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Abstract—In recent studies in hyperspectral imaging,
biometrics and energy analytics, the framework of dep
dictionary learning has shown promise. Deep dicticary learning
outperforms other traditional deep learning tools when training
data is limited; therefore hyperspectral imaging isone such
example that benefits from this framework. Most ofthe prior
studies were based on the unsupervised formulatiorand in all
cases, the training algorithm was greedy and hencib-optimal.
This is the first work that shows how to learn thedeep dictionary
learning problem in a joint fashion. Moreover, we popose a new
discriminative penalty to the said framework. The hird
contribution of this work is showing how to incorpaate
stochastic regularization techniques into the deeplictionary
learning framework. Experimental results on hypersgctral
image classification shows that the proposed techmie excels
over all state-of-the-art deep and shallow (traditbnal) learning
based methods published in recent times.

Index Terms—Classification, Supervised Learning,
Learning, Dictionary Learning, Hyperspectral Imaging.

Deep

I. INTRODUCTION

N the recent past, deep learning has been gaimpglarity

in hyperspectral image classification [1-14]. Alhet
standard deep learning models — Deep Belief NetWioBN)
[1-3], Stacked Autoencoder (SAE) [4, 5], Deep Resuoir
Neural Network (DRNN) [6], variants of PCA-Net [8] and
Convolutional Neural Network [9-14] have been engplbin
this context.

For successful performance, deep learning requairkesge
volume of training data. Unfortunately, this is iraptical for
hyperspectral image classification. Therefore, ®adve
modifications need to be made to the classical deaming
architectures to fit the said problem. In a receotk [15] a
novel active learning methodology has been propadsed
address the issue of limited training data.

In a recent study [16] a new deep learning todedatieep
dictionary learning (DDL) has been proposed. Theidalea
there in, is to use dictionary learning as basitding blocks
for a deeper architecture. Intuitively speaking toefficients
/ feature from one layer of dictionary learningsaas an input
to the subsequent layer leading to a deep networiuas
shown in [16] that DDL can operate within the liedttraining
data regime and yet yield a performance superiataadard
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deep learning tools like DBN, SAE and CNN.

Given the success of DDL in hyperspectral classifomn
[16] amongst other areas like biometrics [17], ggeanalytics
[18] and benchmark deep learning problems [19]pwspose
to build a new classifier based on the DDL frameuvakll
prior studies on deep dictionary learning followe treedy
training paradigm; and hence are sub-optimal. Seweh of
the layers are learnt separately, the shalloweartinfluence
the deeper ones, but not vice versa. For optinadghitrg, all
the layers should be learnt jointly. Besides, [®]-are all
unsupervised learning approaches — they can ornhaaxhe
features but require an off-the-shelf classifier r fo
classification. Only [16] is a supervised classifion
technique; albeit a suboptimal (greedy) one.

There are a few major contributions of this workr Ehe
first time we show how the deep dictionary learning
framework can be solved in a joint fashion. All lhgers are
updated jointly along with the final level of coefénts. The
second contribution of this work is in proposing naw
discriminative penalty. The third contribution d¢fig work is
to show how stochastic regularization techniquea ba
incorporated into the deep dictionary learning fearark.
This has not been attempted before.

The rest of the work will be organized into sevesgdtions.
Relevant background will be discussed in sectian The
proposed technique will be described in section The
experimental results are detailed in section I\hahy, the
conclusions of this work and future direction oearch will
be discussed in section V.

A. Deep Learning in Hyperspectral Classification

In image analysis and computer vision problems Ublkhe
most popular choice. However, CNNs are data huagdyfail
to perform in limited training data regime. Thistiee reason
why other deep learning techniques like DBN [1-8hiinue
to be popular. In [1], a basic DBN is used with isbig
regression based classification. The formulation made
supervised in [2] by using group-sparsity — a téghae
proposed in [20]. In [3], a diversifying pre-tramgj technique
is used for improving the performance of DBN baskegp
neural network.

The problem of DBN is that, it can only handle lied
variability in the inputs; they need to be betwdermand 1.
Some kind of batch normalization is required tongriall
inputs within this range. However, given that thetits (for

LITERATURE REVIEW



imaging problems) are spatially correlated, suchitary
change in input values may decimate the local tiom
information and reduce overall performance.

B. Deep Dictionary Learning

Since the concept of deep dictionary learning latirely
new, we believe that a brief introduction on thigit will help

Much like DBN, SAE’s have been used for hypers@éctr readers and make the paper self-contained. Letitesate the

image classification. The work [4] uses a standstatked
autoencoder for classification using logistic regien. In [5],

basic idea of deep dictionary learning. In (shajlaictionary
learning, one level of dictionary is used to reprggshe signal.

some extra penalties are added to the basic stackadppL, multiple layers of dictionaries are usedrépresent

autoencoder formulation in order to incorporate tertual
information.

the signal.
Formally, in dictionary learning, the training s€X) is

Unlike DBNs stacked autoencoders can handle arpitragecomposed into a dictionar) and a matrix of coefficients

input values. But the problem with SAE’s is thavegi the
same volume of data, the number of parametersetisgo
learn is twice that of DBN (equal number of encedand
decoders). Owing to this, SAEs are likely to suffem over-
fitting.

