
  
Abstract—In recent studies in hyperspectral imaging, 

biometrics and energy analytics, the framework of deep 
dictionary learning has shown promise. Deep dictionary learning 
outperforms other traditional deep learning tools when training 
data is limited; therefore hyperspectral imaging is one such 
example that benefits from this framework. Most of the prior 
studies were based on the unsupervised formulation; and in all 
cases, the training algorithm was greedy and hence sub-optimal. 
This is the first work that shows how to learn the deep dictionary 
learning problem in a joint fashion. Moreover, we propose a new 
discriminative penalty to the said framework. The third 
contribution of this work is showing how to incorporate 
stochastic regularization techniques into the deep dictionary 
learning framework. Experimental results on hyperspectral 
image classification shows that the proposed technique excels 
over all state-of-the-art deep and shallow (traditional) learning 
based methods published in recent times.  
 

Index Terms—Classification, Supervised Learning, Deep 
Learning, Dictionary Learning, Hyperspectral Imaging.   
 

I. INTRODUCTION 

N the recent past, deep learning has been gaining popularity 
in hyperspectral image classification [1-14]. All the 

standard deep learning models – Deep Belief Network (DBN) 
[1-3], Stacked Autoencoder (SAE) [4, 5], Deep Recurrent 
Neural Network (DRNN) [6], variants of PCA-Net [7, 8] and 
Convolutional Neural Network [9-14] have been employed in 
this context.  

For successful performance, deep learning requires a large 
volume of training data. Unfortunately, this is impractical for 
hyperspectral image classification. Therefore, several 
modifications need to be made to the classical deep learning 
architectures to fit the said problem. In a recent work [15] a 
novel active learning methodology has been proposed to 
address the issue of limited training data.    

In a recent study [16] a new deep learning tool called deep 
dictionary learning (DDL) has been proposed. The basic idea 
there in, is to use dictionary learning as basic building blocks 
for a deeper architecture. Intuitively speaking, the coefficients 
/ feature from one layer of dictionary learning acts as an input 
to the subsequent layer leading to a deep network. It was 
shown in [16] that DDL can operate within the limited training 
data regime and yet yield a performance superior to standard 
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deep learning tools like DBN, SAE and CNN.  
Given the success of DDL in hyperspectral classification 

[16] amongst other areas like biometrics [17], energy analytics 
[18] and benchmark deep learning problems [19], we propose 
to build a new classifier based on the DDL framework. All 
prior studies on deep dictionary learning follow the greedy 
training paradigm; and hence are sub-optimal. Since each of 
the layers are learnt separately, the shallower layers influence 
the deeper ones, but not vice versa. For optimal training, all 
the layers should be learnt jointly. Besides, [17-19] are all 
unsupervised learning approaches – they can only extract the 
features but require an off-the-shelf classifier for 
classification. Only [16] is a supervised classification 
technique; albeit a suboptimal (greedy) one. 

There are a few major contributions of this work. For the 
first time we show how the deep dictionary learning 
framework can be solved in a joint fashion. All the layers are 
updated jointly along with the final level of coefficients. The 
second contribution of this work is in proposing a new 
discriminative penalty. The third contribution of this work is 
to show how stochastic regularization techniques can be 
incorporated into the deep dictionary learning framework. 
This has not been attempted before.  

The rest of the work will be organized into several sections. 
Relevant background will be discussed in section II. The 
proposed technique will be described in section III. The 
experimental results are detailed in section IV. Finally, the 
conclusions of this work and future direction of research will 
be discussed in section V.  

II. LITERATURE REVIEW 

A. Deep Learning in Hyperspectral Classification 

In image analysis and computer vision problems CNN is the 
most popular choice. However, CNNs are data hungry and fail 
to perform in limited training data regime. This is the reason 
why other deep learning techniques like DBN [1-3] continue 
to be popular. In [1], a basic DBN is used with logistic 
regression based classification. The formulation is made 
supervised in [2] by using group-sparsity – a technique 
proposed in [20]. In [3], a diversifying pre-training technique 
is used for improving the performance of DBN based deep 
neural network.  

The problem of DBN is that, it can only handle limited 
variability in the inputs; they need to be between 0 and 1. 
Some kind of batch normalization is required to bring all 
inputs within this range. However, given that the inputs (for 
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imaging problems) are spatially correlated, such arbitrary 
change in input values may decimate the local correlation 
information and reduce overall performance.  

Much like DBN, SAE’s have been used for hyperspectral 
image classification. The work [4] uses a standard stacked 
autoencoder for classification using logistic regression. In [5], 
some extra penalties are added to the basic stacked 
autoencoder formulation in order to incorporate contextual 
information.  

Unlike DBNs stacked autoencoders can handle arbitrary 
input values. But the problem with SAE’s is that given the 
same volume of data, the number of parameters it needs to 
learn is twice that of DBN (equal number of encoders and 
decoders). Owing to this, SAEs are likely to suffer from over-
fitting.  

Recurrent Neural Network (RNN) and its variants (echo 
state network, long short-term memory network) are 
applicable to ordinal data, for example time series data. In 
recent times, high impact conferences like CVPR and ICCV 
are publishing papers on image analysis and computer vision 
using RNNs (and its variants). In the same spirit, [6] used 
RNN and [7] used LSTM for analyzing hyperspectral images.  

It must be noted that there is no theoretical justification to 
apply RNNs for image analysis. Such models are only 
applicable to ordered data (such as time series). Pixels are not 
ordered. RNNs require arbitrary ordering in order to justify its 
usage. This arbitrary ordering may affect the overall 
performance.  

The concept of PCA-Net [21] has been proposed recently. 
The framework is similar to CNN. Each layer constitutes of a 
filtering and pooling operation. But instead of convolving, the 
image is filtered using principal component analysis. The 
study [8] proposes a non-linear variant of PCA-Net. In [9] 
instead of using PCA, they use vertex component analysis into 
the PCA-Net framework for hyperspectral image analysis.  

All the studies on CNN based analysis [10-14] follow the 
same basic framework. They only differ from each other, in 
the choice of the number of layers, size and number of 
convolutional kernels and type of pooling used. It must be 
remembered that CNNs are data hungry, so studies in 
hyperspectral image classification propose slight 
modifications to suit the goal.  

Owing the problem of data scarcity in deep learning, an 
interesting proposal has been laid in [15]. They propose an 
active learning methodology to choose new training samples 
in a recursive fashion. However, active learning requires 
constant feedback from the user; this does not seem to be very 
practical given the scenario. It is unlikely that such 
frameworks that require constants feedbacks will be pragmatic 
and popular. 

