

Abstract—In recent studies in hyperspectral imaging,

biometrics and energy analytics, the framework of deep
dictionary learning has shown promise. Deep dictionary learning
outperforms other traditional deep learning tools when training
data is limited; therefore hyperspectral imaging is one such
example that benefits from this framework. Most of the prior
studies were based on the unsupervised formulation; and in all
cases, the training algorithm was greedy and hence sub-optimal.
This is the first work that shows how to learn the deep dictionary
learning problem in a joint fashion. Moreover, we propose a new
discriminative penalty to the said framework. The third
contribution of this work is showing how to incorporate
stochastic regularization techniques into the deep dictionary
learning framework. Experimental results on hyperspectral
image classification shows that the proposed technique excels
over all state-of-the-art deep and shallow (traditional) learning
based methods published in recent times.

Index Terms—Classification, Supervised Learning, Deep
Learning, Dictionary Learning, Hyperspectral Imaging.

I. INTRODUCTION

N the recent past, deep learning has been gaining popularity
in hyperspectral image classification [1-14]. All the

standard deep learning models – Deep Belief Network (DBN)
[1-3], Stacked Autoencoder (SAE) [4, 5], Deep Recurrent
Neural Network (DRNN) [6], variants of PCA-Net [7, 8] and
Convolutional Neural Network [9-14] have been employed in
this context.

For successful performance, deep learning requires a large
volume of training data. Unfortunately, this is impractical for
hyperspectral image classification. Therefore, several
modifications need to be made to the classical deep learning
architectures to fit the said problem. In a recent work [15] a
novel active learning methodology has been proposed to
address the issue of limited training data.

In a recent study [16] a new deep learning tool called deep
dictionary learning (DDL) has been proposed. The basic idea
there in, is to use dictionary learning as basic building blocks
for a deeper architecture. Intuitively speaking, the coefficients
/ feature from one layer of dictionary learning acts as an input
to the subsequent layer leading to a deep network. It was
shown in [16] that DDL can operate within the limited training
data regime and yet yield a performance superior to standard

V. Singhal and A. Majumdar, are with Indraprastha Institute of
Information Technology, New Delhi, 110020, India (email:
vanikas@iiitd.ac.in and angshul@iiitd.ac.in) .

deep learning tools like DBN, SAE and CNN.
Given the success of DDL in hyperspectral classification

[16] amongst other areas like biometrics [17], energy analytics
[18] and benchmark deep learning problems [19], we propose
to build a new classifier based on the DDL framework. All
prior studies on deep dictionary learning follow the greedy
training paradigm; and hence are sub-optimal. Since each of
the layers are learnt separately, the shallower layers influence
the deeper ones, but not vice versa. For optimal training, all
the layers should be learnt jointly. Besides, [17-19] are all
unsupervised learning approaches – they can only extract the
features but require an off-the-shelf classifier for
classification. Only [16] is a supervised classification
technique; albeit a suboptimal (greedy) one.

There are a few major contributions of this work. For the
first time we show how the deep dictionary learning
framework can be solved in a joint fashion. All the layers are
updated jointly along with the final level of coefficients. The
second contribution of this work is in proposing a new
discriminative penalty. The third contribution of this work is
to show how stochastic regularization techniques can be
incorporated into the deep dictionary learning framework.
This has not been attempted before.

The rest of the work will be organized into several sections.
Relevant background will be discussed in section II. The
proposed technique will be described in section III. The
experimental results are detailed in section IV. Finally, the
conclusions of this work and future direction of research will
be discussed in section V.

II. LITERATURE REVIEW

A. Deep Learning in Hyperspectral Classification

In image analysis and computer vision problems CNN is the
most popular choice. However, CNNs are data hungry and fail
to perform in limited training data regime. This is the reason
why other deep learning techniques like DBN [1-3] continue
to be popular. In [1], a basic DBN is used with logistic
regression based classification. The formulation is made
supervised in [2] by using group-sparsity – a technique
proposed in [20]. In [3], a diversifying pre-training technique
is used for improving the performance of DBN based deep
neural network.

The problem of DBN is that, it can only handle limited
variability in the inputs; they need to be between 0 and 1.
Some kind of batch normalization is required to bring all
inputs within this range. However, given that the inputs (for

Row-Sparse Discriminative Deep Dictionary
Learning for Hyperspectral Image Classification

Vanika Singhal, and Angshul Majumdar, Senior Member, IEEE

I

imaging problems) are spatially correlated, such arbitrary
change in input values may decimate the local correlation
information and reduce overall performance.

Much like DBN, SAE’s have been used for hyperspectral
image classification. The work [4] uses a standard stacked
autoencoder for classification using logistic regression. In [5],
some extra penalties are added to the basic stacked
autoencoder formulation in order to incorporate contextual
information.

Unlike DBNs stacked autoencoders can handle arbitrary
input values. But the problem with SAE’s is that given the
same volume of data, the number of parameters it needs to
learn is twice that of DBN (equal number of encoders and
decoders). Owing to this, SAEs are likely to suffer from over-
fitting.

Recurrent Neural Network (RNN) and its variants (echo
state network, long short-term memory network) are
applicable to ordinal data, for example time series data. In
recent times, high impact conferences like CVPR and ICCV
are publishing papers on image analysis and computer vision
using RNNs (and its variants). In the same spirit, [6] used
RNN and [7] used LSTM for analyzing hyperspectral images.

It must be noted that there is no theoretical justification to
apply RNNs for image analysis. Such models are only
applicable to ordered data (such as time series). Pixels are not
ordered. RNNs require arbitrary ordering in order to justify its
usage. This arbitrary ordering may affect the overall
performance.

The concept of PCA-Net [21] has been proposed recently.
The framework is similar to CNN. Each layer constitutes of a
filtering and pooling operation. But instead of convolving, the
image is filtered using principal component analysis. The
study [8] proposes a non-linear variant of PCA-Net. In [9]
instead of using PCA, they use vertex component analysis into
the PCA-Net framework for hyperspectral image analysis.

All the studies on CNN based analysis [10-14] follow the
same basic framework. They only differ from each other, in
the choice of the number of layers, size and number of
convolutional kernels and type of pooling used. It must be
remembered that CNNs are data hungry, so studies in
hyperspectral image classification propose slight
modifications to suit the goal.