Recurrent Neural Network (RNN) and its variantshec
state network,
applicable to ordinal data, for example time sedesa. In
recent times, high impact conferences like CVPR @V
are publishing papers on image analysis and compig®n
using RNNs (and its variants). In the same spjf, used
RNN and [7] used LSTM for analyzing hyperspectnaages.

It must be noted that there is no theoretical figstion to

long short-term memory network) arep,

(2). This is represented as,

X =Dz (1)
Here the training signals are stacked as columnX;ahe
corresponding features are i@ Usually the learning is
expressed as,

min] X - DZ[f + ]2, @

The first term is for data fidelity; thg-norm imposes sparsity
on the coefficients. There are well known algorithta solve
the dictionary learning problem (2).

Dictionary learning basically factors the matrixtanthe
dictionary matrix and a coefficient matrix. In reteyears,
following the success of deep learning, severallistuhave

apply RNNs for image analysis. Such models are onjyoposed deep matrix factorization [22, 23]; hdve data is

applicable to ordered data (such as time seriésgldPare not
ordered. RNNs require arbitrary ordering in oraejustify its

decomposed into multiple layers of dictionari€s, (D2, Ds,
...) and one final layer of coefficientg)( Mathematically this

usage. This arbitrary ordering may affect the oVerais represented as follows (shown for three layers),

performance.

X = D,D,D,Z 3)

The concept of PCA-Net [21] has been proposed tBcen the problem with this formulation is that, there i®

The framework is similar to CNN. Each layer congés of a
filtering and pooling operation. But instead of golving, the
image is filtered using principal component analysthe
study [8] proposes a non-linear variant of PCA-Net.[9]
instead of using PCA, they use vertex componerlysisanto
the PCA-Net framework for hyperspectral image asialy

All the studies on CNN based analysis [10-14] fallthe
same basic framework. They only differ from eacheot in
the choice of the number of layers, size and nuntdfer
convolutional kernels and type of pooling usedmitst be

activation function between the layers; there ipoasibility
that the multiple layers of dictionaries collapséoia single
layer.

This issue is rectified in deep dictionary learnid®]; in
there an activation function is incorporated betwesach
layer. For a three layer DDL, the formulation isegi by,

X = D (D,¢(D:2)) (4)
Usually a non-linear activation function like sigis@r tanh is
used.

remembered that CNNs are data hungry, so studies inThe exact solution for DDL should have been,

hyperspectral image  classification
moadifications to suit the goal.

Owing the problem of data scarcity in deep learniag
interesting proposal has been laid in [15]. Thegppse an
active learning methodology to choose new trairsagiples
in a recursive fashion. However, active learninguiees
constant feedback from the user; this does not sedra very
practical given the scenario. It is unlikely thatick
frameworks that require constants feedbacks wilptagmatic
and popular.

It has been seen in [16] that the newly proposathéwork
of deep dictionary learning outperforms many tiadil deep
learning tools in hyperspectral image analysisotiner areas

propose

[17-19] a similar trend has been envisaged. The DD

framework excels when there is limited training adas
available.

X - D4 (D (D.2)) +4]2, ®)

However, it must be noted that none of the priodigs [16-
19] solves (5) directly. All of them solve it grelgd— one
layer at a time.

In greedy learning, for the first layer, one suibtis
Z,=¢(D,$(D,Z)). Therefore, (5) boils to the following
problem

min|X - D,Z;

D,.Z;

D,,D,,D5,Z

(6)

This is a standard matrix factorization problem.
Once the coefficients from the first layer is lgarhis input

o the second layer. Here one substituis= #(D;Z). This
leads to —

Zl = ¢( Dzzz)

Equivalently this can be expressed as,

(@)



¢_1(Zl) = DZZZ
Since the activation functions are unitary, invegtithem is
trivial. It is easy to solve (7) via matrix factoation.

min¢(2,)- 0.z, ®
For the last layer, we have,

Z,=¢(D,Z

L) ®

=¢47(2,)=D:Z

Here the same principle as before has been usewdd the
activation function and represent the last layer the
equivalent form.

Since the coefficients in the last layer are suppgda® be
sparse, one solves —

minl¢™(z,)- 0,2, +1]2,

This is the formulation used in [17-19].

This concludes the training phase. In testing, lgernt
dictionaries are used to generate the test feaflings is
expressed as,

Xest ~ D1¢ ( D2¢ ( D3 Ztest))”,z: +A ” Ztesuo

Using substitutions like before, this (11) toodadved greedily.
Building on this greedy framework, a supervisedusoh
was proposed for hyper-spectral image classifina{ib6].
After the final layer of greedy deep dictionaryrigiag, a label
consistency layer [34] was added, leading to thHewviing
formulation —
min

Lmin |x-Dg(D.8(D2))[ +4]2),+|T- M7

Here T are the target labels amd the linear classifier map
from the features (from the deepest layer) to #ngets. This
is a supervision term borrowed from [35].