It has been seen in [16] that the newly proposed framework 
of deep dictionary learning outperforms many traditional deep 
learning tools in hyperspectral image analysis. In other areas 
[17-19] a similar trend has been envisaged. The DDL 
framework excels when there is limited training data is 
available. 

B. Deep Dictionary Learning 

Since the concept of deep dictionary learning is relatively 
new, we believe that a brief introduction on this topic will help 
readers and make the paper self-contained. Let us reiterate the 
basic idea of deep dictionary learning. In (shallow) dictionary 
learning, one level of dictionary is used to represent the signal. 
In DDL, multiple layers of dictionaries are used to represent 
the signal.  

Formally, in dictionary learning, the training set (X) is 
decomposed into a dictionary (D) and a matrix of coefficients 
(Z). This is represented as, 
X DZ=                     (1) 
Here the training signals are stacked as columns of X; the 
corresponding features are in Z. Usually the learning is 
expressed as, 

2

0,
min

FD Z
X DZ Zλ− +               (2) 

The first term is for data fidelity; the l0-norm imposes sparsity 
on the coefficients. There are well known algorithms to solve 
the dictionary learning problem (2).  

Dictionary learning basically factors the matrix into the 
dictionary matrix and a coefficient matrix. In recent years, 
following the success of deep learning, several studies have 
proposed deep matrix factorization [22, 23]; here the data is 
decomposed into multiple layers of dictionaries (D1, D2, D3, 
…) and one final layer of coefficients (Z). Mathematically this 
is represented as follows (shown for three layers), 

1 2 3X D D D Z=                  (3) 

The problem with this formulation is that, there is no 
activation function between the layers; there is a possibility 
that the multiple layers of dictionaries collapse into a single 
layer.   

This issue is rectified in deep dictionary learning [19]; in 
there an activation function is incorporated between each 
layer. For a three layer DDL, the formulation is given by, 

( )( )1 2 3X D D D Zϕ ϕ=               (4) 

Usually a non-linear activation function like sigmoid or tanh is 
used.  

The exact solution for DDL should have been, 

( )( )
1 2 3

2

1 2 3 0, , ,
min

FD D D Z
X D D D Z Zϕ ϕ λ− +        (5) 

However, it must be noted that none of the prior studies [16-
19] solves (5) directly. All of them solve it greedily – one 
layer at a time.  

In greedy learning, for the first layer, one substitutes 

( )( )1 2 3Z D D Zϕ ϕ= . Therefore, (5) boils to the following 

problem 

1 1

2

1 1,Z
min

FD
X D Z−                  (6) 

This is a standard matrix factorization problem.  
Once the coefficients from the first layer is learnt, it is input 

to the second layer. Here one substitutes: ( )2 3Z D Zϕ= . This 

leads to –  

( )1 2 2Z D Zϕ=                   (7) 

Equivalently this can be expressed as, 



( )1
1 2 2Z D Zϕ− =                  

Since the activation functions are unitary, inverting them is 
trivial. It is easy to solve (7) via matrix factorization.  

( )
2 2

21
1 2 2,Z

min
FD

Z D Zϕ − −               (8) 

For the last layer, we have, 

( )
( )

2 3

1
2 3

Z D Z

Z D Z

ϕ

ϕ −

=

≡ =
                (9) 

Here the same principle as before has been used to invert the 
activation function and represent the last layer in the 
equivalent form.  

Since the coefficients in the last layer are supposed to be 
sparse, one solves –  

( )
3

21
2 3 0,

min
FD Z

Z D Z Zϕ λ− − +            (10) 

This is the formulation used in [17-19].  
This concludes the training phase. In testing, the learnt 

dictionaries are used to generate the test feature. This is 
expressed as, 

( )( ) 2

1 2 3 0
min

test
test test testFz

x D D D z zϕ ϕ λ− +        (11) 

Using substitutions like before, this (11) too is solved greedily.  
Building on this greedy framework, a supervised solution 

was proposed for hyper-spectral image classification [16]. 
After the final layer of greedy deep dictionary learning, a label 
consistency layer [34] was added, leading to the following 
formulation –  

( )( )
1 2 3

2 2

1 2 3 0, , ,
min

FFD D D Z
X D D D Z Z T MZϕ ϕ λ− + + −   (12) 

Here T are the target labels and M the linear classifier map 
from the features (from the deepest layer) to the targets. This 
is a supervision term borrowed from [35]. 

However, note that [16] does not solve (12) jointly. Each 
layer of deep dictionary learning (till the penultimate layer) is 
solved piecemeal via a standard algorithm like KSVD; the 
final layer uses the implementation from [35].  

III.  PROPOSED APPROACH 

The problem with the greedy training paradigm in deep 
learning is that it is sub-optimal. The shallower layers 
influence the deeper layer but not vice versa. This is the first 
work that proposes to learn all the layers of deep dictionary 
learning in joint fashion.  

Most prior studies on DDL were unsupervised. It is well 
known in machine learning literature, and specifically in deep 
learning that discriminative learning schemes indeed improve 
classification performance. This has been seen for both 
autoencoders [24, 25] and deep belief networks [26, 27]. This 
motivates our work to incorporate such penalties into the deep 
learning framework. 

Our proposed work is different to [16] in two major ways. 
First, our work optimally solves all the variables in a joint 
fashion. Second, it uses a more sophisticated supervision 
penalty than label consistency.  

A. Formulation 

Our formulation stems from the basic definition of 
‘discrimination’ – samples within the same class will be close 
to each other and samples between classes will be far from 
each other.   

The basic structure of deep dictionary learning remains the 
same as before; we would like to solve (5). However, since we 
are incorporating supervision / discrimination into the features 
we propose modifications on top of the basic formulation. The 
first modification we propose is to impose class-sparsity, i.e. 
instead of allowing features from the same class to be 
arbitrarily sparse we impose structure. We postulate that the 
features from the same class will have the same support, i.e. 
will have the same sparsity pattern. In other words, the 
positions of the non-zero coefficients for features of the same 
class will be the same for all samples. This has been 
introduced into the DBN framework in [20] and in the 
autoencoder framework in [28]. This modification is 
represented as follows –  

( )( )
1 2 3

2

1 2 3 2,0, , ,
min cFD D D Z

c

X D D D Z Zϕ ϕ λ− +       (13) 

Here the l2,0-norm is defined as the number of non-zero rows 
of the matrix. This imposes row-sparsity. The sub-script ‘c’ 
denotes the class and Z=[Z1|…|Zc|…]. Therefore the cost 
function imposes supervised class sparsity on each class ‘c’. 