Owing the problem of data scarcity in deep learning, an
interesting proposal has been laid in [15]. They propose an
active learning methodology to choose new training samples
in a recursive fashion. However, active learning requires
constant feedback from the user; this does not seem to be very
practical given the scenario. It is unlikely that such
frameworks that require constants feedbacks will be pragmatic
and popular.

It has been seen in [16] that the newly proposed framework
of deep dictionary learning outperforms many traditional deep
learning tools in hyperspectral image analysis. In other areas
[17-19] a similar trend has been envisaged. The DDL
framework excels when there is limited training data is
available.

B. Deep Dictionary Learning

Since the concept of deep dictionary learning is relatively
new, we believe that a brief introduction on this topic will help
readers and make the paper self-contained. Let us reiterate the
basic idea of deep dictionary learning. In (shallow) dictionary
learning, one level of dictionary is used to represent the signal.
In DDL, multiple layers of dictionaries are used to represent
the signal.

Formally, in dictionary learning, the training set (X) is
decomposed into a dictionary (D) and a matrix of coefficients
(Z). This is represented as,
X DZ= (1)
Here the training signals are stacked as columns of X; the
corresponding features are in Z. Usually the learning is
expressed as,

2

0,
min

FD Z
X DZ Zλ− + (2)

The first term is for data fidelity; the l0-norm imposes sparsity
on the coefficients. There are well known algorithms to solve
the dictionary learning problem (2).

Dictionary learning basically factors the matrix into the
dictionary matrix and a coefficient matrix. In recent years,
following the success of deep learning, several studies have
proposed deep matrix factorization [22, 23]; here the data is
decomposed into multiple layers of dictionaries (D1, D2, D3,
…) and one final layer of coefficients (Z). Mathematically this
is represented as follows (shown for three layers),

1 2 3X D D D Z= (3)

The problem with this formulation is that, there is no
activation function between the layers; there is a possibility
that the multiple layers of dictionaries collapse into a single
layer.

This issue is rectified in deep dictionary learning [19]; in
there an activation function is incorporated between each
layer. For a three layer DDL, the formulation is given by,

()()1 2 3X D D D Zϕ ϕ= (4)

Usually a non-linear activation function like sigmoid or tanh is
used.

The exact solution for DDL should have been,

()()
1 2 3

2

1 2 3 0, , ,
min

FD D D Z
X D D D Z Zϕ ϕ λ− + (5)

However, it must be noted that none of the prior studies [16-
19] solves (5) directly. All of them solve it greedily – one
layer at a time.

In greedy learning, for the first layer, one substitutes

()()1 2 3Z D D Zϕ ϕ= . Therefore, (5) boils to the following

problem

1 1

2

1 1,Z
min

FD
X D Z− (6)

This is a standard matrix factorization problem.
Once the coefficients from the first layer is learnt, it is input

to the second layer. Here one substitutes: ()2 3Z D Zϕ= . This

leads to –

()1 2 2Z D Zϕ= (7)

Equivalently this can be expressed as,

()1
1 2 2Z D Zϕ− =

Since the activation functions are unitary, inverting them is
trivial. It is easy to solve (7) via matrix factorization.

()
2 2

21
1 2 2,Z

min
FD

Z D Zϕ − − (8)

For the last layer, we have,

()
()

2 3

1
2 3

Z D Z

Z D Z

ϕ

ϕ −

=

≡ =
 (9)

Here the same principle as before has been used to invert the
activation function and represent the last layer in the
equivalent form.

Since the coefficients in the last layer are supposed to be
sparse, one solves –

()
3

21
2 3 0,

min
FD Z

Z D Z Zϕ λ− − + (10)

This is the formulation used in [17-19].
This concludes the training phase. In testing, the learnt

dictionaries are used to generate the test feature. This is
expressed as,

()() 2

1 2 3 0
min

test
test test testFz

x D D D z zϕ ϕ λ− + (11)

Using substitutions like before, this (11) too is solved greedily.
Building on this greedy framework, a supervised solution

was proposed for hyper-spectral image classification [16].
After the final layer of greedy deep dictionary learning, a label
consistency layer [34] was added, leading to the following
formulation –

()()
1 2 3

2 2

1 2 3 0, , ,
min

FFD D D Z
X D D D Z Z T MZϕ ϕ λ− + + − (12)

Here T are the target labels and M the linear classifier map
from the features (from the deepest layer) to the targets. This
is a supervision term borrowed from [35].

However, note that [16] does not solve (12) jointly. Each
layer of deep dictionary learning (till the penultimate layer) is
solved piecemeal via a standard algorithm like KSVD; the
final layer uses the implementation from [35].

III. PROPOSED APPROACH

The problem with the greedy training paradigm in deep
learning is that it is sub-optimal. The shallower layers
influence the deeper layer but not vice versa. This is the first
work that proposes to learn all the layers of deep dictionary
learning in joint fashion.

Most prior studies on DDL were unsupervised. It is well
known in machine learning literature, and specifically in deep
learning that discriminative learning schemes indeed improve
classification performance. This has been seen for both
autoencoders [24, 25] and deep belief networks [26, 27]. This
motivates our work to incorporate such penalties into the deep
learning framework.

Our proposed work is different to [16] in two major ways.
First, our work optimally solves all the variables in a joint
fashion. Second, it uses a more sophisticated supervision
penalty than label consistency.

A. Formulation

Our formulation stems from the basic definition of
‘discrimination’ – samples within the same class will be close
to each other and samples between classes will be far from
each other.

The basic structure of deep dictionary learning remains the
same as before; we would like to solve (5). However, since we
are incorporating supervision / discrimination into the features
we propose modifications on top of the basic formulation. The
first modification we propose is to impose class-sparsity, i.e.
instead of allowing features from the same class to be
arbitrarily sparse we impose structure. We postulate that the
features from the same class will have the same support, i.e.
will have the same sparsity pattern. In other words, the
positions of the non-zero coefficients for features of the same
class will be the same for all samples. This has been
introduced into the DBN framework in [20] and in the
autoencoder framework in [28]. This modification is
represented as follows –

()()
1 2 3

2

1 2 3 2,0, , ,
min cFD D D Z

c

X D D D Z Zϕ ϕ λ− + (13)

Here the l2,0-norm is defined as the number of non-zero rows
of the matrix. This imposes row-sparsity. The sub-script ‘c’
denotes the class and Z=[Z1|…|Zc|…]. Therefore the cost
function imposes supervised class sparsity on each class ‘c’.

