content, soil water tension, soil 

temperature, and precipitation. Each site also had two standard profiles which had the same 

instrumentation as the super site for profile soil water content, soil water tension, soil 

temperature (including soil surface temperature measured by thermal infrared), and 

precipitation. The three profiles were generally on a linear transect emanating from the flux 

tower with the super profile located approximately 50 m from the tower and with 50-m 

spacing between the other monitored profiles. An attempt was made to place the profiles 

such that they captured the anticipated range of soil water content at the site due to 

vegetation and topographic effects. The design of the profile monitoring scheme was 

intended to measure the profile soil water content, soil water tension, and soil temperature 

from the surface to a depth of 1 m with higher vertical resolution towards the surface. Soil 

water content and soil temperature were measured continuously every 5 minutes and soil 

water tension every 20 minutes. For more details and information on sensor installation and 

calibration, see [23].

III. Results

Figure 3a and 3b show example Flux-PIHM and AirMOSS L2/3 RZSM imagery for each 

AirMOSS ground site. As discussed above, each product is posted on a fixed 3-arc-sec 

(~100 m) grid defined within each of the study sites. The spatial extent of the AirMOSS 
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L2/3 retrievals at each of the nine sites (Figure 3b) is determined by the ~25 km × ~100 km 

AirMOSS flight pattern developed at each site. The precision platform autopilot system on 

the NASA Gulfstream-3 airplane housing AirMOSS ensured that flight lines were flown 

within the same 10-m tube on every over-flight of each site.

The remainder of this section is sub-divided as follows. Section III.A reviews the evaluation 

of Flux-PIHM and AirMOSS RZSM predictions using the ground-based soil moisture 

observations described in Section II.D. Following that, Sections III.B and III.C compares the 

representation of RZSM temporal and spatial variability provided by AirMOSS and Flux-

PIHM.

A. Ground Validation of AirMOSS and Flux-PIHM RZSM

Even a cursory glance at Figure 3 reveals the presence of large differences between 

AirMOSS and Flux-PIHM RZSM estimates. The ground-based soil moisture observations 

described in Section II.D provide an opportunity to independently assess the accuracy of 

AirMOSS L2/3 and Flux-PIHM RZSM across time at a series of point-scale ground 

measurement sites. AirMOSS L2/3 validation results have been published previously. At the 

BF, OR, AZ, OK, and TZ study sites, [20, 37] reported that 0–25 cm and 0–45 cm soil 

moisture products acquired from AirMOSS L2/3 soil moisture profile retrievals had a root-

mean-square-error (RMSE) of 0.050 m3m−3 and 0.063 m3m−3, respectively, when evaluated 

point-by-point against the ground-based soil moisture observations described in Section 

II.D.

Comparable validation comparisons can be made for Flux-PIHM soil moisture estimates. 

Figure 4 compares 0–10 cm, 10–40 cm, and 40–100 cm Flux-PIHM soil moisture estimates 

to corresponding ground-based observations acquired within the BF, DF, HF, TZ, CH, and 

OR sites. To maximize consistency with AirMOSS results reported above, Flux-PIHM 

results are shown only for hourly time steps corresponding to AirMOSS overpass times 

listed in Table 1. Results demonstrate that vertically integrated soil moisture estimates 

obtained directly from Flux-PIHM’s 0–10 cm, 10–40 cm, and 40–100 cm soil layers have a 

RMSE accuracy of 0.052 m3m−3, 0.053 m3m−3, and 0.067 m3m−3, respectively, when 

compared against ground-based soil moisture observations. Therefore, validation against 

independent, point-scale observations suggests that the RMSE accuracy of 0–40 cm RZSM 

estimates obtained from AirMOSS and Flux-PIHM are roughly comparable. Note that 

comparisons are limited to only a sub-set of AirMOSS sites (TZ, OR, HF, DF, CH and BF) 

where ground-based soil moisture instrumentation was installed during AirMOSS 

campaigns [23].