However, note that [16] does not solve (12) jointBach
layer of deep dictionary learning (till the pennmitte layer) is
solved piecemeal via a standard algorithm like KS\the
final layer uses the implementation from [35].

(10)

min| (11)
Zest

(12)

The problem with the greedy training paradigm iremle
learning is that it is sub-optimal. The shallowexydrs
influence the deeper layer but not vice versa. Thite first
work that proposes to learn all the layers of ddegionary
learning in joint fashion.

Most prior studies on DDL were unsupervised. ltwiell
known in machine learning literature, and spedificen deep
learning that discriminative learning schemes indeeprove
classification performance. This has been seen bioth
autoencoders [24, 25] and deep belief networks 22§, This
motivates our work to incorporate such penaltiés the deep
learning framework.

Our proposed work is different to [16] in two majways.
First, our work optimally solves all the variablas a joint
fashion. Second, it uses a more sophisticated gispmT
penalty than label consistency.

PROPOSEDAPPROACH

A. Formulation

Our formulation stems from the basic definition of
‘discrimination’ — samples within the same clast & close
to each other and samples between classes wilab&dm
each other.

The basic structure of deep dictionary learningaies the
same as before; we would like to solve (5). Howgsirce we
are incorporating supervision / discrimination ithe features
we propose modifications on top of the basic foatioh. The
first modification we propose is to impose clasarsjty, i.e.
instead of allowing features from the same classbéo
arbitrarily sparse we impose structure. We postuthat the
features from the same class will have the sampastipi.e.
will have the same sparsity pattern. In other wporte
positions of the non-zero coefficients for featuoéshe same
class will be the same for all samples. This hagnbe
introduced into the DBN framework in [20] and ineth
autoencoder framework in [28]. This modification is
represented as follows —

[x-Dg(op(2); +1Z) .,

Here thel,g-norm is defined as the number of non-zero rows
of the matrix. This imposes row-sparsity. The sabps ‘C’
denotes the class and=[Z,]...|Z]...]. Therefore the cost
function imposes supervised class sparsity on ekass ‘c’.

This cost is supervised but does not make the restu
discriminative. Since we are not imposing distioctbetween
the classes; there is no way we can guarante¢hhdeatures
from different classes will not have the same sufppbo
impose discrimination, we need to ensure that tingpart
between features of two classes are different. iBhensured
by the second penalty.

0,102 (13)

S O
_#gc"Zk - Zc 0

Here Z, is the mean of the'kclass repeated the same number

of times as the number of samples in class c. @atiditional
term ensures that the support between two differkasises (k
and c) are as distinct as possible; since we arénmEng the
lo-distance between the classes we need the negiive

Note that this is a completely different formulatifvom the
label consistency penalty used in [16]; this nescdimination
term is a major contribution of this paper.

This concludes the formulation for training. Fostieg, the
goal is to assign a class label for the test samgleFor that,
we need to generate the corresponding feature. This
achieved by solving the same problem as in thedgrease
(11). This is repeated here for the sake of corererd.

Xest ™ D1¢( D2¢( DBZtest))"'z: +A " Ztesuo

Once the sparse feature is obtained, it is compaitdthe
training samples for class assignment. In this wdhe
assignment is done in two ways.

In the first approach, once the training is conglehe
exact training features bears no importance, onéy gparse

min|
Zest



binary support of each class is required. An examphy
clarify the concept better.

samples #1 |Binary Rep‘ samples #2 Binary Rep‘
0 0 0 0 1.1 05 09 1.2 1
0 0 0 0] 0 0 0] 0 0]
0.5 0.7 04 1 0 0 0 0 0]
0 0 0 0 0.1 06 04 05 1
03 0.2 0.2 1 0] 0] 0 0 0
0 0 0 0 02 04 04 0.2 1

Fig. 1. Left — Sparse Features from Class 1 and its birepresentation;
Right — Features from Class 1 and its binary repriadion

Consider a toy problem where the sparse featureddeses
1 and 2 are shown in Fig. 1. Class 1 has 3 sanapléslass 2
has 4. Virtually, instead of storing the featurdterathe
training phase we can just store the binary reptesien
vector for each class. Once the test feature i®gésd, we
generate its corresponding binary representatitre Binary
representation of the test data is compared wiéh kimary
representation of each sample via a binary dot ymibd
Hamming distance. In practice,

The augmented Lagrangian is formulated from (16)
incorporating the Bregman relaxation variakiie &ndB,) for
each proxy.
We form the augmented Lagrangian —
min

D,.D,.D52,24,2 X - Dlzl||i +/|Zc:"Zc"2,o _,UKZ;:"Z - Zt"0
+,7;|_||Z1 _¢( DZZZ) - BJ.”'Z: +/72|| ZZ _¢( D3Z) _ BJ|'2:

HereB; andB; are the relaxation variables.

The final problem (17) is solved by the alternatitigection
method of multipliers (ADMM) [29]; the formulatiofl7) is
segregated into the following sub-problems.