This cost is supervised but does not make the features
discriminative. Since we are not imposing distinction between
the classes; there is no way we can guarantee that the features
from different classes will not have the same support. To
impose discrimination, we need to ensure that the support
between features of two classes are different. This is ensured
by the second penalty.

()()
1 2 3

2

1 2 3 2,0, , ,

0

min cFD D D Z
c

k c
k c

X D D D Z Z

Z Z

ϕ ϕ λ

µ
≠

− +

− −

 (14)

Here kZ is the mean of the kth class repeated the same number

of times as the number of samples in class c. This additional
term ensures that the support between two different classes (k
and c) are as distinct as possible; since we are maximizing the
l0-distance between the classes we need the negative sign.

Note that this is a completely different formulation from the
label consistency penalty used in [16]; this new discrimination
term is a major contribution of this paper.

This concludes the formulation for training. For testing, the
goal is to assign a class label for the test sample xtest. For that,
we need to generate the corresponding feature. This is
achieved by solving the same problem as in the greedy case
(11). This is repeated here for the sake of convenience.

()() 2

1 2 3 0
min

test
test test testFz

x D D D z zϕ ϕ λ− +

Once the sparse feature is obtained, it is compared with the
training samples for class assignment. In this work, the
assignment is done in two ways.

In the first approach, once the training is complete, the
exact training features bears no importance, only the sparse

binary support of each class is required. An example may
clarify the concept better.

Fig. 1. Left – Sparse Features from Class 1 and its binary representation;

Right – Features from Class 1 and its binary representation

Consider a toy problem where the sparse features for classes

1 and 2 are shown in Fig. 1. Class 1 has 3 samples and class 2
has 4. Virtually, instead of storing the features after the
training phase we can just store the binary representation
vector for each class. Once the test feature is generated, we
generate its corresponding binary representation. The binary
representation of the test data is compared with the binary
representation of each sample via a binary dot product /
Hamming distance. In practice, it boils down to the
computation of the l0-norm between the features of the
training samples and the test sample; note that the l0-norm is
computed directly on the features and not on the binary
representation. This is very efficient with linear complexity.
The test sample is assigned to the class having the maximum
similarity / minimum distance.

There may be an issue with the aforesaid approach. Assume
that (for a problem different from the aforesaid toy problem),
the binary representation of class 1 is [0,0,1,1,0,0], and the
binary representation of class 2 is [0,0,1,0,1,0]. The binary
representation of the test sample is [0,0,1,1,1,0]. For such a
sample, the Hamming distance from both the classes 1 and 2
will be the same, and we cannot assign a unique class. In order
to resolve this issue, in the second approach, instead of
computing the l0-norm we compute the l1-norm between the
features of the training and test samples; since they account
for the magnitude and not only the position, such ties can be
avoided. We assign the test sample to the class having the
minimum absolute distance.

B. Derivation

For training we need to solve (14). We following the Split
Bregman technique [29, 30]. We introduce a proxy

()()1
2 3Z D D Zϕ ϕ= . This leads to the following expression,

()()
1

1 2 3

21
1 2,0 0, , , ,

1
2 3

min

s.t.

c k cFD D D Z Z c k c

X D Z Z Z Z

Z D D Z

λ µ

ϕ ϕ
≠

− + − −

=

 (15)

Note that Z1 basically corresponds to the features from the
first level of dictionary learning.

In the second step, we introduce another proxy variable

()2
3Z D Zϕ= . This leads to,

() ()
1 2

1 2 3

21
1 2,0 0, , , , ,

1 2
2 2 3

min

s.t. ,

c k cFD D D Z Z Z c k c

X D Z Z Z Z

Z D Z Z D Z

λ µ

ϕ ϕ
≠

− + − −

= =

 (16)

The augmented Lagrangian is formulated from (16) by
incorporating the Bregman relaxation variable (B1 and B2) for
each proxy.

We form the augmented Lagrangian –

() ()

1 2
1 2 3

21
1 2,0 0, , , , ,

2 21 2
1 2 2 1 2 3 2

min c k cFD D D Z Z Z c k c

F F

X D Z Z Z Z

Z D Z B Z D Z B

λ µ

η ϕ η ϕ
≠

− + − −

+ − − + − −

 (17)

Here B1 and B2 are the relaxation variables.
The final problem (17) is solved by the alternating direction

method of multipliers (ADMM) [29]; the formulation (17) is
segregated into the following sub-problems.

1

21
1P1:min

FD
X D Z−

() ()
2 2

2 2
1 2 1 1 2

2 1 1 2P2:min min
D DF F

Z D Z B Z B D Zϕ ϕ −− − ≡ − −

() ()
3 3

222 1 2
3 2 2 3P3:min min

FD D F
Z D Z B Z B D Zϕ ϕ −− − ≡ − −

()
1

221 1 1
1 1 2 1P4:min

F FZ
X D Z Z D Z Bη ϕ− + − −

() ()

() ()
2

2

2 21 2 2
1 2 1 2 3 2

2 21 1 2
1 1 2 2 2 3 2

P5:min

min

FFZ

FFZ

Z D Z B Z D Z B

Z B D Z Z D Z B

η ϕ η ϕ

η ϕ η ϕ−

− − + − −

≡ − − + − −

()

()

22
2 3 2 2,0 0

2
2

2 2 3 2,0 0

P6:min

min

c k cFZ
c k c

c k c
Z F

c k c

Z D Z B Z Z Z

Z B D Z Z Z Z

η ϕ λ µ

η ϕ λ µ

≠

≠

− − + − −

≡ − − + − −

For sub-problems P2, P3, P4 and P5 the equivalent form is
trivial to obtain since the non-linear activation functions are
unitary and invertible – a property used by all prior works on
DDL. All the sub-problems except P6 are easy to solve, since
they are simple least squares problems with analytic solutions
in the form of Moore Penrose Pseudoinverse.