This cost is supervised but does not make the features 
discriminative. Since we are not imposing distinction between 
the classes; there is no way we can guarantee that the features 
from different classes will not have the same support. To 
impose discrimination, we need to ensure that the support 
between features of two classes are different. This is ensured 
by the second penalty.  

( )( )
1 2 3

2

1 2 3 2,0, , ,

0

min cFD D D Z
c

k c
k c

X D D D Z Z

Z Z

ϕ ϕ λ

µ
≠

− +

− −




    (14) 

Here kZ is the mean of the kth class repeated the same number 

of times as the number of samples in class c. This additional 
term ensures that the support between two different classes (k 
and c) are as distinct as possible; since we are maximizing the 
l0-distance between the classes we need the negative sign.  

Note that this is a completely different formulation from the 
label consistency penalty used in [16]; this new discrimination 
term is a major contribution of this paper.  

This concludes the formulation for training. For testing, the 
goal is to assign a class label for the test sample xtest. For that, 
we need to generate the corresponding feature. This is 
achieved by solving the same problem as in the greedy case 
(11). This is repeated here for the sake of convenience.  

( )( ) 2

1 2 3 0
min

test
test test testFz

x D D D z zϕ ϕ λ− +  

Once the sparse feature is obtained, it is compared with the 
training samples for class assignment. In this work, the 
assignment is done in two ways.  

In the first approach, once the training is complete, the 
exact training features bears no importance, only the sparse 



binary support of each class is required. An example may 
clarify the concept better.  

 
Fig. 1. Left – Sparse Features from Class 1 and its binary representation; 

Right – Features from Class 1 and its binary representation 

 
Consider a toy problem where the sparse features for classes 

1 and 2 are shown in Fig. 1. Class 1 has 3 samples and class 2 
has 4. Virtually, instead of storing the features after the 
training phase we can just store the binary representation 
vector for each class. Once the test feature is generated, we 
generate its corresponding binary representation. The binary 
representation of the test data is compared with the binary 
representation of each sample via a binary dot product / 
Hamming distance. In practice, it boils down to the 
computation of the l0-norm between the features of the 
training samples and the test sample; note that the l0-norm is 
computed directly on the features and not on the binary 
representation. This is very efficient with linear complexity. 
The test sample is assigned to the class having the maximum 
similarity / minimum distance.  

There may be an issue with the aforesaid approach. Assume 
that (for a problem different from the aforesaid toy problem), 
the binary representation of class 1 is [0,0,1,1,0,0], and the 
binary representation of class 2 is [0,0,1,0,1,0]. The binary 
representation of the test sample is [0,0,1,1,1,0]. For such a 
sample, the Hamming distance from both the classes 1 and 2 
will be the same, and we cannot assign a unique class. In order 
to resolve this issue, in the second approach, instead of 
computing the l0-norm we compute the l1-norm between the 
features of the training and test samples; since they account 
for the magnitude and not only the position, such ties can be 
avoided. We assign the test sample to the class having the 
minimum absolute distance.  

B. Derivation 

For training we need to solve (14). We following the Split 
Bregman technique [29, 30]. We introduce a proxy 

( )( )1
2 3Z D D Zϕ ϕ= . This leads to the following expression, 

( )( )
1

1 2 3

21
1 2,0 0, , , ,

1
2 3

min  

s.t. 

c k cFD D D Z Z c k c

X D Z Z Z Z

Z D D Z

λ µ

ϕ ϕ
≠

− + − −

=

 
  (15) 

Note that Z1 basically corresponds to the features from the 
first level of dictionary learning.  

In the second step, we introduce another proxy variable 

( )2
3Z D Zϕ= . This leads to, 

( ) ( )
1 2

1 2 3

21
1 2,0 0, , , , ,

1 2
2 2 3

min  

s.t. ,

c k cFD D D Z Z Z c k c

X D Z Z Z Z

Z D Z Z D Z

λ µ

ϕ ϕ
≠

− + − −

= =

 
 (16) 

The augmented Lagrangian is formulated from (16) by 
incorporating the Bregman relaxation variable (B1 and B2) for 
each proxy. 

We form the augmented Lagrangian –  

( ) ( )

1 2
1 2 3

21
1 2,0 0, , , , ,

2 21 2
1 2 2 1 2 3 2

min  c k cFD D D Z Z Z c k c

F F

X D Z Z Z Z

Z D Z B Z D Z B

λ µ

η ϕ η ϕ
≠

− + − −

+ − − + − −

 
 (17) 

Here B1 and B2 are the relaxation variables. 
The final problem (17) is solved by the alternating direction 

method of multipliers (ADMM) [29]; the formulation (17) is 
segregated into the following sub-problems.  

1

21
1P1:min

FD
X D Z−  

( ) ( )
2 2

2 2
1 2 1 1 2

2 1 1 2P2:min min
D DF F

Z D Z B Z B D Zϕ ϕ −− − ≡ − −  

( ) ( )
3 3

222 1 2
3 2 2 3P3:min min

FD D F
Z D Z B Z B D Zϕ ϕ −− − ≡ − −  

( )
1

221 1 1
1 1 2 1P4:min

F FZ
X D Z Z D Z Bη ϕ− + − −  

( ) ( )

( ) ( )
2

2

2 21 2 2
1 2 1 2 3 2

2 21 1 2
1 1 2 2 2 3 2

P5:min

min

FFZ

FFZ

Z D Z B Z D Z B

Z B D Z Z D Z B

η ϕ η ϕ

η ϕ η ϕ−

− − + − −

≡ − − + − −
 

( )

( )

22
2 3 2 2,0 0

2
2

2 2 3 2,0 0

P6:min

min

c k cFZ
c k c

c k c
Z F

c k c

Z D Z B Z Z Z

Z B D Z Z Z Z

η ϕ λ µ

η ϕ λ µ

≠

≠

− − + − −

≡ − − + − −

 

 
 

For sub-problems P2, P3, P4 and P5 the equivalent form is 
trivial to obtain since the non-linear activation functions are 
unitary and invertible – a property used by all prior works on 
DDL. All the sub-problems except P6 are easy to solve, since 
they are simple least squares problems with analytic solutions 
in the form of Moore Penrose Pseudoinverse.  

Sub-problem P6 is slightly more involved since it does not 
have a direct solution. Although not exactly separable, we can 
decouple the problem and solve for each Zc. This leads to,  

( ) 2
2

2 2 3 2,0 0
min

c
c c c k c

Z F
Z B D Z Z Z Zη ϕ λ µ− − + − −   (18) 

To solve (18) we need to invoke the Split Bregman 
technique once more. We introduce a proxy variable 

k cP Z Z= − . The corresponding augmented Lagrangian after 

Bregman relaxation is expressed as, 

( )
( )

2
2

2 2 3 2,0 0,

2

min
c

c c c
Z P F

k c F

Z B D Z Z P

P Z Z C

η ϕ λ µ

γ

− − + −

+ − − −
    (19) 

Here C is the relaxation variable. Using ADMM once again, 
(19) can be split into the following two sub-problems. 