PL:min|X - D,z

¢*(2-8)- o7
mif¢*(Z'- B)- D4,

pemx-0.2[; +a2-#(0:2)- of

P2:min
D,

2-o(0.2)-8f =

P3:r93in||22 -¢(D,Z)- BZ”i =

it boils down to the

: 1 2 2 2 2
computation of thelo-norm between the features of theP5:rQ2'n’71||Z _¢(Dzz )‘ Bl"F +1,| 22~ ¢(D,2)- Bz",:

training samples and the test sample; note thalptherm is
computed directly on the features and not on thaarli
representation. This is very efficient with lineamplexity.
The test sample is assigned to the class havingnthemum
similarity / minimum distance.

There may be an issue with the aforesaid apprassdume
that (for a problem different from the aforesaig froblem),
the binary representation of class 1 is [0,0,10],0and the
binary representation of class 2 is [0,0,1,0,1Te binary
representation of the test sample is [0,0,1,1,F6}. such a
sample, the Hamming distance from both the clagsasd 2
will be the same, and we cannot assign a uniques.cla order
to resolve this issue, in the second approacheauastof
computing thelo-norm we compute thi-norm between the
features of the training and test samples; sineg #tcount
for the magnitude and not only the position, suek tan be
avoided. We assign the test sample to the clasmddkie
minimum absolute distance.

=ming,|¢*(2:~8)-D.2.[ +1.] 2 -¢(0.2)- BJ;
P6:ming, |22 -¢(D,2) - B, +/IZ||ZC||2'0—ka"_zk -7],

= minn,|¢(2* - B,)- D2 3|z, -ykgc"z - 7).

For sub-problems P2, P3, P4 and P5 the equivatent is
trivial to obtain since the non-linear activatioin€tions are
unitary and invertible — a property used by albprivorks on
DDL. All the sub-problems except P6 are easy toeasince
they are simple least squares problems with aiadgtiutions
in the form of Moore Penrose Pseudoinverse.

Sub-problem P6 is slightly more involved since ded not
have a direct solution. Although not exactly sepbrawe can
decouple the problem and solve for edgghThis leads to,

rginﬂz “¢(Zcz - Bz)_ D;Z, ,2: +/1" Zcuz,o_'u"_zk_ ZC"O (18)

by

To solve (18) we need to invoke the Split Bregman
B. Derivation technique once more. We introduce a proxy variable

For training we need to solve (14). We followingt8plit P =2, —Z . The corresponding augmented Lagrangian after
Bregman technique [29, 30]. We introduce a proxBregman relaxation is expressed as,

7' = ¢(D,¢(D,Z)). This leads to the following expression, ¢(22 _ Bz) bz 2 1zl -l A
¢ E 2,0 0
min [x =02} +a¥|z,,- k3|2~ 2, Wp-(z-2)-d

st.z! :¢(D2¢(D32)) Here C is the relaxation variable. Using ADMM once again,
Note that 2 basically corresponds to the features from thet9) can be splitinto the following two sub-promie

first level of dictionary learning. S1:mi 72-B)-D.Z2I° +A
In the second step, we introduce another proxyatsei ch'72”¢( ¢ BZ) & F " ZCHZ‘O
2
+P-(z-2)-d;

Z? =¢(D,Z). This leads to,
. 2 = . 2
oo, X -DZ +AXNZ ] - 13| 7 - 2, szminy|P-(z,-2)-d; - 4| H,
s.t.7! :¢(D G ) 72 :¢( D Z) Sub-problem S1 is a solved problem. It can be sble
- 2l ° Simultaneous Orthogonal Matching Pursuit. Sub-gobiS2

mio. ”

(15)

(16)



is not so trivial; instead of minimizing thenorm (as is done (for matrix vector products) #O(N) for thresholding. But

in all standard problems in optimization, signaqassing and aboutO(N) steps are needed for convergence. Hence the total
machine learning) here we have to maximize it. Hmwethe complexity of the thresholding sub-problems are
closed form solution readily presents itself frame fproximal approximatelyO(N). Therefore, the overall complexity of our

operator for S2. It is, training and testing algorithms a@£NF).
polb T4t c if £<|z-2+d (20) C- Stochastic Regularization
ul2y otherwise (e e

This concludes the derivation of sub-problem P6e Tihal
step is to update the Bregman relaxation variabléss is
achieved by simple gradient decent.

B - Z-¢4(D,Z)-B (21a)
B, - Z2-¢(D,Z2)- B, (21b)
C - P_( Z - Zc) -C (21c) Fig. 2.(a) Left — DropOut Regularization. (b) Right — P@onnect
This concludes the training algorithm.

For testing one needs to solve (11); repeated fogrene There are two stochastic regularization technidghes are
sake of convenience. , popular in deep learning. They are DropOut [31] and
nZ]|‘n| Xoer ~ Dl¢(D2¢(D3ZIesI))||F +,1|| Ztesuo DropConnect [32]. These regularization techniquegehbeen

o ) ) used for traditional neural networks, but never dationary
We use similar kind of proxies as  beforejganing. This is the first work that shows howlsséochastic
Z.= ¢( D¢ (D, ztest))for the first level and regularization techniques can be incorporated irepde
dictionary learning.