Sub-problem P6 is slightly more involved since it does not
have a direct solution. Although not exactly separable, we can
decouple the problem and solve for each Zc. This leads to,

() 2
2

2 2 3 2,0 0
min

c
c c c k c

Z F
Z B D Z Z Z Zη ϕ λ µ− − + − − (18)

To solve (18) we need to invoke the Split Bregman
technique once more. We introduce a proxy variable

k cP Z Z= − . The corresponding augmented Lagrangian after

Bregman relaxation is expressed as,

()
()

2
2

2 2 3 2,0 0,

2

min
c

c c c
Z P F

k c F

Z B D Z Z P

P Z Z C

η ϕ λ µ

γ

− − + −

+ − − −
 (19)

Here C is the relaxation variable. Using ADMM once again,
(19) can be split into the following two sub-problems.

()
()

2
2

2 2 3 2,0

2

S1:min
c

c c c
Z F

k c F

Z B D Z Z

P Z Z C

η ϕ λ

γ

− − +

+ − − −

() 2

0
S2:min k c FP

P Z Z C Pγ µ− − − −

Sub-problem S1 is a solved problem. It can be solved by
Simultaneous Orthogonal Matching Pursuit. Sub-problem S2

is not so trivial; instead of minimizing the l0-norm (as is done
in all standard problems in optimization, signal processing and
machine learning) here we have to maximize it. However, the
closed form solution readily presents itself from the proximal
operator for S2. It is,

2

/ 2

k c k cZ Z C if Z Z C
P

otherwise

µ
γ

µ γ

 − + < − +=

 (20)

This concludes the derivation of sub-problem P6. The final
step is to update the Bregman relaxation variables. This is
achieved by simple gradient decent.

()1
1 2 2 1B Z D Z Bϕ← − − (21a)

()2
2 3 2B Z D Z Bϕ← − − (21b)

()k cC P Z Z C← − − − (21c)

This concludes the training algorithm.
For testing one needs to solve (11); repeated here for the

sake of convenience.

()() 2

1 2 3 0
min

test
test test testFz

x D D D z zϕ ϕ λ− +

We use similar kind of proxies as before:

()()1
2 3test testz D D zϕ ϕ= for the first level and

()2
3test testz D zϕ= for the second. This leads to the following

augmented Lagrangian formulation after introducing the
Bregman proxy variables b1 and b2.

() ()

1 2

21
1 02, ,

2 21 2 2
1 2 1 2 3 2 22

min
test test test

test test test
z z z

test test test test

x D z z

z D z b z D z b

λ

η ϕ η ϕ

− +

+ − − + − −
 (22)

Following ADMM, (22) can be split into the following sub-
problems.

()

()

22
2 3 2 02

2
1 2

2 2 3 02

T1:min
test

test test test
z

test test test

z D z b z

z b D z z

η ϕ λ

η ϕ λ−

− − +

≡ − − +

()
1

221 1 2
1 1 2 12 2

T2:min
test

test test test test
z

x D z z D z bη ϕ− + − −

() ()

() ()

2

2

2 21 2 2
1 2 1 2 3 2 22

2 21 1 2 2
1 1 2 2 3 2 22

T3:min

min

test

test

test test test test
z

test test test test
z

z D z b z D z b

z b D z z D z b

η ϕ η ϕ

η ϕ η ϕ−

− − + − −

≡ − − + − −

Sub-problem T1 (in the equivalent form) is a simple l0-
minimization problem that can be either solved via orthogonal
matching pursuit or iterative hard thresholding. Sub-problem
T2 and T3 (in equivalent form) are simple least squares
minimization problems which can be solved via
pseduoinverses. As in the training phase, we update the
Bregman relaxation variables by simple gradient descent.

()1 2
1 2 1test testb z D z bϕ← − − (23a)

()2
2 3 2test testb z D z bϕ← − − (23b)

This concludes the derivation of the testing algorithm.
Both the training and the testing algorithms require solving

pseudoinverses and iterative thresholding. The complexity of
pseudoinverse is O(N3); N is the number of elements in the
matrix. The complexity (per iteration) of thresholding is O(N2)

(for matrix vector products) + O(N) for thresholding. But
about O(N) steps are needed for convergence. Hence the total
complexity of the thresholding sub-problems are
approximately O(N3). Therefore, the overall complexity of our
training and testing algorithms are O(N3).

C. Stochastic Regularization

Fig. 2. (a) Left – DropOut Regularization. (b) Right – DropConnect1

There are two stochastic regularization techniques that are

popular in deep learning. They are DropOut [31] and
DropConnect [32]. These regularization techniques have been
used for traditional neural networks, but never for dictionary
learning. This is the first work that shows how such stochastic
regularization techniques can be incorporated in deep
dictionary learning.

The main idea in DropOut is to randomly drop units (along
with their connections) from the network during training. This
prevents units from co-adapting too much. Suppose we have
training data X; in every iteration of DropOut some randomly
chosen output units along with their connection weights are set
to zero, as shown in Fig. 2. Here, out of three output neutrons,
z2 (selected randomly) is dropped.

DropConnect is a generalization of DropOut. Here a set of
randomly selected connections of network are set to zero. It
works similar to DropOut regularization technique, except
that, instead of dropping the whole unit, some connections are
dropped. This makes output units partially active, as shown in
Fig. 2. The dotted lines here show the dropped connections.

Both of them are regularization techniques. Given that we
are interested in addressing the hyperspectral image
classification problem, where training data is always
parsimonious incorporating these into the deep dictionary
learning framework to prevent over-fitting may prove
beneficial.

We can incorporate DropOut type regularization, by
randomly imputing some randomly chosen elements in the
coefficients of each layer (Z1, Z2 and Z) with zeroes. In each
iteration, once the coefficients are obtained by solving sub-
problems P4, P5 and P6, we randomly drop some of their
values to zeroes before they are used for updating the
dictionary elements via P1, P2 and P3. The proportion of the
elements to be dropped is user-defined. However, it must be
noted that since we impose sparsity in the output, randomly
dropping the coefficients from Z may not be sensible. It would
be beneficial to restrict the droppings to the intermediate
layers only.

1 http://cs.nyu.edu/~wanli/dropc/

Similarly, we can incorporate DropConnect type
regularization into the deep dictionary learning framework.
Here, the dictionary atoms play the role of connections.
Therefore, to drop connections, we can impute some randomly
chosen elements in the dictionaries to be zeroes. After
updating the dictionaries via P1, P2 and P3, we can impute
some elements (randomly chosen) in the dictionaries to be
zeroes to emulate DropConnect. Here too, the percentage of
dropping need to be user-defined.