B. Temporal Variability

Figure 5 plots scene-average spatial means for both Flux-PIHM and AirMOSS RZSM fields 

where each symbol represents a spatially averaged RZSM value for a single AirMOSS over-

flight (see Table 1) acquired at a single study site (see Figure 1). Plotted spatial means are 

based on sampling all 3-arc-sec pixels containing a valid RZSM estimate in both products. A 

modest, yet statistically significant, amount of temporal correlation (0.37 [–], p < 0.05 [–]) is 
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found. However, larger systematic differences emerge when directly comparing RZSM 

estimates across a broader range of temporal and spatial scales.

For example, a substantial portion of the correlation in Figure 5 is attributable to strong 

spatial variability between study sites (due to bulk climate and land cover differences) as 

opposed to pure temporal variability within a single site. To better isolate the degree of 

spatially-fixed, temporal correlation, Figure 6 plots time series correlations between Flux-

PIHM and AirMOSS L2/3 RZSM imagery at a 3-arc-sec grid scale. Correlations (R) are 

calculated only for grid cells containing at least 10 days of common AirMOSS and Flux-

PIHM coverage. The R value shown above each image give the scene-averaged correlation 

(i.e., temporal correlations calculated at the 3-arc-sec scale and then spatially averaged). 

Note that, due to a lack of adequate temporal sampling, no correlation results are shown for 

the CH site. At the TZ, OR, OK, and DF sites, fine-scale temporal correlations are modest 

(i.e., in the range 0.20 to 0.50 [–]) but remain broadly positive. In contrast, more pronounced 

areas of negative temporal correlation are found at the HW, HF, BF, and AZ sites.

Figure 7a plots the temporal standard deviation of scene-scale RZSM for both AirMOSS and 

Flux-PIHM. AirMOSS L2/3 predicts higher levels of temporal variability in scene-scale 

means than Flux-PIHM for all sites except for TZ and OR. This overall low bias in Flux-

PIHM RZSM temporal variability (relative to AirMOSS L2/3) is apparent at all spatial 

scales at which the products can be sampled. For example, Figure 7b plots scene-averaged 

values for 3-arc-sec temporal standard deviations calculated at each site (i.e., sampled in 

time at the 3-arc-sec scale and then spatially-averaged into a single scene-scale mean). 

Results are closely analogous to Figure 7a and demonstrate a tendency for Flux-PIHM to 

predict lower temporal variability at both spatial scales. Note that the sites with the lowest 

AirMOSS/Flux-PIHM RZSM temporal correlation in Figure 6 are among the three sites 

with the lowest Flux-PIHM temporal variability in Figure 7 (HF, BF and AZ). This suggests 

that one factor underlying the lack of time-series correlation in Figure 6 is low temporal 

variability in Flux-PIHM RZSM estimates.

As noted above, the two exceptions to the low bias in Flux-PIHM temporal variability are 

the TZ and OR sites. Both sites are characterized by a Mediterranean climate with cool, wet 

winters and warm, dry summers. They therefore exhibit very strong soil moisture seasonality 

(since seasonal periods of low potential evaporation occur concurrently with periods of high 

rainfall and vice versa). Figures 8a and 8b plot time series for both the scene-scale mean and 

the within-scene spatial standard deviation of 3-arc-sec Flux-PIHM and AirMOSS L2/3 

RZSM estimates at times corresponding to AirMOSS over-flights. The mean time series for 

Flux-PIHM soil moisture results in TZ and OR reflect seasonal patterns expected in a 

Mediterranean climate (i.e., high RZSM during the winter and spring and low RZSM in the 

summer and fall). This pronounced seasonality drives the large temporal standard deviations 

observed at these sites in Figure 7 and the relatively robust temporal correlations between 

Flux-PIHM and AirMOSS RZSM estimates seen in Figure 6. In contrast, while the 

AirMOSS L2/3 RZSM retrievals demonstrate a comparable amount of temporal variability 

at the OR site, they lack the same coherent seasonal cycle (Figures 8b). More absolute 

agreement between the AirMOSS and Flux-PIHM results is found at the TZ site (Figure 8a), 

where the overall magnitude and the seasonal characteristics of soil moisture temporal 
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variability is consistent between AirMOSS and Flux-PIHM. However, TZ and OR time 

series results in Figures 8a and 8b are not generally representative for the broader range of 

sites that do not experience a Mediterranean climate. Time series results at the DF (Figure 