) _ _ ) The main idea in DropOut is to randomly drop uié®ng
augmented Lagrangian formulation after introduciti®® \yith their connections) from the network duringitiiag. This

72, =¢(D,z,) for the second. This leads to the following

Bregman proxy variables land . prevents units from co-adapting too much. Supposehave
min |Xtest_ Dlz{esl2 +A| 2, training dataX; in every iteration of DropOut some randomly
Zest: st Bt ? (22) chosen output units along with their connectionghes are set
2 2 . .
+, Z;lest_¢( D, thest)_ q"z +,72|| 2o #( D 2.)- QL to zero, as shown in Fig. 2. Here, out of threguouheutrons,

z2 (selected randomly) is dropped.

Following ADMM, (22) can be split into the follownsub-  propconnect is a generalization of DropOut. Hesegof
problems. randomly selected connections of network are seteto. It
Ti:ming, |z2,~#(D,z.) - Q||z+/l|| Zed, works similar to DropOut regularization technigquexcept

et . that, instead of dropping the whole unit, some eations are
=7, ||¢‘1(zést— bz) - D, z[est +A| zod, dropped. This makes output units partially actag shown in

Fig. 2. The dotted lines here show the dropped ections.

2

T2:n2in| Xoq = Dlziesjz +/71|| Zem (D 2] - fgﬂz Both of them are regularization techniques. Giveat tve
N ) , are interested in addressing the hyperspectral @mag
T3:minn, ;1&51—¢(Dzzfesl)— q||2+/72|| Z~#( D2z l;.ﬂz classification problem, where training data is alsva
st ) , parsimonious incorporating these into the deepidfiaty
= "Z}'(n /71||¢71(Zést‘tl)_ D, zfeSJ2+/72|| Z#( Dz~ gﬂz Ibe:r:gcncgal framework to prevent over-fitting may peov
icial.

Sub-problem T1 (in the equivalent form) is a simple
minimization problem that can be either solvedasithogonal
matching pursuit or iterative hard thresholdingb-$uoblem

T2. .an.d T3 (in_equivalent fo.rm) are simple least 2qs _iteration, once the coefficients are obtained blvisg sub-
m|n|m|z.at|0n problems Wh'ch, can be solved V'aproblems P4, P5 and P6, we randomly drop some eif th
pseduomverses._As n the traln_lng phase_, we updiate values to zeroes before they are used for updatireg
Bregman relaxation variables by simple gradientelet dictionary elements via P1, P2 and P3. The proponif the
b - Z,-¢(DZ)- b (23a)  elements to be dropped is user-defined. Howevenuist be

- _ _ 23b noted that since we impose sparsity in the outrartdomly
b, = Z=#(DZe)~ (23b) dropping the coefficients from Z may not be sersiki would
be beneficial to restrict the droppings to the rimediate
layers only.

We can incorporate DropOut type regularization, by
randomly imputing some randomly chosen elementshe
coefficients of each layer (ZZ> and Z) with zeroes. In each

This concludes the derivation of the testing altponi.

Both the training and the testing algorithms regsolving
pseudoinverses and iterative thresholding. The éaxiip of
pseudoinverse i©(N); N is the number of elements in the
matrix. The complexity (per iteration) of threshiolglis O(N?) 1 http://cs.nyu.edu/~wanli/dropc/



Similarly, we can incorporate DropConnect
regularization into the deep dictionary learningnfiework.
Here, the dictionary atoms play the role of conioect
Therefore, to drop connections, we can impute s@ndomly
chosen elements in the dictionaries to be zerodter A
updating the dictionaries via P1, P2 and P3, we icgiute
some elements (randomly chosen) in the dictionadebe
zeroes to emulate DropConnect. Here too, the ptrgerof
dropping need to be user-defined.

It must be noted that both DropConnect and Drop§ug
regularizations are only used till the pre-finarétion. In the
final iteration, the obtained values of the dictides and the
coefficients are not perturbed in any fashion.

IV. EXPERIMENTAL RESULTS

We evaluate our proposed technique on two benchmark

datasets.

e The Indian Pines dataset was collected by the Ao
Visible/Infrared Imaging Spectrometer in Northweste
Indiana, with a size of 145 x 145 pixels with at&pa
resolution of 20 m per pixel and 10-nm spectrabl#son
over the range of 400—-2500 nm. As is the usualopodt

type

Grass-pasture 50 697
Grass-trees 50 439
Grass-pasture mowed 50 918
Hay-windrowed 50 2418
Oats 50 564
Soybean-notill 50 162
Soybean-mintill 50 1244
Soybean-clean 50 330
Wheats 50 45
Woods 15 39
Buildings-glass-trees 15 11
Stone-steel-towers 15 5
Total 695 9671
TABLE Il