( )
( )

2
2

2 2 3 2,0

2

S1:min
c

c c c
Z F

k c F

Z B D Z Z

P Z Z C

η ϕ λ

γ

− − +

+ − − −
 

( ) 2

0
S2:min k c FP

P Z Z C Pγ µ− − − −  

Sub-problem S1 is a solved problem. It can be solved by 
Simultaneous Orthogonal Matching Pursuit. Sub-problem S2 



is not so trivial; instead of minimizing the l0-norm (as is done 
in all standard problems in optimization, signal processing and 
machine learning) here we have to maximize it. However, the 
closed form solution readily presents itself from the proximal 
operator for S2. It is, 

2 

/ 2

k c k cZ Z C if Z Z C
P

otherwise

µ
γ

µ γ

 − + < − += 


        (20) 

This concludes the derivation of sub-problem P6. The final 
step is to update the Bregman relaxation variables. This is 
achieved by simple gradient decent.  

( )1
1 2 2 1B Z D Z Bϕ← − −              (21a) 

( )2
2 3 2B Z D Z Bϕ← − −              (21b) 

( )k cC P Z Z C← − − −              (21c) 

This concludes the training algorithm.  
For testing one needs to solve (11); repeated here for the 

sake of convenience. 

( )( ) 2

1 2 3 0
min

test
test test testFz

x D D D z zϕ ϕ λ− +   

We use similar kind of proxies as before: 

( )( )1
2 3test testz D D zϕ ϕ= for the first level and 

( )2
3test testz D zϕ= for the second. This leads to the following 

augmented Lagrangian formulation after introducing the 
Bregman proxy variables b1 and b2. 

( ) ( )

1 2

21
1 02, ,

2 21 2 2
1 2 1 2 3 2 22

min
test test test

test test test
z z z

test test test test

x D z z

z D z b z D z b

λ

η ϕ η ϕ

− +

+ − − + − −
  (22) 

Following ADMM, (22) can be split into the following sub-
problems.  

( )

( )

22
2 3 2 02

2
1 2

2 2 3 02

T1:min
test

test test test
z

test test test

z D z b z

z b D z z

η ϕ λ

η ϕ λ−

− − +

≡ − − +
 

( )
1

221 1 2
1 1 2 12 2

T2:min
test

test test test test
z

x D z z D z bη ϕ− + − −  

( ) ( )

( ) ( )

2

2

2 21 2 2
1 2 1 2 3 2 22

2 21 1 2 2
1 1 2 2 3 2 22

T3:min

min

test

test

test test test test
z

test test test test
z

z D z b z D z b

z b D z z D z b

η ϕ η ϕ

η ϕ η ϕ−

− − + − −

≡ − − + − −
 

Sub-problem T1 (in the equivalent form) is a simple l0-
minimization problem that can be either solved via orthogonal 
matching pursuit or iterative hard thresholding. Sub-problem 
T2 and T3 (in equivalent form) are simple least squares 
minimization problems which can be solved via 
pseduoinverses. As in the training phase, we update the 
Bregman relaxation variables by simple gradient descent.  

( )1 2
1 2 1test testb z D z bϕ← − −             (23a) 

( )2
2 3 2test testb z D z bϕ← − −             (23b) 

This concludes the derivation of the testing algorithm.  
Both the training and the testing algorithms require solving 

pseudoinverses and iterative thresholding. The complexity of 
pseudoinverse is O(N3); N is the number of elements in the 
matrix. The complexity (per iteration) of thresholding is O(N2) 

(for matrix vector products) + O(N) for thresholding. But 
about O(N) steps are needed for convergence. Hence the total 
complexity of the thresholding sub-problems are 
approximately O(N3). Therefore, the overall complexity of our 
training and testing algorithms are O(N3). 

C. Stochastic Regularization 

        
Fig. 2. (a) Left – DropOut Regularization. (b) Right – DropConnect1  

 
There are two stochastic regularization techniques that are 

popular in deep learning. They are DropOut [31] and 
DropConnect [32]. These regularization techniques have been 
used for traditional neural networks, but never for dictionary 
learning. This is the first work that shows how such stochastic 
regularization techniques can be incorporated in deep 
dictionary learning.  

The main idea in DropOut is to randomly drop units (along 
with their connections) from the network during training. This 
prevents units from co-adapting too much. Suppose we have 
training data X; in every iteration of DropOut some randomly 
chosen output units along with their connection weights are set 
to zero, as shown in Fig. 2. Here, out of three output neutrons, 
z2 (selected randomly) is dropped. 

DropConnect is a generalization of DropOut. Here a set of 
randomly selected connections of network are set to zero. It 
works similar to DropOut regularization technique, except 
that, instead of dropping the whole unit, some connections are 
dropped. This makes output units partially active, as shown in 
Fig. 2. The dotted lines here show the dropped connections. 

Both of them are regularization techniques. Given that we 
are interested in addressing the hyperspectral image 
classification problem, where training data is always 
parsimonious incorporating these into the deep dictionary 
learning framework to prevent over-fitting may prove 
beneficial.  

We can incorporate DropOut type regularization, by 
randomly imputing some randomly chosen elements in the 
coefficients of each layer (Z1, Z2 and Z) with zeroes. In each 
iteration, once the coefficients are obtained by solving sub-
problems P4, P5 and P6, we randomly drop some of their 
values to zeroes before they are used for updating the 
dictionary elements via P1, P2 and P3. The proportion of the 
elements to be dropped is user-defined. However, it must be 
noted that since we impose sparsity in the output, randomly 
dropping the coefficients from Z may not be sensible. It would 
be beneficial to restrict the droppings to the intermediate 
layers only.  

 
1 http://cs.nyu.edu/~wanli/dropc/ 



Similarly, we can incorporate DropConnect type 
regularization into the deep dictionary learning framework. 
Here, the dictionary atoms play the role of connections. 
Therefore, to drop connections, we can impute some randomly 
chosen elements in the dictionaries to be zeroes. After 
updating the dictionaries via P1, P2 and P3, we can impute 
some elements (randomly chosen) in the dictionaries to be 
zeroes to emulate DropConnect. Here too, the percentage of 
dropping need to be user-defined.  