8f) and AZ (Figure 8i) are somewhat more typical in that they are characterized by relatively 

little temporal variation in Flux-PIHM results which is sharply contrasted by much stronger 

variability in scene-averaged AirMOSS L2/3 results. Note that strong temporal variability in 

AirMOSS L2/3 results) may be artificially inflated by time-varying retrieval errors may 

(particularly at the DF site in Figure 8f).

C. Spatial Variability

The uniqueness of the Flux-PIHM and AirMOSS products lies in their ability to represent 

multi-scale spatial variability in RZSM. Figure 9 plots the sampled spatial standard deviation 

of AirMOSS and Flux-PIHM RZSM fields at spatial resolutions ranging between 3 and 30 

arc-sec (~100 m to ~1,000 m). To avoid the spurious impact of spatial data gaps on 

sampling, only grid cells containing a complete set of sub-grid 3-arc-secs AirMOSS and 

Flux-PIHM estimates are re-sampled to progressively coarser spatial resolutions. This 

ensures that AirMOSS L2/3 and Flux-PIHM RZSM spatial statistics calculated at all 

resolutions contain the same spatial support.

At the finest sampling resolution (3-arc-sec), AirMOSS RZSM retrievals have higher spatial 

variability than comparable Flux-PIHM RZSM estimates for seven of the nine AirMOSS 

sites. The first exception is at the OR site. As shown in Figure 8b, high amounts of 3-arc-sec 

RZSM spatial variability occur in Flux-PIHM as the OR site during the wet winter due to a 

strong east-west gradient in wintertime precipitation patterns captured within by NLDAS-2 

rainfall data (see Figure 3b for an example of this). This, in turn, produces a large spatial 

standard deviation in the Flux-PIHM RZSM simulations at the site. It is possible that these 

large-scale patterns accurately reflect actual orographic rainfall variations at the site [38]. 

However, these patterns do not manifest themselves in AirMOSS L2/3 RZSM retrievals (see 

Figure 3a) – and may simply be an artifact of error in the spatial pattern of NLDAS-2 

rainfall forcing data at this site. The second exception occurs within the BF site. Here both 

AirMOSS and Flux-PIHM predict exceptionally low RZSM spatial variability (< 0.04 m3m
−3 see Figures 9) and almost no temporal dynamics (Figures 8e). This suggests that this site 

is atypical with respect to its degree of time/space soil moisture variability.

This spatial variability gap between AirMOSS and Flux-PIHM is reduced somewhat by re-

sampling to spatial resolutions coarser than 10 arc-sec (~300 m). Nevertheless, AirMOSS 

L2/3 RZSM estimates generally retain more spatial variability up to a resolution scale of 

about 30 arc-sec (~1,000 m). The only site where aggregation changes the qualitative 

relationship between AirMOSS and Flux-PIHM RZSM variability is BF. Here, Flux-PIHM 

RZSM spatial variability is dominated by large-scale (~10-km) soil texture patterns while 

AirMOSS L2/3 RZSM manifests itself on much finer spatial scales (see Figure 3b). 

Consequently, spatial aggregation up to 300-m has a much stronger (reducing) impact on 

AirMOSS L2/3 spatial variability.

The impact of soil moisture variability on nonlinear grid-scale fluxes can also depend on 

higher-order moment for sub-grid scale soil moisture distributions [9]. Therefore, it is useful 
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to consider the scaling of higher-order moments for AirMOSS and Flux-PIHM RZSM 

spatial distributions. Figure 10 shows the spatial skewness (i.e., the third statistical moment 

about the mean for a given field normalized by the cube of its standard deviation) across a 

range of spatial resolution scales (analogous to Figure 9). At a 3-arc-sec scale, spatial 

skewness differences between AirMOSS and Flux-PIHM RZSM results are frequently large 

and often extend to disagreements regarding the overall sign of sampled skewness (see TZ, 

BF, and AZ results in Figure 10). At best, spatial aggregation leads to only slight 

convergence in AirMOSS L2/3 and Flux-PIHM RZSM skewness results.