TRAINING AND TEST SAMPLES FORPAVIA UNIVERSITY

Class Training Samples Test Samples
Asphalt 548 6631
Meadows 540 19649
Gravel 392 2099
Trees 524 3064
Metal sheets 265 1345
Bare soll 532 5029
Bitumen 375 1330
Bricks 514 3682
Shadows 231 947
Total 3921 42776

the work uses 200 bands, after removing 20 bands
affected by atmosphere absorption. There are I&eta A. Comparison with deep techniques

the number of training and test samples is displaye
Table 1.
» This Pavia university dataset is acquired by réflecoptics

In this work we are going to compare with the lasep
learning-based techniques. The DBN based technigee
compare against is [2]; the group-sparse formulatized

system imaging spectrometer (ROSIS). The imagef is ghere-in has shown excellent results for hyperspeanage
610 x 340 pixels covering the Engineering Schodhat ¢|assification. This technique is dubbed GBN in.[Zhe
University of Pavia, which was collected under thgganchmark for deep autoencoder (DAE) is the techmiq
HySens project managed by the German Aerospaggyposed in [5]. Following [6], we compare with ithe
Agency (DLR). The ROSIS-03 sensor comprises 1lgoposed method with recurrent neural network (RKASed
spectral channels ranging from 430 to 860 nm. I8 thjmplementation. Of the PCA-Net variants, we compegainst
dataset, 12 noisy channels have been removed &d ) that uses a non-linearity and fuses the speatrd spatial

remaining 103 spectral channels are investigatethim

features in the final densely connected layer fassification.

paper. The spatial resolution is 1.3 m per pixehe T This technique [7] has been called NSS-Net. Thealfin

available training samples of this data set coveen
classes of interests. Table Il provides informatadiout
different classes and their corresponding trairdang test
samples.

For both the datasets, the experimental protodmbisowed
from [6]; it is a very challenging protocol as thamber of
training samples is extremely limited. Some deegrnimg
techniques (such as [1]) use about 90% of the fdatizaining

technique that we compare against is called degprfuCNN

(DENN) [33]. It is a very recent work and to thesbef our
knowledge yields the best possible results. We edsopare
with the Robust deep dictionary learning formulat{®&DDL)

proposed in [16]. For all the methods mentionedehave
employ the best architecture and the corresponglamgmeter
settings used in the papers.

For the proposed row sparse deep dictionary legrnin

and validation. Prior studies based on support oveCtRsppL) formulation we use a three-layer architegtu=or

machines, random decision forests, sparse repegsEnNt
based classification and dictionary learning trdiméth only

10% of the data. Here, we use even less volumeadfitig

data. But this protocol reflects the real life saém

appropriately.

TABLE |
TRAINING AND TEST SAMPLES FORINDIAN PINES

Class Training Samples Test Samples
Alfalfa 50 1384

Corn-notill 50 784

Corn-min 50 184

Corn 50 447

both the datasets the number of atoms in each getd00-
50-25. The value of the sparsity parameter used isé=0.1

and the diversity parameter is0.5. We found that for both
the parametric values, our method is fairly robuSur

algorithm also needs specification of the hyperpeaters.
Usually in split Bregman techniques these needetduned.
However, for our case, these hyper-parameters bpeeial
meanings. They imply the relative weights we giveetich
layer. Since there is no reason to favor one layar the
other, all of them have been fixed to unity. Thisrenly one
hyper-parameter we need to tune, y.@n (18). We kept its



value to be 0.1. Since we are using the Split Bmagm Evaluation is carried out by the standard measurfes

technique, the algorithm is robust to whatever eabfiy we

Average Accuracy (AA), Overall Accuracy (OA) and pfe

choose between 0.01 and 0.1. All the Bregman rétaxa (K) coefficient. The definitions for these termseagiven

variables have been initialized to unity.

We found that DropOut does not help improve theltsof
our proposed technique. Instead, even with a gpeatlentage
of dropping (say 5%) the results deteriorate. BradZonnect
regularization improves our results slightly. Thesbresults
are obtained for 10% dropping; it improves the ltssby
about 1.2 % on average. Therefore in this workgdaaot use
DropOut; we only use DropConnect with 10% dropping.

Note that all the parametric values and the usénet
dropping percentages used in this work have besedton a
third dataset, namely the Salinas dataset. We tuied
parameters using a greedy L-curve method [34]. Hbee
parametei. is first tuned (using L-curve) by fixing to Zero.
Oncel is tuned, it is fixed at that value and thefs tuned by

below.
» Average Accuracy — This measure is the averageevaeiu

the classification accuracies of all classes.

e Overall Accuracy — This index shows the number of

hyperspectral pixels that are classified corredfiyjded
by the number of test samples.

» Kappa Coefficient — This metric is a statisticalam@rement

of agreement between the final classification mag the
ground-truth map. It is the percentage agreement
corrected by the level of agreement that couldXpeeted

due to chance alone. It is generally thought talmore
robust measure than a simple percent agreement
calculation, since it takes into account the ages@m
occurring by chance

the L-curve method. These values have not beerdtanghe  The numerical results (in terms of the aforesadtices) for
Indian Pines and the Pavia University datasets. both the Indian Pines and Pavia University datasetshown
The inputs to our proposed RSDDL are spatio-spectrg Table L.

features. These have been derived in the way peopby [1,

4], i.e. a window of size 4x4 is captured and hi bands

within the window are taken. The dimensionalityaduced to

200 by principal component analysis. This is usedaut to

our proposed method.