It must be noted that both DropConnect and DropOut type 
regularizations are only used till the pre-final iteration. In the 
final iteration, the obtained values of the dictionaries and the 
coefficients are not perturbed in any fashion.  

IV. EXPERIMENTAL RESULTS 

We evaluate our proposed technique on two benchmark 
datasets. 
• The Indian Pines dataset was collected by the Airborne 

Visible/Infrared Imaging Spectrometer in Northwestern 
Indiana, with a size of 145 × 145 pixels with a spatial 
resolution of 20 m per pixel and 10-nm spectral resolution 
over the range of 400–2500 nm. As is the usual protocol, 
the work uses 200 bands, after removing 20 bands 
affected by atmosphere absorption. There are 16 classes; 
the number of training and test samples is displayed in 
Table I.  

• This Pavia university dataset is acquired by reflective optics 
system imaging spectrometer (ROSIS). The image is of 
610 × 340 pixels covering the Engineering School at the 
University of Pavia, which was collected under the 
HySens project managed by the German Aerospace 
Agency (DLR). The ROSIS-03 sensor comprises 115 
spectral channels ranging from 430 to 860 nm. In this 
dataset, 12 noisy channels have been removed and the 
remaining 103 spectral channels are investigated in this 
paper. The spatial resolution is 1.3 m per pixel. The 
available training samples of this data set cover nine 
classes of interests. Table II provides information about 
different classes and their corresponding training and test 
samples. 

For both the datasets, the experimental protocol is borrowed 
from [6]; it is a very challenging protocol as the number of 
training samples is extremely limited. Some deep learning 
techniques (such as [1]) use about 90% of the data for training 
and validation. Prior studies based on support vector 
machines, random decision forests, sparse representation 
based classification and dictionary learning trained with only 
10% of the data. Here, we use even less volume of training 
data. But this protocol reflects the real life scenario 
appropriately.   

 
TABLE I 

TRAINING AND TEST SAMPLES FOR INDIAN PINES 
Class Training Samples Test Samples 
Alfalfa 50 1384 
Corn-notill 50 784 
Corn-min 50 184 
Corn 50 447 

Grass-pasture 50 697 
Grass-trees 50 439 
Grass-pasture mowed 50 918 
Hay-windrowed 50 2418 
Oats 50 564 
Soybean-notill 50 162 
Soybean-mintill 50 1244 
Soybean-clean 50 330 
Wheats 50 45 
Woods 15 39 
Buildings-glass-trees 15 11 
Stone-steel-towers 15 5 
Total 695 9671 

 
TABLE II 

TRAINING AND TEST SAMPLES FOR PAVIA UNIVERSITY 
Class Training Samples Test Samples 
Asphalt 548 6631 
Meadows 540 19649 
Gravel 392 2099 
Trees 524 3064 
Metal sheets 265 1345 
Bare soil 532 5029 
Bitumen 375 1330 
Bricks 514 3682 
Shadows 231 947 
Total 3921 42776 

 

A. Comparison with deep techniques 

In this work we are going to compare with the latest deep 
learning-based techniques. The DBN based technique we 
compare against is [2]; the group-sparse formulation used 
there-in has shown excellent results for hyperspectral image 
classification. This technique is dubbed GBN in [2]. The 
benchmark for deep autoencoder (DAE) is the technique 
proposed in [5]. Following [6], we compare with their 
proposed method with recurrent neural network (RNN) based 
implementation. Of the PCA-Net variants, we compare against 
[7] that uses a non-linearity and fuses the spectral and spatial 
features in the final densely connected layer for classification. 
This technique [7] has been called NSS-Net. The final 
technique that we compare against is called deep fusion CNN 
(DFNN) [33]. It is a very recent work and to the best of our 
knowledge yields the best possible results. We also compare 
with the Robust deep dictionary learning formulation (RDDL) 
proposed in [16]. For all the methods mentioned here, we 
employ the best architecture and the corresponding parameter 
settings used in the papers.  

For the proposed row sparse deep dictionary learning 
(RSDDL) formulation we use a three-layer architecture. For 
both the datasets the number of atoms in each layer are 100-
50-25. The value of the sparsity parameter used here is λ=0.1 
and the diversity parameter is μ=0.5. We found that for both 
the parametric values, our method is fairly robust. Our 
algorithm also needs specification of the hyper-parameters. 
Usually in split Bregman techniques these need to be tuned. 
However, for our case, these hyper-parameters have special 
meanings. They imply the relative weights we give to each 
layer. Since there is no reason to favor one layer over the 
other, all of them have been fixed to unity. There is only one 
hyper-parameter we need to tune, i.e. γ in (18). We kept its 



value to be 0.1. Since we are using the Split Bregman 
technique, the algorithm is robust to whatever value of γ we 
choose between 0.01 and 0.1. All the Bregman relaxation 
variables have been initialized to unity. 

We found that DropOut does not help improve the results of 
our proposed technique. Instead, even with a small percentage 
of dropping (say 5%) the results deteriorate. But DropConnect 
regularization improves our results slightly. The best results 
are obtained for 10% dropping; it improves the results by 
about 1.2 % on average. Therefore in this work, we do not use 
DropOut; we only use DropConnect with 10% dropping.  

Note that all the parametric values and the user defined 
dropping percentages used in this work have been tuned on a 
third dataset, namely the Salinas dataset. We tuned the 
parameters using a greedy L-curve method [34]. Here the 
parameter λ is first tuned (using L-curve) by fixing μ to Zero. 
Once λ is tuned, it is fixed at that value and then μ is tuned by 
the L-curve method. These values have not been tuned on the 
Indian Pines and the Pavia University datasets.  

The inputs to our proposed RSDDL are spatio-spectral 
features. These have been derived in the way proposed by [1, 
4], i.e. a window of size 4x4 is captured and all the bands 
within the window are taken. The dimensionality is reduced to 
200 by principal component analysis. This is used as input to 
our proposed method.  

Evaluation is carried out by the standard measures of 
Average Accuracy (AA), Overall Accuracy (OA) and Kappa 
(K) coefficient. The definitions for these terms are given 
below.  
• Average Accuracy – This measure is the average value of 

the classification accuracies of all classes. 
• Overall Accuracy – This index shows the number of 

hyperspectral pixels that are classified correctly, divided 
by the number of test samples. 

• Kappa Coefficient – This metric is a statistical measurement 
of agreement between the final classification map and the 
ground-truth map. It is the percentage agreement 
corrected by the level of agreement that could be expected 
due to chance alone. It is generally thought to be a more 
robust measure than a simple percent agreement 
calculation, since it takes into account the agreement 
occurring by chance 

The numerical results (in terms of the aforesaid indices) for 
both the Indian Pines and Pavia University datasets are shown 
in Table III.  