Finally, Figure 11 examines the degree to which spatial variability in Flux-PIHM RZSM 

fields correlates with that of AirMOSS RZSM retrievals. Plotted values represent the time 

average (across all AirMOSS over-flight times listed in Table 1) of Flux-PIHM versus 

AirMOSS spatial correlation results sampled individually for each individual AirMOSS 

overpass time. As such, it describes pure spatial correlation existing between the two RZSM 

products. Note that this contrasts with the purely temporal correlations captured in Figure 6. 

As in Figures 9 and 10, spatial averaging is performed prior to the correlation calculation to 

resample RZSM fields to progressively coarser spatial resolutions and examine the impact of 

such averaging on sampled spatial correlations. Overall, sampled spatial correlations 

between the two products are quite low. Assessing the statistical significance of correlation 

results in Figure 11 is complicated by the large amount of temporal and spatial auto-

correlation present in both the Flux-PIHM and the AirMOSS L2/3 RZSM fields. 

Nevertheless, the marginal levels of correlation seen in Figure 11 (always < 0.20 [–] and 

often negative) provide little evidence that co-located AirMOSS and Flux-PIHM RZSM 

estimates contain common spatial features.

IV. Discussion

The observed contrast in Flux-PIHM and AirMOSS temporal variability statistics (see 

Figure 7) is not entirely unexpected. It is well-known that soil moisture products acquired 

via different estimation approaches (e.g., modeling, remote sensing, and in situ 
measurements) tend to exhibit significant systematic differences with regards to their 

temporal statistics [39–41].

Likewise, the general underestimation of RZSM spatial variability by Flux-PIHM is also not 

surprising. Model-based estimates of soil moisture rely heavily on the characterization of 

heterogeneity within dynamic (e.g., precipitation) and static (e.g., topographic position) 

model forcing data sets to capture soil moisture spatial variability. Therefore, known spatial 

inadequacies (e.g., non-resolved soil texture variability or the coarse-resolution 

representation of rainfall) in these forcing data sets will generally result in an overly 

smoothed spatial representation of soil moisture fields [42]. In such cases, the true spatial 

resolution of a model-based RZSM product may be coarser than the spatial scale of its 

fundamental computational elements (i.e., model grid cells or TINs). While an attempt has 

been made to force Flux-PIHM with the highest-quality and highest-resolution inputs 

available, this tendency is almost certainly present in the spatially distributed Flux-PIHM 

results presented here. Likewise, soil moisture variability is known to arise from a variety of 
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topographic, pedologic, and vegetative processes – not all of which are explicitly captured 

by Flux-PIHM (see Figure 2).

Therefore, a priori, there are credible reasons to suspect that Flux-PIHM will tend to 

underestimate the magnitude of fine-scale spatial variability in RZSM. This suspicion is 

consistent with existing Flux-PIHM validation results against dense ground-based soil 

moisture networks. For example, [18] found that Flux-PIHM underestimated the spatial 

variability of 10-cm soil moisture when evaluated against spatially dense soil moisture 

monitoring sites located within a very small 0.08 km2 watershed.

In contrast to the “bottom-up” approach applied in hydrologic models, AirMOSS L2/3 

retrievals are based on a “top-down” approach whereby a highly variable backscatter field is 

processed to separate out an underlying soil moisture signal from other spatially-varying 

geophysical features (e.g., vegetation, topography, soil texture, and surface roughness). 

Given that the parameterization of backscatter responses arising from these features is 

approximate in both AirMOSS L2/3 RZSM retrieval algorithms (see Section II), it is 

possible that spatial patterns in AirMOSS RZSM L2/3 retrievals reflect variability present in 

these ancillary fields. Likewise, synthetic aperture radar backscatter products are commonly 

impacted by residual amounts of uncorrelated spatial noise or “speckle.” While every 

attempt has been made to minimize these effects in the AirMOSS L2/3 retrieval process, it 

seems reasonable to assume that, if anything, AirMOSS L2/3 retrievals will tend to 

overestimate fine-scale soil moisture variability.