It must be noted that both DropConnect and DropOut type
regularizations are only used till the pre-final iteration. In the
final iteration, the obtained values of the dictionaries and the
coefficients are not perturbed in any fashion.

IV. EXPERIMENTAL RESULTS

We evaluate our proposed technique on two benchmark
datasets.
• The Indian Pines dataset was collected by the Airborne

Visible/Infrared Imaging Spectrometer in Northwestern
Indiana, with a size of 145 × 145 pixels with a spatial
resolution of 20 m per pixel and 10-nm spectral resolution
over the range of 400–2500 nm. As is the usual protocol,
the work uses 200 bands, after removing 20 bands
affected by atmosphere absorption. There are 16 classes;
the number of training and test samples is displayed in
Table I.

• This Pavia university dataset is acquired by reflective optics
system imaging spectrometer (ROSIS). The image is of
610 × 340 pixels covering the Engineering School at the
University of Pavia, which was collected under the
HySens project managed by the German Aerospace
Agency (DLR). The ROSIS-03 sensor comprises 115
spectral channels ranging from 430 to 860 nm. In this
dataset, 12 noisy channels have been removed and the
remaining 103 spectral channels are investigated in this
paper. The spatial resolution is 1.3 m per pixel. The
available training samples of this data set cover nine
classes of interests. Table II provides information about
different classes and their corresponding training and test
samples.

For both the datasets, the experimental protocol is borrowed
from [6]; it is a very challenging protocol as the number of
training samples is extremely limited. Some deep learning
techniques (such as [1]) use about 90% of the data for training
and validation. Prior studies based on support vector
machines, random decision forests, sparse representation
based classification and dictionary learning trained with only
10% of the data. Here, we use even less volume of training
data. But this protocol reflects the real life scenario
appropriately.

TABLE I

TRAINING AND TEST SAMPLES FOR INDIAN PINES
Class Training Samples Test Samples
Alfalfa 50 1384
Corn-notill 50 784
Corn-min 50 184
Corn 50 447

Grass-pasture 50 697
Grass-trees 50 439
Grass-pasture mowed 50 918
Hay-windrowed 50 2418
Oats 50 564
Soybean-notill 50 162
Soybean-mintill 50 1244
Soybean-clean 50 330
Wheats 50 45
Woods 15 39
Buildings-glass-trees 15 11
Stone-steel-towers 15 5
Total 695 9671

TABLE II

TRAINING AND TEST SAMPLES FOR PAVIA UNIVERSITY
Class Training Samples Test Samples
Asphalt 548 6631
Meadows 540 19649
Gravel 392 2099
Trees 524 3064
Metal sheets 265 1345
Bare soil 532 5029
Bitumen 375 1330
Bricks 514 3682
Shadows 231 947
Total 3921 42776

A. Comparison with deep techniques

In this work we are going to compare with the latest deep
learning-based techniques. The DBN based technique we
compare against is [2]; the group-sparse formulation used
there-in has shown excellent results for hyperspectral image
classification. This technique is dubbed GBN in [2]. The
benchmark for deep autoencoder (DAE) is the technique
proposed in [5]. Following [6], we compare with their
proposed method with recurrent neural network (RNN) based
implementation. Of the PCA-Net variants, we compare against
[7] that uses a non-linearity and fuses the spectral and spatial
features in the final densely connected layer for classification.
This technique [7] has been called NSS-Net. The final
technique that we compare against is called deep fusion CNN
(DFNN) [33]. It is a very recent work and to the best of our
knowledge yields the best possible results. We also compare
with the Robust deep dictionary learning formulation (RDDL)
proposed in [16]. For all the methods mentioned here, we
employ the best architecture and the corresponding parameter
settings used in the papers.

For the proposed row sparse deep dictionary learning
(RSDDL) formulation we use a three-layer architecture. For
both the datasets the number of atoms in each layer are 100-
50-25. The value of the sparsity parameter used here is λ=0.1
and the diversity parameter is μ=0.5. We found that for both
the parametric values, our method is fairly robust. Our
algorithm also needs specification of the hyper-parameters.
Usually in split Bregman techniques these need to be tuned.
However, for our case, these hyper-parameters have special
meanings. They imply the relative weights we give to each
layer. Since there is no reason to favor one layer over the
other, all of them have been fixed to unity. There is only one
hyper-parameter we need to tune, i.e. γ in (18). We kept its

value to be 0.1. Since we are using the Split Bregman
technique, the algorithm is robust to whatever value of γ we
choose between 0.01 and 0.1. All the Bregman relaxation
variables have been initialized to unity.

We found that DropOut does not help improve the results of
our proposed technique. Instead, even with a small percentage
of dropping (say 5%) the results deteriorate. But DropConnect
regularization improves our results slightly. The best results
are obtained for 10% dropping; it improves the results by
about 1.2 % on average. Therefore in this work, we do not use
DropOut; we only use DropConnect with 10% dropping.

Note that all the parametric values and the user defined
dropping percentages used in this work have been tuned on a
third dataset, namely the Salinas dataset. We tuned the
parameters using a greedy L-curve method [34]. Here the
parameter λ is first tuned (using L-curve) by fixing μ to Zero.
Once λ is tuned, it is fixed at that value and then μ is tuned by
the L-curve method. These values have not been tuned on the
Indian Pines and the Pavia University datasets.

The inputs to our proposed RSDDL are spatio-spectral
features. These have been derived in the way proposed by [1,
4], i.e. a window of size 4x4 is captured and all the bands
within the window are taken. The dimensionality is reduced to
200 by principal component analysis. This is used as input to
our proposed method.

Evaluation is carried out by the standard measures of
Average Accuracy (AA), Overall Accuracy (OA) and Kappa
(K) coefficient. The definitions for these terms are given
below.
• Average Accuracy – This measure is the average value of

the classification accuracies of all classes.
• Overall Accuracy – This index shows the number of

hyperspectral pixels that are classified correctly, divided
by the number of test samples.