 
TABLE III 

COMPARISON WITH STATE-OF-THE-ART DEEP LEARNING TECHNIQUES 
Dataset Metric GBN [2] DAE [5] RNN [6] NSS-Net [7] DFNN [12] RDDL [16] Proposed-0 Proposed-1 
Pavia OA 86.77 88.36 88.87 89.55 88.50 88.52 90.91 89.30 

AA 85.31 86.73 86.43 89.03 86.37 87.38 90.22 88.62 
Kappa 0.79 0.80 0.80 0.79 0.79 0.80 0.86 0.84 

Indian 
Pines 

OA 85.42 89.02 88.59 88.82 86.34 88.76 90.76 89.14 
AA 86.31 85.86 85.36 86.48 85.09 85.93 88.49 87.68 

Kappa 0.74 0.75 0.73 0.75 0.74 0.75 0.78 0.77 
  *Proposed-0: l0-norm between training and test features; Proposed-1: l1-norm between training and test samples 
 

 
Fig. 3. Pavia University. Left to Right – Groundtruth, GBN, DAE, RNN, NSS-Net, DFNN, RDDL and Proposed-0. 

 

 
Fig. 4. Indian Pines. Left to Right – Groundtruth, GBN, DAE, RNN, NSS-Net, DFNN, RDDL and Proposed-0. 

 
 

In terms of numbers, we see that both versions of our 
proposed method clearly outperform others. However, the l0-
norm outperforms the l1-norm; even though the later is 

supposed to be theoretically sounder. This may be owing to 
two reasons. First, the Hamming distances (for l0-norm) are 
never tied in practice. Second, the l1-norm does not enforce 



exact sparsity and hence obfuscate the results.  
The DAE, NSS-Net, RNN and RDDL perform almost the 

same and is worse than ours. The GBN based formulation is 
slightly worse than the aforesaid techniques. The CNN 
formulation performs at par with other existing methods. We 
tried our best to implement the CNN based technique, 
however with the best of our efforts we were not able to 
achieve the accuracy reported in there for the Indian Pines 
dataset. This may be owing to the randomness in seeding the 
CNN or in selecting the training samples.  

For visual evaluation we have shown the results in Fig.s 3 
and 4 for the Pavia and the Indian Pines dataset respectively. 
Since, the Proposed-0 approach is the best of our two 
approaches, we show results only from it. Visual evaluation 
corroborates the numerical results.  

In order to test the statistical significance of our results, we 
have used the McNemar’s test (also carried out in [12]). The 
results are shown in Table IV. It can be clearly seen that our 
Proposed-0 method is indeed significantly better than the 
others. 

 
TABLE IV 

STATISTICAL SIGNIFICANCE FROM STANDARDIZED MCNEMAR’S TEST 
Proposed Vs. Pavia University 

Z / significant 
Indian Pines 
Z / significant 

GBN 24.33 / yes 29.12 / yes 
DAE 20.19 / yes 17.60 / yes 
RNN 20.67 / yes 21.09 / yes 
NSS-Net 15.70 / yes 17.61 / yes 
DFNN 26.71 / yes 32.64 / yes 
RDDL 19.56 / yes 18.97 / yes 

 
All the experiments were conducted on an Intel Xeon E3-

1246 CPU at 3.5 GHz with 32-GB RAM using a MATLAB 
platform. The training and testing times for all the aforesaid 
techniques are given in Table V.  

 
TABLE V 

TRAINING TIME IN SECONDS 
Technique Pavia  Indian Pines 
 Training Testing Training Testing 
GBN 14443 41 4591 10 
DAE 8291 43 2307 11 
RNN 4095 90 1002 21 
NSS-Net 1906 102 1523 28 
DFNN 12409 97 8002 23 
RDDL 70 68 45 16 
Proposed-0 102 95 87 22 
Proposed-1 102 105 87 25 

 
Note that for training, there is no difference between our 

two proposed approaches, since it only pertains to testing. In 
terms of training, one can see, RDDL is the fastest; this is 
expected because it is a greedy learning approach. Our method 
takes slightly more time but is several orders of magnitude 
faster than other techniques. 

For testing, we find that GBN and DAE are the fastest; this 
is because they only require a few matrix vector products 
during testing. RSDDL is slower compared to these, because 
one needs to solve inverse problems (albeit in a closed form); 
owing to the non-linearity the inverses cannot be pre-

computed. Our proposed method are relatively slow owing to 
the necessity of solving involved optimization problems 
during testing. We find that the l0-norm based solution is faster 
compared to the l1-norm (the reason has been explained 
before). The CNN based solutions are slower than our best 
performing overall technique (l0-norm), but the RNN based 
solution is slightly faster than ours.   

B. Comparison with shallow techniques 

Since deep learning techniques are data hungry and do not 
perform well in limited training data scenarios, we compared 
with traditional (shallow) machine learning techniques as well. 
Label consistent KSVD (LC-KSVD) [35] was proposed as a 
generic classification algorithm based on the popular 
dictionary learning framework; later it was adopted for 
hyperspectral image classification [36]. The results were LC-
KSVD [36] were better than vanilla implementations of other 
machine learning algorithms, so use it as a benchmark.  

Another technique that is compared against is the rotation 
based support vector machine RO-SVM [37]; this was 
specifically designed to function in the limited training data 
scenario.  

The third method compared against is based on the extreme 
learning machine (ELM) formulation [38]. This is a state-of-
the-art technique known for its very short training time.  

The experimental protocol remains the same. For each of 
the aforesaid methods, we have taken the best configuration 
specified in the papers. However, we have not used fusion 
approaches used in some of the studies as a post processing 
step to boost the accuracy.  

 
TABLE VI 

COMPARISON WITH STATE-OF-THE-ART SHALLOW TECHNIQUES 
Dataset Metric RO-SVM LC-KSVD ELM Proposed 
Pavia OA 75.99 74.02 89.10 90.91 

AA 85.77 73.42 89.08 90.22 
Kappa 0.73 0.70 0.77 0.86 

Indian 
Pines 

OA 80.14 75.02 88.01 90.76 
AA 88.84 72.32 86.23 88.49 

Kappa 0.81 0.70 0.75 0.78 
 
Note that one cannot compare the results obtained here and 

those reported in the previous papers for two reasons – 1. The 
experimental protocols are different; and, 2. There is no post-
processing step used in our experiments.  