Based on this reasoning, comparisons between AirMOSS L2/3 and Flux-PIHM estimates of 

multi-scale RZSM spatial variability presented in Figure 9 likely represent valid upper and 

lower bounds, respectively, for the true multi-scale magnitude of RZSM soil moisture 

variability. Since the nonlinearity of relationships between soil moisture and surface fluxes 

means that grid-scale fluxes are sensitive to the presence (or absence) of sub-grid RZSM 

spatial variability [9, 43], such bounds are valuable for defining appropriate coarse-scale soil 

moisture/flux relationships for land surface models.

Clearly, a third source of independent, spatially variable, RZSM data would be valuable as 

an arbiter of whether AirMOSS or Flux-PIHM provides a less biased estimate of RZSM 

spatial variability. Unfortunately, the spatial scales of existing, long-term data sets derived 

from the point-scale observations are typically not well-suited for the replication of Figure 9 

using ground observations. These networks lack either adequate spatial sampling to estimate 

soil moisture on a ~100-m spatial scale or sufficient spatial coverage to acquire enough 

~100-m pixels to provide an adequate sample of spatial variability. Triple collocation 

validation strategies [44] could potentially be applied to better distribute errors between 

Flux-PIHM, AirMOSS L2/3 and ground-based soil moisture estimates. However, this would 

not address the spatial limitations of the ground-based observations. In addition, it would 

require a much more temporally extensive AirMOSS data record.

Therefore, results here underscore the need to develop new ground-based soil moisture 

measurement techniques capable of resolving RZSM at a broader range of spatial resolution 

and extent scales. Notable efforts in this direction include the innovative use of: wireless 
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sensor networks [45] and passive cosmic ray sensors [46] in ground-based soil moisture 

networks. The further development and deployment of these approaches could conceivably 

provide an enhanced source of ground-truth information to arbitrate the significant contrast 

between modeled and remotely-sensed RZSM estimates found here.

V. Summary

AirMOSS and Flux-PIHM RZSM fields both demonstrate reasonable levels of skill in 

reproducing temporal variations in independent, ground-based RZSM estimates acquired at 

a point (Figure 4). Likewise, they exhibit a modest level of temporal correlation between 

their areal-mean (Figure 5) and between their 3-arc-sec (~100-m) RZSM estimates (Figure 

6). However, the two products differ in their characterization of temporal and spatial 

variability in RZSM fields. Flux-PIHM, for example, generally predicts lower levels of 

temporal variability than AirMOSS (Figure 7) apart from sites (i.e., OR and TZ) with a 

Mediterranean climate where Flux-PIHM temporal variability is enhanced via its 

(presumably accurate) representation of strong RZSM seasonal variability (Figures 8a and 

8b). AirMOSS L2/3 RZSM estimates are also generally more spatially variable than 

comparable Flux-PIHM predictions (Figure 9). Moreover, there is very little demonstrated 

linear consistency between time-static spatial RZSM patterns estimated by both approaches 

(Figure 11).

Due to the nonlinear nature of land model physics, and the importance of sub-grid soil 

moisture connectivity for runoff generation, uncertainty in the magnitude of sub-grid RZSM 

variability has significant consequences for the derivation of appropriate grid-scale 

relationships between RZSM and land surface water, energy, and carbon fluxes. While this 

work only scratches the surface in terms of resolving this uncertainty, it does provide, for the 

first time, defensible bounds on RZSM spatial variability within a critical ~100-m to ~1,000-

m scale range (Figure 9).