• Kappa Coefficient – This metric is a statistical measurement
of agreement between the final classification map and the
ground-truth map. It is the percentage agreement
corrected by the level of agreement that could be expected
due to chance alone. It is generally thought to be a more
robust measure than a simple percent agreement
calculation, since it takes into account the agreement
occurring by chance

The numerical results (in terms of the aforesaid indices) for
both the Indian Pines and Pavia University datasets are shown
in Table III.

TABLE III

COMPARISON WITH STATE-OF-THE-ART DEEP LEARNING TECHNIQUES
Dataset Metric GBN [2] DAE [5] RNN [6] NSS-Net [7] DFNN [12] RDDL [16] Proposed-0 Proposed-1
Pavia OA 86.77 88.36 88.87 89.55 88.50 88.52 90.91 89.30

AA 85.31 86.73 86.43 89.03 86.37 87.38 90.22 88.62
Kappa 0.79 0.80 0.80 0.79 0.79 0.80 0.86 0.84

Indian
Pines

OA 85.42 89.02 88.59 88.82 86.34 88.76 90.76 89.14
AA 86.31 85.86 85.36 86.48 85.09 85.93 88.49 87.68

Kappa 0.74 0.75 0.73 0.75 0.74 0.75 0.78 0.77
 *Proposed-0: l0-norm between training and test features; Proposed-1: l1-norm between training and test samples

Fig. 3. Pavia University. Left to Right – Groundtruth, GBN, DAE, RNN, NSS-Net, DFNN, RDDL and Proposed-0.

Fig. 4. Indian Pines. Left to Right – Groundtruth, GBN, DAE, RNN, NSS-Net, DFNN, RDDL and Proposed-0.

In terms of numbers, we see that both versions of our
proposed method clearly outperform others. However, the l0-
norm outperforms the l1-norm; even though the later is

supposed to be theoretically sounder. This may be owing to
two reasons. First, the Hamming distances (for l0-norm) are
never tied in practice. Second, the l1-norm does not enforce

exact sparsity and hence obfuscate the results.
The DAE, NSS-Net, RNN and RDDL perform almost the

same and is worse than ours. The GBN based formulation is
slightly worse than the aforesaid techniques. The CNN
formulation performs at par with other existing methods. We
tried our best to implement the CNN based technique,
however with the best of our efforts we were not able to
achieve the accuracy reported in there for the Indian Pines
dataset. This may be owing to the randomness in seeding the
CNN or in selecting the training samples.

For visual evaluation we have shown the results in Fig.s 3
and 4 for the Pavia and the Indian Pines dataset respectively.
Since, the Proposed-0 approach is the best of our two
approaches, we show results only from it. Visual evaluation
corroborates the numerical results.

In order to test the statistical significance of our results, we
have used the McNemar’s test (also carried out in [12]). The
results are shown in Table IV. It can be clearly seen that our
Proposed-0 method is indeed significantly better than the
others.

TABLE IV

STATISTICAL SIGNIFICANCE FROM STANDARDIZED MCNEMAR’S TEST
Proposed Vs. Pavia University

Z / significant
Indian Pines
Z / significant

GBN 24.33 / yes 29.12 / yes
DAE 20.19 / yes 17.60 / yes
RNN 20.67 / yes 21.09 / yes
NSS-Net 15.70 / yes 17.61 / yes
DFNN 26.71 / yes 32.64 / yes
RDDL 19.56 / yes 18.97 / yes

All the experiments were conducted on an Intel Xeon E3-

1246 CPU at 3.5 GHz with 32-GB RAM using a MATLAB
platform. The training and testing times for all the aforesaid
techniques are given in Table V.

TABLE V

TRAINING TIME IN SECONDS
Technique Pavia Indian Pines
 Training Testing Training Testing
GBN 14443 41 4591 10
DAE 8291 43 2307 11
RNN 4095 90 1002 21
NSS-Net 1906 102 1523 28
DFNN 12409 97 8002 23
RDDL 70 68 45 16
Proposed-0 102 95 87 22
Proposed-1 102 105 87 25

Note that for training, there is no difference between our

two proposed approaches, since it only pertains to testing. In
terms of training, one can see, RDDL is the fastest; this is
expected because it is a greedy learning approach. Our method
takes slightly more time but is several orders of magnitude
faster than other techniques.

For testing, we find that GBN and DAE are the fastest; this
is because they only require a few matrix vector products
during testing. RSDDL is slower compared to these, because
one needs to solve inverse problems (albeit in a closed form);
owing to the non-linearity the inverses cannot be pre-

computed. Our proposed method are relatively slow owing to
the necessity of solving involved optimization problems
during testing. We find that the l0-norm based solution is faster
compared to the l1-norm (the reason has been explained
before). The CNN based solutions are slower than our best
performing overall technique (l0-norm), but the RNN based
solution is slightly faster than ours.

B. Comparison with shallow techniques

Since deep learning techniques are data hungry and do not
perform well in limited training data scenarios, we compared
with traditional (shallow) machine learning techniques as well.
Label consistent KSVD (LC-KSVD) [35] was proposed as a
generic classification algorithm based on the popular
dictionary learning framework; later it was adopted for
hyperspectral image classification [36]. The results were LC-
KSVD [36] were better than vanilla implementations of other
machine learning algorithms, so use it as a benchmark.

Another technique that is compared against is the rotation
based support vector machine RO-SVM [37]; this was
specifically designed to function in the limited training data
scenario.

The third method compared against is based on the extreme
learning machine (ELM) formulation [38]. This is a state-of-
the-art technique known for its very short training time.

The experimental protocol remains the same. For each of
the aforesaid methods, we have taken the best configuration
specified in the papers. However, we have not used fusion
approaches used in some of the studies as a post processing
step to boost the accuracy.

TABLE VI

COMPARISON WITH STATE-OF-THE-ART SHALLOW TECHNIQUES
Dataset Metric RO-SVM LC-KSVD ELM Proposed
Pavia OA 75.99 74.02 89.10 90.91

AA 85.77 73.42 89.08 90.22
Kappa 0.73 0.70 0.77 0.86

Indian
Pines

OA 80.14 75.02 88.01 90.76
AA 88.84 72.32 86.23 88.49

Kappa 0.81 0.70 0.75 0.78

Note that one cannot compare the results obtained here and

those reported in the previous papers for two reasons – 1. The
experimental protocols are different; and, 2. There is no post-
processing step used in our experiments.