TABLE IlI
COMPARISON WITHSTATE-OF-THE-ART DEEPLEARNING TECHNIQUES

Dataset Metric  GBN [2] DAE [5] RNN [6] NSS-Net [7] DFNN [12] RDDL [16] Proposed-0 Proposed-1
Pavia OA 86.77 88.36 88.87 89.55 88.50 88.52 90.91 89.30
AA 85.31 86.73 86.43 89.03 86.37 87.38 90.22 88.62
Kappa 0.79 0.80 0.80 0.79 0.79 0.80 0.86 0.84
Indian OA 85.42 89.02 88.59 88.82 86.34 88.76 90.76 89.14
Pines AA 86.31 85.86 85.36 86.48 85.09 85.93 88.49 87.68
Kappa 0.74 0.75 0.73 0.75 0.74 0.75 0.78 0.77

*Proposed-0l,-norm between training and test features; Propdséehorm between training and test samples

Fig. 3. Pavia University. Left to Right — Groundtru®BN, DAE, RNN, NSS-Net, DFNN, RDDL and Proposed-0.
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F|g.4. Indlan Plnes Left to nght—Groundtruth GB}AE RNN, NSS Net, DFNN RDDL and Proposed -0.

In terms of numbers, we see that both versions wf osupposed to be theoretically sounder. This may wieg to
proposed method clearly outperform others. Howetrer)o- two reasons. First, the Hamming distances [§arorm) are
norm outperforms thdi-norm; even though the later isnever tied in practice. Second, thenorm does not enforce




exact sparsity and hence obfuscate the results. computed. Our proposed method are relatively slaing to
The DAE, NSS-Net, RNN and RDDL perform almost théhe necessity of solving involved optimization pdeshs
same and is worse than ours. The GBN based foriomleg  during testing. We find that tHenorm based solution is faster
slightly worse than the aforesaid techniques. THENC compared to thdi;-norm (the reason has been explained
formulation performs at par with other existing hms. We before). The CNN based solutions are slower thanbest
tried our best to implement the CNN based techniquperforming overall techniqude{norm), but the RNN based

however with the best of our efforts we were noteato
achieve the accuracy reported in there for theamdpPines
dataset. This may be owing to the randomness idirsgehe
CNN or in selecting the training samples.

For visual evaluation we have shown the resultigns 3
and 4 for the Pavia and the Indian Pines dataspeotively.

solution is slightly faster than ours.

B. Comparison with shallow techniques

Since deep learning techniques are data hungrydanbt
perform well in limited training data scenarios, e@mpared
with traditional (shallow) machine learning techunég as well.

Since, the Proposed-0 approach is the best of war tLabel consistent KSVD (LC-KSVD) [35] was proposesl &

approaches, we show results only from it. Visualeation
corroborates the numerical results.

In order to test the statistical significance of cesults, we
have used the McNemar’s test (also carried oufl#j)[ The
results are shown in Table IV. It can be clearlgrs¢hat our
Proposed-0 method is indeed significantly betteanttihe
others.

TABLE IV
STATISTICAL SIGNIFICANCE FROM STANDARDIZED MCNEMAR'STEST

Proposed Vs. Pavia University Indian Pines
Z [ significant Z [ significant
GBN 24.33/ yes 29.12/ yes
DAE 20.19/yes 17.60/yes
RNN 20.67 / yes 21.09/yes
NSS-Net 15.70 / yes 17.61/yes
DFNN 26.71/yes 32.64/yes
RDDL 19.56 / yes 18.97 / yes

All the experiments were conducted on an Intel X&&a

1246 CPU at 3.5 GHz with 32-GB RAM using a MATLAB

platform. The training and testing times for alethforesaid
techniques are given in Table V.

TABLE V

TRAINING TIME IN SECONDS
Technique Pavia Indian Pines

Training Testing Training Testing
GBN 14443 41 4591 10
DAE 8291 43 2307 11
RNN 4095 90 1002 21
NSS-Net 1906 102 1523 28
DFNN 12409 97 8002 23
RDDL 70 68 45 16
Proposed-0 102 95 87 22
Proposed-1 102 105 87 25

Note that for training, there is no difference betw our
two proposed approaches, since it only pertaingstng. In
terms of training, one can see, RDDL is the fastd#ss is
expected because it is a greedy learning appr@achmethod
takes slightly more time but is several orders afgnitude
faster than other techniques.

For testing, we find that GBN and DAE are the fastthis
is because they only require a few matrix vectavdpcts
during testing. RSDDL is slower compared to thdmxause
one needs to solve inverse problems (albeit irosed form);

owing to the non-linearity the inverses cannot be-p ELM

generic classification algorithm based on the papul
dictionary learning framework; later it was adoptéor
hyperspectral image classification [36]. The reswere LC-
KSVD [36] were better than vanilla implementatiarfsother
machine learning algorithms, so use it as a bendhma

Another technique that is compared against is thation
based support vector machine RO-SVM [37]; this was
specifically designed to function in the limitediitring data
scenario.