It should also be noted that land data assimilation approaches exist for integrating remotely-

sensed and model-based RZSM estimates into a unified analysis. Within the AirMOSS 

project, a data assimilation approach was applied to generate the AirMOSS Level 4 RZSM 

product [47] based on the integration of AirMOSS L2/3 into Flux-PIHM. However, 

limitations in the temporal frequency of AirMOSS L2/3 retrievals restricted this effort to the 

use of a highly simplified assimilation approach. Increased temporal frequency in the 

availability of remotely-sensed RZSM estimates would allow for the application of more 

complex data assimilation approaches such as the Ensemble Kalman filter currently used to 

generate the SMAP Level 4 Surface and Root-zone Soil Moisture product [48]. By 

contributing to our understanding of the spatial characteristics of errors in remotely-sensed 

and model-based RZSM estimates, Figures 9 and 10 will aid in the design of such systems 

[49].

In addition to data assimilation, alternative remote sensing retrieval and model calibration 

approaches that can potentially reduce the contrasts between the Flux-PIHM and AirMOSS 

L2/3 RZSM results. For example, Flux-PIHM underestimation of RZSM spatial variability 

is likely linked to the calibration strategy employed to parameterize Flux-PIHM. Following 
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typical practice, Flux-PIHM parameters were calibrated here using only streamflow 

observations. However, [50] demonstrate that the spatial accuracy of fine-scale Flux-PIHM 

RZSM estimates can be improved if multivariate observations (including RZSM) are utilized 

for calibration. Likewise, the accuracy of remotely sensed AirMOSS L2/3 RZSM retrievals 

can be further improved by applying physics-based constraints during the RZSM retrieval 

[51]. Future work along either of these two paths would likely reduce the RZSM variability 

contrasts observed here.
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Figure 1. 
Map of the AirMOSS experimental site locations utilized here.

Crow et al. Page 19

IEEE J Sel Top Appl Earth Obs Remote Sens. Author manuscript; available in PMC 2020 June 23.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 2. 
Description of basic processes represented by Flux-PIHM on each TIN element.
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Figure 3a. 
3-arc-sec resolution RZSM (0–40 cm) imagery obtained from both AirMOSS L2/3 (left 

column) and Flux-PIHM (right-column) for: (TZ) 21 Nov. 2013, (OR) 21 Apr. 2013 (OK), 

30 Oct. 2012, and (HW) 01 June 2014. The black rectangle is 10 km on a side and plotted 

for scale reference.
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Figure 3b. 
3-arc-sec resolution RZSM (0–40 cm) obtained from both AirMOSS L2/3 (left column) and 

Flux-PIHM (right-column) for: (HF) 21 Oct. 2012, (DF) 22 Oct., 2012, (CH) 30 May 2013, 

(BR) 11 Oct. 2012, and (AZ) 29 Oct. 2012. The black rectangle is 10 km on a side and 

plotted for scale reference.
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Figure 4. 
Scatterplot comparisons between Flux-PIHM a) 0–10 cm, b) 10–40 cm and c) 40–100 cm 

RZSM predictions and collocated, ground-based RZSM measurements across multiple 

AirMOSS sites. For consistency with previously-published AirMOSS validation results, 

each point represents a single AirMOSS over-flight time listed in Table 1.
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Figure 5. 
Scatter-plot of scene-averaged Flux-PIHM and AirMOSS L2/3 RZSM estimates for all nine 

AirMOSS study sites. Each point represents a spatially-averaged RZSM value acquired 

during a single AirMOSS over-flight time listed in Table 1.
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Figure 6. 
Temporal correlation between 3-arc-sec, 0–40-cm Flux-PIHM and AirMOSS L2/3 RZSM 

products for the nine AirMOSS study sites. Areas lacking adequate temporal sampling 

coverage (including all CH results) are masked in white. The black outline represents the 

spatial extent of the Flux-PIHM modeling domain at each site. Numbers give the areal 

average of sampled temporal correlation (R) at each site. The black rectangle is 10 km on a 

side and plotted for scale reference. Note that the aspect ratios of some images have been 

modified.
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Figure 7. 
For all AirMOSS study sites, scatterplots of 0–40-cm Flux-PIHM and AirMOSS L2/3 

estimates for a) the temporal standard deviation of scene-averaged RZSM and b) the scene 

average of the RZSM temporal standard deviation sampled for individual 3-arc-sec pixels.
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Figure 8. 
For both 0–40-cm AirMOSS L2/3 and Flux-PIHM RZSM products, the time series of areal-

averaged RZSM (“Mean”) and the within-scene 3-arc-sec RZSM standard deviation (“SD”) 

for all nine AirMOSS sites.
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Figure 9. 
The sampled spatial standard deviation (averaged across all available AirMOSS over-flight 

times) for AirMOSS L2/3 and Flux-PIHM 0–40-cm RZSM fields across a range of sampling 

resolution scales.
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Figure 10. 
The sampled spatial skewness (averaged across all available AirMOSS over-flight times) for 