The results show that of our method (with l0-norm) still
yields the best results. Results from RO-SVM and LC-KSVD
are much worse than ours and all the deep learning techniques
compared against. Results from ELM are comparable with
other deep learning techniques, but is still worse than ours. As
before, we perform McNemar’s test to show the statistical
significance (improvement) of our method.

TABLE VII

STATISTICAL SIGNIFICANCE FROM STANDARDIZED MCNEMAR’S TEST
Proposed Vs. Pavia University

Z / significant
Indian Pines
Z / significant

RO-SVM 35.58 / yes 29.36 / yes
LC-KSVD 32.77 / yes 32.08 / yes
ELM 18.13 / yes 17.42 / yes

In the following table we show the training and testing

times. ELM is the fastest; this was supposed to be given its
design (closed form solution). SVM is the slowest in terms of
training; its testing times are comparable with other dictionary
learning based methods. It is interesting to note that even
though LC-KSVD is a shallow method, it is slower than ours;
this because of the requirement of solving the dictionary
learning by the inefficient KSVD algorithm.

TABLE VIII

TRAINING AND TESTING TIMES IN SECONDS
Technique Pavia Indian Pines
 Training Testing Training Testing
RO-SVM 1002 100 255 58
LC-KSVD 119 97 107 27
ELM 31 40 8 12
Proposed 102 95 87 22

C. Effect of Stochastic Regularization

In this sub-section we have elaborated on the different
dropping rates. The kappa coefficients are shown in Table IX.
The columns of the tables should be read independently, i.e.
the DropOut and the DropConnect have been used separately
and not combined with each other. Since the Proposed-o
method is better than the other approach, we show results from
the former only.

TABLE IX

VARIATION OF KAPPA WITH DROPPING RATES
%age of
dropping

Pavia Indian Pines
DropOut DropConnect DropOut DropConnect

0 0.82 0.82 0.73 0.73
2.5 0.81 0.83 0.72 0.75
5 0.78 0.84 0.70 0.77
10 0.74 0.86 0.66 0.78
15 0.68 0.82 0.62 0.73

The results show that with DropOut, the results deteriorate

very fast. This is the reason, we have not used it in our main
experiments. With DropConnect, the results improve till about
10%, but with further dropping, the result deteriorates.

We believe that DropOut degrades performance, both our
deterministic sparsity promoting regularization (l0-norm) and
DropOut (random zero-ing out of features) negates each other.
The l0-norm enforces sparsity and selects very few
coefficients; further dropping after having a sparse output
tends to lose information and hence deteriorates.

DropOut prevents coadaptation of nodes. To a certain extent
it helps barring overfitting; but when too many are dropped,
the network lacks the capacity to model the problem. Hence
the results deteriorate (after 10%).

V. CONCLUSION

In this work we propose a new technique for hyperspectral
image classification based on the deep dictionary learning
framework. We show that the proposed technique can yield
good results even with extremely few training samples.
Comparison has been carried out with state-of-the-art deep

learning based methods published in the last year. Our method
outperforms them all by a statistically significant margin. We
have also carried out comparison with several traditional
(shallow) machine learning approaches particularly tailored
for the said problem published in the last few years; in terms
of accuracy we excel over these as well.

In terms of technique there are several contributions of this
work. First, ours is the only work that can solve all the layers
of deep dictionary learning problem in a joint fashion; instead
of solving one layer at a time in a greedy fashion (as is done in
prior studies), we learn all the layers jointly. Second, we
propose a new discriminative penalty. Third, we introduce
stochastic regularization techniques in lines with DropConnect
and DropOut.

Although used in this work for the purpose of hyperspectral
image classification; the method proposed here is fundamental
and can be applied to a variety of problems.

ACKNOWLEDGEMENT

This work is supported by the Infosys Center for Artificial
Intelligence @ IIIT Delhi and by the Indo-French CEFIPRA
grant DST-CNRS-2016-02.

REFERENCES
[1] Y. Chen, X. Zhao and X. Jia, "Spectral–Spatial Classification of

Hyperspectral Data Based on Deep Belief Network," in IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 8, no. 6, pp. 2381-2392, June 2015.

[2] X. Zhou, S. Li, F. Tang, K. Qin, S. Hu and S. Liu, "Deep Learning With
Grouped Features for Spatial Spectral Classification of Hyperspectral
Images," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no.
1, pp. 97-101, Jan. 2017.

[3] P. Zhong, Z. Gong, S. Li and C. B. Schönlieb, "Learning to Diversify
Deep Belief Networks for Hyperspectral Image Classification," in IEEE
Transactions on Geoscience and Remote Sensing, vol. 55, no. 6, pp.
3516-3530, June 2017.

[4] Y. Chen, Z. Lin, X. Zhao, G. Wang and Y. Gu, "Deep Learning-Based
Classification of Hyperspectral Data," in IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6,
pp. 2094-2107, June 2014.

[5] X. Ma, H. Wang and J. Geng, "Spectral–Spatial Classification of
Hyperspectral Image Based on Deep Auto-Encoder," in IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 9, no. 9, pp. 4073-4085, Sept. 2016.

[6] L. Mou, P. Ghamisi and X. X. Zhu, "Deep Recurrent Neural Networks
for Hyperspectral Image Classification," in IEEE Transactions on
Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3639-3655, July
2017.

[7] F. Zhou, R. Hang, Q. Liu and X. Yuan, “Hyperspectral image
classification using spectral-spatial LSTMs,” Neurocomputing
(accepted).

[8] B. Pan, Z. Shi, N. Zhang and S. Xie, "Hyperspectral Image
Classification Based on Nonlinear Spectral–Spatial Network," in IEEE
Geoscience and Remote Sensing Letters, vol. 13, no. 12, pp. 1782-1786,
Dec. 2016.

[9] B. Pan, Z. Shi and X. Xu, "R-VCANet: A New Deep-Learning-Based
Hyperspectral Image Classification Method," in IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 10, no. 5, pp. 1975-1986, May 2017

[10] A. Romero, C. Gatta and G. Camps-Valls, "Unsupervised Deep Feature
Extraction for Remote Sensing Image Classification," in IEEE
Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp.
1349-1362, March 2016.

[11] G. Cheng, Z. Li, J. Han, X. Yao and L. Guo, "Exploring Hierarchical
Convolutional Features for Hyperspectral Image Classification," in IEEE
Transactions on Geoscience and Remote Sensing.