The results show that of our method (with l0-norm) still 
yields the best results. Results from RO-SVM and LC-KSVD 
are much worse than ours and all the deep learning techniques 
compared against. Results from ELM are comparable with 
other deep learning techniques, but is still worse than ours. As 
before, we perform McNemar’s test to show the statistical 
significance (improvement) of our method.  

 
TABLE VII 

STATISTICAL SIGNIFICANCE FROM STANDARDIZED MCNEMAR’S TEST 
Proposed Vs. Pavia University 

Z / significant 
Indian Pines 
Z / significant 

RO-SVM 35.58 / yes 29.36 / yes 
LC-KSVD 32.77 / yes 32.08 / yes 
ELM 18.13 / yes 17.42 / yes 



 
In the following table we show the training and testing 

times. ELM is the fastest; this was supposed to be given its 
design (closed form solution). SVM is the slowest in terms of 
training; its testing times are comparable with other dictionary 
learning based methods. It is interesting to note that even 
though LC-KSVD is a shallow method, it is slower than ours; 
this because of the requirement of solving the dictionary 
learning by the inefficient KSVD algorithm.  

  
TABLE VIII 

TRAINING AND TESTING TIMES IN SECONDS 
Technique Pavia Indian Pines 
 Training Testing Training Testing 
RO-SVM 1002 100 255 58 
LC-KSVD 119 97 107 27 
ELM 31 40 8 12 
Proposed 102 95 87 22 

 

C. Effect of Stochastic Regularization 

In this sub-section we have elaborated on the different 
dropping rates. The kappa coefficients are shown in Table IX. 
The columns of the tables should be read independently, i.e. 
the DropOut and the DropConnect have been used separately 
and not combined with each other. Since the Proposed-o 
method is better than the other approach, we show results from 
the former only.  

 
TABLE IX 

VARIATION OF KAPPA WITH DROPPING RATES 
%age of 
dropping 

Pavia Indian Pines 
DropOut DropConnect DropOut DropConnect 

0 0.82 0.82 0.73 0.73 
2.5 0.81 0.83 0.72 0.75 
5 0.78 0.84 0.70 0.77 
10 0.74 0.86 0.66 0.78 
15 0.68 0.82 0.62 0.73 

 
The results show that with DropOut, the results deteriorate 

very fast. This is the reason, we have not used it in our main 
experiments. With DropConnect, the results improve till about 
10%, but with further dropping, the result deteriorates.  

We believe that DropOut degrades performance, both our 
deterministic sparsity promoting regularization (l0-norm) and 
DropOut (random zero-ing out of features) negates each other. 
The l0-norm enforces sparsity and selects very few 
coefficients; further dropping after having a sparse output 
tends to lose information and hence deteriorates.  

DropOut prevents coadaptation of nodes. To a certain extent 
it helps barring overfitting; but when too many are dropped, 
the network lacks the capacity to model the problem. Hence 
the results deteriorate (after 10%).  

V. CONCLUSION 

In this work we propose a new technique for hyperspectral 
image classification based on the deep dictionary learning 
framework. We show that the proposed technique can yield 
good results even with extremely few training samples. 
Comparison has been carried out with state-of-the-art deep 

learning based methods published in the last year. Our method 
outperforms them all by a statistically significant margin. We 
have also carried out comparison with several traditional 
(shallow) machine learning approaches particularly tailored 
for the said problem published in the last few years; in terms 
of accuracy we excel over these as well.  

In terms of technique there are several contributions of this 
work. First, ours is the only work that can solve all the layers 
of deep dictionary learning problem in a joint fashion; instead 
of solving one layer at a time in a greedy fashion (as is done in 
prior studies), we learn all the layers jointly. Second, we 
propose a new discriminative penalty. Third, we introduce 
stochastic regularization techniques in lines with DropConnect 
and DropOut. 

Although used in this work for the purpose of hyperspectral 
image classification; the method proposed here is fundamental 
and can be applied to a variety of problems.    

ACKNOWLEDGEMENT 

This work is supported by the Infosys Center for Artificial 
Intelligence @ IIIT Delhi and by the Indo-French CEFIPRA 
grant DST-CNRS-2016-02. 

REFERENCES 
[1] Y. Chen, X. Zhao and X. Jia, "Spectral–Spatial Classification of 

Hyperspectral Data Based on Deep Belief Network," in IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, 
vol. 8, no. 6, pp. 2381-2392, June 2015. 

[2] X. Zhou, S. Li, F. Tang, K. Qin, S. Hu and S. Liu, "Deep Learning With 
Grouped Features for Spatial Spectral Classification of Hyperspectral 
Images," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 
1, pp. 97-101, Jan. 2017. 

[3] P. Zhong, Z. Gong, S. Li and C. B. Schönlieb, "Learning to Diversify 
Deep Belief Networks for Hyperspectral Image Classification," in IEEE 
Transactions on Geoscience and Remote Sensing, vol. 55, no. 6, pp. 
3516-3530, June 2017. 

[4] Y. Chen, Z. Lin, X. Zhao, G. Wang and Y. Gu, "Deep Learning-Based 
Classification of Hyperspectral Data," in IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, 
pp. 2094-2107, June 2014. 

[5] X. Ma, H. Wang and J. Geng, "Spectral–Spatial Classification of 
Hyperspectral Image Based on Deep Auto-Encoder," in IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, 
vol. 9, no. 9, pp. 4073-4085, Sept. 2016. 

[6] L. Mou, P. Ghamisi and X. X. Zhu, "Deep Recurrent Neural Networks 
for Hyperspectral Image Classification," in IEEE Transactions on 
Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3639-3655, July 
2017. 

[7] F. Zhou, R. Hang, Q. Liu and X. Yuan, “Hyperspectral image 
classification using spectral-spatial LSTMs,” Neurocomputing 
(accepted). 

[8] B. Pan, Z. Shi, N. Zhang and S. Xie, "Hyperspectral Image 
Classification Based on Nonlinear Spectral–Spatial Network," in IEEE 
Geoscience and Remote Sensing Letters, vol. 13, no. 12, pp. 1782-1786, 
Dec. 2016. 

[9] B. Pan, Z. Shi and X. Xu, "R-VCANet: A New Deep-Learning-Based 
Hyperspectral Image Classification Method," in IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, 
vol. 10, no. 5, pp. 1975-1986, May 2017 

[10] A. Romero, C. Gatta and G. Camps-Valls, "Unsupervised Deep Feature 
Extraction for Remote Sensing Image Classification," in IEEE 
Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 
1349-1362, March 2016. 

[11] G. Cheng, Z. Li, J. Han, X. Yao and L. Guo, "Exploring Hierarchical 
Convolutional Features for Hyperspectral Image Classification," in IEEE 
Transactions on Geoscience and Remote Sensing. 