0–40-cm AirMOSS L2/3 and Flux-PIHM RZSM fields across a range of sampling resolution 

scales.
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Figure 11. 
The static spatial correlation (averaged across all available AirMOSS over-flight times) 

between 0–40-cm AirMOSS L2/3 and Flux-PIHM RZSM fields across a range of sampling 

resolution scales.
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Table 1.

Name, abbreviations, biome, and aircraft over-flight dates for the 9 AirMOSS experimental sites utilized here.

AirMOSS Site Biome Over-flights [Year/Month Day]

Tonzi Ranch 
(TZ)

Mediterranean 
Shrubland

20131024, 20131028, 20131121, 20140213,20140220, 20140224, 20140922, 20140925,20140927, 
20150210, 20150213, 20150526, 20150528, 20150531

Metolius (OR) Coniferous 
Temperature Forest

20120918, 20121007, 20121010, 20130421, 20130425, 20130429, 20130726, 20130729, 
20130801, 20140609, 20140612, 20140619, 20140811, 20140814, 20141001, 20141005, 
20141008, 20150406, 20150410, 20150413 20150821, 20150824, 20150827, 20150923, 
20150926, 20150929

MOISST (OK) Temperate 
Grassland

20121024, 20121027, 20121030, 20130614, 20130617, 20130620, 20130716, 20130719, 
20130723, 20130927, 20131120, 20140416, 20140418, 20140424, 20140708, 20140711, 
20140715, 20141014, 20141017, 20141021, 20150416, 20150420, 20150424, 20150807, 
20150811, 20150814

Howland Forest 
(HW)

Temperate Mixed 
Forests

20130825, 20140529, 20140601, 20140603, 20140627, 20140702, 20140706, 20140820, 
20140823, 20140826, 20150521, 20150524, 20150903, 20150907, 20150909

Harvard Forest 
(HF)

Temperate Mixed 
Forest

20121015, 20121018, 20121021, 20130530, 20130602, 20130606, 20130707, 20130710, 
20130712, 20130819, 20130822, 20130825, 20140529, 20140601, 20140603, 20140627, 
20140702, 20140706, 20140820, 20140823, 20140826, 20150521, 20150524, 20150903, 
20150907, 20150909

Duke Forest 
(DF)

Temperate 
Coniferous Forest

20121013, 20121017, 20121022, 20130529, 20130601, 20130604, 20130706, 20130709, 
20130713, 20130818, 20130821, 20130824,20140527, 20140528, 20140531, 20140604, 
20140626, 20140630, 20140705, 20140819, 20140822, 20140827, 20150521, 
20150523,20150902, 20150905, 20150910

Chamela (CH) Subtropical Forest 20121015,20121018,20121021,20130530,20130602, 
20130606,20130707,20130710,20130712,20130819, 20130822

BERMS (BF) Boreal Forest 20121004, 20121007, 20121011, 20130422, 20130426, 20130501, 20130727, 20130729, 
20130802, 20140608, 20140611, 20140614, 20140812, 20140815, 20141001, 20141004, 
20141007, 20150629, 20150702 20150705, 20150819, 20150823, 20150826 20150922, 20150925, 
20150928

Walnut Gulch 
(AZ)

Desert Shrubland 20120920, 20121023,20121029, 20130715, 20130718, 20130722,20131119, 20131125, 20140712, 
20140808, 20141018, 20141021, 20141024, 20150808, 20150810, 20150813, 20150816, 
20150818, 20150901
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