The third method compared against is based onxinense
learning machine (ELM) formulation [38]. This isstate-of-
the-art technique known for its very short traintirge.

The experimental protocol remains the same. Foh edic
the aforesaid methods, we have taken the bestgroafion
specified in the papers. However, we have not Ussbn
approaches used in some of the studies as a postgsing
step to boost the accuracy.

TABLE VI
COMPARISON WITHSTATE-OF-THE-ART SHALLOW TECHNIQUES

Dataset Metric RO-SVM LC-KSVD ELM Proposed

Pavia OA 75.99 74.02 89.10 90.91

AA 85.77 73.42 89.08 90.22

Kappa 0.73 0.70 0.77 0.86

Indian OA 80.14 75.02 88.01 90.76

Pines AA 88.84 72.32 86.23 88.49

Kappa 0.81 0.70 0.75 0.78

Note that one cannot compare the results obtaieesl dnd
those reported in the previous papers for two measol. The
experimental protocols are different; and, 2. Thisreo post-
processing step used in our experiments.

The results show that of our method (wlthnorm) still
yields the best results. Results from RO-SVM andK{$/D
are much worse than ours and all the deep leatecigniques
compared against. Results from ELM are comparabita w
other deep learning techniques, but is still wdhsan ours. As
before, we perform McNemar's test to show the stiatl
significance (improvement) of our method.

TABLE VII
STATISTICAL SIGNIFICANCE FROM STANDARDIZED MCNEMAR'STEST

Proposed Vs. Pavia University Indian Pines
Z | significant Z | significant

RO-SVM 35.58/yes 29.36 / yes

LC-KSVD 32.77 | yes 32.08 / yes
18.13 / yes 17.42 |/ yes




In the following table we show the training andtiteg
times. ELM is the fastest; this was supposed tailen its
design (closed form solution). SVM is the slowestérms of
training; its testing times are comparable witheottictionary
learning based methods. It is interesting to ndtat teven
though LC-KSVD is a shallow method, it is slowearhours;
this because of the requirement of solving theiatetry
learning by the inefficient KSVD algorithm.

TABLE VIII

TRAINING AND TESTING TIMES IN SECONDS
Technique Pavia Indian Pines

Training Testing Training Testing
RO-SVM 1002 100 255 58
LC-KSVD 119 97 107 27
ELM 31 40 8 12
Proposed 102 95 87 22

C. Effect of Stochastic Regularization

In this sub-section we have elaborated on the reifte
dropping rates. The kappa coefficients are shownhaiole 1X.
The columns of the tables should be read indepéiydére.
the DropOut and the DropConnect have been usedatelya
and not combined with each other. Since the Prapose
method is better than the other approach, we skeults from
the former only.

TABLE IX

VARIATION OF KAPPA WITH DROPPINGRATES
%age of Pavia Indian Pines
dropping DropOut DropConnect  DropOut DropConnect
0 0.82 0.82 0.73 0.73
25 0.81 0.83 0.72 0.75
5 0.78 0.84 0.70 0.77
10 0.74 0.86 0.66 0.78
15 0.68 0.82 0.62 0.73

The results show that with DropOut, the resultedetate
very fast. This is the reason, we have not uséd @ur main
experiments. With DropConnect, the results impriabout
10%, but with further dropping, the result deteates.

We believe that DropOut degrades performance, bath
deterministic sparsity promoting regularizatidg-r(orm) and
DropOut (random zero-ing out of features) negaseh ether.
The lp-norm enforces sparsity and selects very fe
coefficients; further dropping after having a spamutput
tends to lose information and hence deteriorates.

DropOut prevents coadaptation of nodes. To a ceetdient
it helps barring overfitting; but when too many ah®pped,
the network lacks the capacity to model the problefence
the results deteriorate (after 10%).

V. CONCLUSION

In this work we propose a new technique for hypecsal
image classification based on the deep dictionagrning
framework. We show that the proposed technique yeaiad
good results even with extremely few training saapl
Comparison has been carried out with state-of-thedaep

by

learning based methods published in the last y@ar.method
outperforms them all by a statistically significanargin. We
have also carried out comparison with several tiatil
(shallow) machine learning approaches particuléaijored
for the said problem published in the last few gean terms
of accuracy we excel over these as well.

In terms of technique there are several contrilmstiof this
work. First, ours is the only work that can solVetlze layers
of deep dictionary learning problem in a joint fash instead
of solving one layer at a time in a greedy fash@mis done in
prior studies), we learn all the layers jointly.c8ed, we
propose a new discriminative penalty. Third, werddtice
stochastic regularization techniques in lines WitbpConnect
and DropOuit.

Although used in this work for the purpose of hygperctral
image classification; the method proposed herangdmental
and can be applied to a variety of problems.
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