[12] Y. Chen, H. Jiang, C. Li, X. Jia and P. Ghamisi, "Deep Feature 
Extraction and Classification of Hyperspectral Images Based on 
Convolutional Neural Networks," in IEEE Transactions on Geoscience 
and Remote Sensing, vol. 54, no. 10, pp. 6232-6251, Oct. 2016. 

[13] W. Li, G. Wu, F. Zhang and Q. Du, "Hyperspectral Image Classification 
Using Deep Pixel-Pair Features," in IEEE Transactions on Geoscience 
and Remote Sensing, vol. 55, no. 2, pp. 844-853, Feb. 2017. 

[14] J. Yang, Y. Q. Zhao and J. C. W. Chan, "Learning and Transferring 
Deep Joint Spectral–Spatial Features for Hyperspectral Classification," 
in IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 8, 
pp. 4729-4742, Aug. 2017. 

[15] P. Liu, H. Zhang and K. B. Eom, “Active Deep Learning for 
Classification of Hyperspectral Images”, in IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 
2, pp. 712 – 724, Feb. 2017. 

[16] V. Singhal; H. K. Aggarwal; S. Tariyal; A. Majumdar, "Discriminative 
Robust Deep Dictionary Learning for Hyperspectral Image 
Classification," in IEEE Transactions on Geoscience and Remote 
Sensing , vol.PP, no.99, pp.1-10. 

[17] I. Manjani, S. Tariyal, M. Vatsa, R. Singh and A. Majumdar, "Detecting 
Silicone Mask-Based Presentation Attack via Deep Dictionary 
Learning," in IEEE Transactions on Information Forensics and Security, 
vol. 12, no. 7, pp. 1713-1723, July 2017. 

[18] S. Singh; A. Majumdar, "Deep Sparse Coding for Non-Intrusive Load 
Monitoring," in IEEE Transactions on Smart Grid , vol.PP, no.99, pp.1-
1. 

[19] S. Tariyal, A. Majumdar, R. Singh and M. Vatsa, "Deep Dictionary 
Learning," in IEEE Access, vol. 4, no. , pp. 10096-10109, 2016. 

[20] A. Sankaran, G. Sharma, R. Singh, M. Vatsa and A. Majumdar, “Class 
Sparsity Signature based Restricted Boltzmann Machines”, Pattern 
Recognition, Vol. 61, pp. 674-685, 2017. 

[21] T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng and Y. Ma, "PCANet: A 
Simple Deep Learning Baseline for Image Classification?," in IEEE 
Transactions on Image Processing, vol. 24, no. 12, pp. 5017-5032, Dec. 
2015. 

[22] G. Trigeorgis, K. Bousmalis, S. Zafeiriou and B. W. Schuller, "A Deep 
Matrix Factorization Method for Learning Attribute Representations," in 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 
39, no. 3, pp. 417-429, March 1 2017. 

[23] Z. Li and J. Tang, "Weakly Supervised Deep Matrix Factorization for 
Social Image Understanding," in IEEE Transactions on Image 
Processing, vol. 26, no. 1, pp. 276-288, Jan. 2017. 

[24] F. Zhuang, D. Luo, X. Jin, H. Xiong, P. Luo and Q. He, "Representation 
Learning via Semi-Supervised Autoencoder for Multi-task Learning," 
2015 IEEE International Conference on Data Mining, Atlantic City, NJ, 
2015, pp. 1141-1146. 

[25] S. Gao, Y. Zhang, K. Jia, J. Lu and Y. Zhang, "Single Sample Face 
Recognition via Learning Deep Supervised Autoencoders," in IEEE 
Transactions on Information Forensics and Security, vol. 10, no. 10, pp. 
2108-2118, Oct. 2015. 

[26] S. Zhou, Q. Chen and X. Wang, "Discriminative Deep Belief Networks 
for image classification," 2010 IEEE International Conference on Image 
Processing, Hong Kong, 2010, pp. 1561-1564. 

[27] A. r. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. E. Hinton 
and M. A. Picheny, "Deep Belief Networks using discriminative features 
for phone recognition," 2011 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), Prague, 2011, pp. 
5060-5063. 

[28] A. Majumdar, R. Singh and M. Vatsa, "Face Verification via Class 
Sparsity Based Supervised Encoding," in IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1273-1280, June 1 
2017. 

[29] C. Wu and X. C. Tai, “Augmented Lagrangian method, dual methods, 
and split Bregman iteration for ROF, vectorial TV, and high order 
models,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 300-339, 
2010. 

[30] T. Goldstein and S. Osher, “The split Bregman method for L1-
regularized problems”, SIAM journal on imaging sciences, vol. 2, no. 2, 
pp. 323-343, 2009. 

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. 
Salakhutdinov, “Dropout: A simple way to prevent neural networks 
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1, 
pp. 1929-1958, 2014. 

[32] L. Wan, M. Zeiler, S. Zhang, Y. LeCun and R. Fergus, “Regularization 
of neural networks using dropconnect”, ACM International Conference 
on Machine Learning, 2013. 

[33] W. Song, S. Li, L. Fang and T. Lu, "Hyperspectral Image Classification 
With Deep Feature Fusion Network," in IEEE Transactions on 
Geoscience and Remote Sensing. 

[34] P. C. Hansen and D. P. Oleary, “The use of the L-curve in the 
regularization of discrete ill-posed problems”, SIAM Journal on 
Scientific Computing, Vol. 14 (6), pp. 1487-1503, 1993. 

[35] Z. Jiang Z. Lin and L. S. Davis "Label consistent K-SVD: Learning a 
discriminative dictionary for recognition" IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. 35 (11) pp. 2651 - 2664, 2013. 

[36] X. Zhang, Y. Liang, Y. Zheng, J. An and L. C. Jiao, "Hierarchical 
Discriminative Feature Learning for Hyperspectral Image 
Classification," IEEE Geoscience and Remote Sensing Letters, Vol. 13 
(4), pp. 594-598, 2016. 

[37] J. Xia, J. Chanussot, P. Du and X. He, "Rotation-Based Support Vector 
Machine Ensemble in Classification of Hyperspectral Data With Limited 
Training Samples," IEEE Transactions on Geoscience and Remote 
Sensing, vol. 54, no. 3, pp. 1519-1531, 2016. 

[38] M. Jiang, F. Cao and Y. Lu, "Extreme Learning Machine With 
Enhanced Composite Feature for Spectral-Spatial Hyperspectral Image 
Classification," IEEE Access, vol. 6, pp. 22645-22654, 2018. 
 