[12] Y. Chen, H. Jiang, C. Li, X. Jia and P. Ghamisi, "Deep Feature
Extraction and Classification of Hyperspectral Images Based on
Convolutional Neural Networks," in IEEE Transactions on Geoscience
and Remote Sensing, vol. 54, no. 10, pp. 6232-6251, Oct. 2016.

[13] W. Li, G. Wu, F. Zhang and Q. Du, "Hyperspectral Image Classification
Using Deep Pixel-Pair Features," in IEEE Transactions on Geoscience
and Remote Sensing, vol. 55, no. 2, pp. 844-853, Feb. 2017.

[14] J. Yang, Y. Q. Zhao and J. C. W. Chan, "Learning and Transferring
Deep Joint Spectral–Spatial Features for Hyperspectral Classification,"
in IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 8,
pp. 4729-4742, Aug. 2017.

[15] P. Liu, H. Zhang and K. B. Eom, “Active Deep Learning for
Classification of Hyperspectral Images”, in IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 10, no.
2, pp. 712 – 724, Feb. 2017.

[16] V. Singhal; H. K. Aggarwal; S. Tariyal; A. Majumdar, "Discriminative
Robust Deep Dictionary Learning for Hyperspectral Image
Classification," in IEEE Transactions on Geoscience and Remote
Sensing , vol.PP, no.99, pp.1-10.

[17] I. Manjani, S. Tariyal, M. Vatsa, R. Singh and A. Majumdar, "Detecting
Silicone Mask-Based Presentation Attack via Deep Dictionary
Learning," in IEEE Transactions on Information Forensics and Security,
vol. 12, no. 7, pp. 1713-1723, July 2017.

[18] S. Singh; A. Majumdar, "Deep Sparse Coding for Non-Intrusive Load
Monitoring," in IEEE Transactions on Smart Grid , vol.PP, no.99, pp.1-
1.

[19] S. Tariyal, A. Majumdar, R. Singh and M. Vatsa, "Deep Dictionary
Learning," in IEEE Access, vol. 4, no. , pp. 10096-10109, 2016.

[20] A. Sankaran, G. Sharma, R. Singh, M. Vatsa and A. Majumdar, “Class
Sparsity Signature based Restricted Boltzmann Machines”, Pattern
Recognition, Vol. 61, pp. 674-685, 2017.

[21] T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng and Y. Ma, "PCANet: A
Simple Deep Learning Baseline for Image Classification?," in IEEE
Transactions on Image Processing, vol. 24, no. 12, pp. 5017-5032, Dec.
2015.

[22] G. Trigeorgis, K. Bousmalis, S. Zafeiriou and B. W. Schuller, "A Deep
Matrix Factorization Method for Learning Attribute Representations," in
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
39, no. 3, pp. 417-429, March 1 2017.

[23] Z. Li and J. Tang, "Weakly Supervised Deep Matrix Factorization for
Social Image Understanding," in IEEE Transactions on Image
Processing, vol. 26, no. 1, pp. 276-288, Jan. 2017.

[24] F. Zhuang, D. Luo, X. Jin, H. Xiong, P. Luo and Q. He, "Representation
Learning via Semi-Supervised Autoencoder for Multi-task Learning,"
2015 IEEE International Conference on Data Mining, Atlantic City, NJ,
2015, pp. 1141-1146.

[25] S. Gao, Y. Zhang, K. Jia, J. Lu and Y. Zhang, "Single Sample Face
Recognition via Learning Deep Supervised Autoencoders," in IEEE
Transactions on Information Forensics and Security, vol. 10, no. 10, pp.
2108-2118, Oct. 2015.

[26] S. Zhou, Q. Chen and X. Wang, "Discriminative Deep Belief Networks
for image classification," 2010 IEEE International Conference on Image
Processing, Hong Kong, 2010, pp. 1561-1564.

[27] A. r. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. E. Hinton
and M. A. Picheny, "Deep Belief Networks using discriminative features
for phone recognition," 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Prague, 2011, pp.
5060-5063.

[28] A. Majumdar, R. Singh and M. Vatsa, "Face Verification via Class
Sparsity Based Supervised Encoding," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1273-1280, June 1
2017.

[29] C. Wu and X. C. Tai, “Augmented Lagrangian method, dual methods,
and split Bregman iteration for ROF, vectorial TV, and high order
models,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 300-339,
2010.

[30] T. Goldstein and S. Osher, “The split Bregman method for L1-
regularized problems”, SIAM journal on imaging sciences, vol. 2, no. 2,
pp. 323-343, 2009.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R.
Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929-1958, 2014.

[32] L. Wan, M. Zeiler, S. Zhang, Y. LeCun and R. Fergus, “Regularization
of neural networks using dropconnect”, ACM International Conference
on Machine Learning, 2013.

[33] W. Song, S. Li, L. Fang and T. Lu, "Hyperspectral Image Classification
With Deep Feature Fusion Network," in IEEE Transactions on
Geoscience and Remote Sensing.

[34] P. C. Hansen and D. P. Oleary, “The use of the L-curve in the
regularization of discrete ill-posed problems”, SIAM Journal on
Scientific Computing, Vol. 14 (6), pp. 1487-1503, 1993.

[35] Z. Jiang Z. Lin and L. S. Davis "Label consistent K-SVD: Learning a
discriminative dictionary for recognition" IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 35 (11) pp. 2651 - 2664, 2013.

[36] X. Zhang, Y. Liang, Y. Zheng, J. An and L. C. Jiao, "Hierarchical
Discriminative Feature Learning for Hyperspectral Image
Classification," IEEE Geoscience and Remote Sensing Letters, Vol. 13
(4), pp. 594-598, 2016.

[37] J. Xia, J. Chanussot, P. Du and X. He, "Rotation-Based Support Vector
Machine Ensemble in Classification of Hyperspectral Data With Limited
Training Samples," IEEE Transactions on Geoscience and Remote
Sensing, vol. 54, no. 3, pp. 1519-1531, 2016.

[38] M. Jiang, F. Cao and Y. Lu, "Extreme Learning Machine With
Enhanced Composite Feature for Spectral-Spatial Hyperspectral Image
Classification," IEEE Access, vol. 6, pp. 22645-22654, 2018.

