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Abstract—This study proposes a novel approach based on 

indicator kriging and Dempster–Shafer (DS) theory for 

unsupervised change detection in remote sensing images (DSK). 

Indicator kriging is integrated to the standard DS theory. A 

feature set with four difference images providing complementary 

change information is initially generated. Subsequently, the mass 

functions for each difference image (DI) are determined 

automatically using fuzzy logic, the four pieces of DI evidence are 

combined by DS theory, and a preliminary change detection (CD) 

map is achieved. The preliminary CD map is then divided into 

three parts adaptively—weakly conflicting part of no change, 

weakly conflicting part of change, and strongly conflicting 

part—by calculating the evidence conflict degree for each pixel. 

Finally, the pixels in the weakly conflicting parts, which have little 

or no conflict, are labeled as the current class, and the pixels in the 

strongly conflicting part that contains misclassified pixels are 

reclassified based on indicator kriging. DSK combines the 

advantages of different DI features and solves the conflicting 

situations to a large extent. The main contributions of this work 

include 1) introducing indicator kriging into CD to manage 

conflict information during DS fusion and 2) presenting a scheme 

for producing DI set with complementary change information, 

developing a novel DSK fusion model for information fusion, and 

defining the proposed CD framework. Experimental results verify 

that the proposed DSK is robust and effective for CD. 

Index Terms—Remote sensing, unsupervised change detection, 

Dempster–Shafer theory, indicator kriging, conflict management 

I. INTRODUCTION

he changes occurring on earth surface are considerable

environmental characteristics that affect both natural 

ecosystem and human life [1]. Timely and accurate detection of 

the changes plays an important role in resource management 

and sustainable development. Remote sensing images have 
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become a major data source for change detection (CD) because 

they can be periodically acquired over the same geographical 

area. In past decades, many CD techniques have been developed 

and investigated [2], [3]. The techniques are generally partitioned 

into supervised and unsupervised groups [4]. 

This study focuses on the most widely used unsupervised CD 

approaches based on the difference image (DI). From a 

methodological point of view, DI-based unsupervised CD is 

usually achieved by three main steps: 1) preprocessing, 2) 

producing DI between two temporal images, and 3) analyzing 

the DI. Image preprocessing techniques, like image 

registration, atmospheric correction, and relative radiometric 

calibration, are implemented in the first step to make the two 

considered remotely sensed images comparable in both spatial 

and spectral domains [5]. The second step compares the two 

preprocessed images pixel by pixel to produce the DI. In this 

step, many comparison operators can be applied, including 

change vector analysis [2], image differencing [2], spectral 

angle mapper [6], and spectral gradient differencing [7].  

In the third step, the DI pixels are classified under changed or 

unchanged class, by which the CD map is obtained. The 

problem of distinguishing changed pixels from unchanged ones 

in the DI can be regarded as an image segmentation problem 

[8]. The most common method to solve this problem is 

thresholding. Many known algorithms, like the minimum–error 

thresholding algorithms based on expectation maximization [4], 

[9], the Kapur algorithm [10], and the Kittler–Illingworth 

algorithm [11], can be employed to determine the decision 

threshold. Techniques of pattern recognition, such as fuzzy 

C-means (FCM) clustering [12], [13], active contour model

[14], fuzzy topology [15], and wavelet transform [16], have

been adopted as well to distinguish between changed and

unchanged classes.

Although numerous DI-based CD methods have been 

proposed, no existing method is sufficiently universal to 

substitute for all others [17], [18]. Selecting the most 

appropriate algorithm for a given application is difficult. In 

addition, the accuracy of DI-based CD techniques is always 

affected by issues such as noise, mixed pixels, overlapping of 

classes, and limitations of comparison operators (used for 

producing DI). CD based on a single DI often cannot reach a 

satisfactory result.  

A possible method to solve these problems is to fuse multiple 

DI features yielded by different algorithms. In doing so, the 
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peculiarities of different DI-generation algorithms can be 

synergistically exploited, and, thus a more accurate CD result 

may be achieved. In remote sensing image analysis, data fusion 

provides an anticipated tactic for improving the performance 

and has been studied extensively [19], [20]. Data fusion can be 

performed at three levels of abstraction closely connected with 

the flow of data processing: raw data (i.e., pixel), feature, and 

decision level [19].  

In most DI-based CD methods, only one DI is used, although 

a few studies combine multiple DI images [16]–[18], [21]–[28]. 

These works can be broadly grouped into two levels: raw data 

and decision. The former integrates different DIs to a new 

quality image, which is used for CD afterward, and thus 

enhances the CD performance. In [21], [22], a log-ratio image 

and a mean-ratio image were fused using a wavelet transform 

combination strategy. In [23], a mean-filtered subtraction 

image and a median-filtered log-ratio image were combined by 

a weighted average fusion framework. A subtraction image and 

a ratio image were fused with multiscale wavelet kernels in 

[16]. A hybrid feature vector (HFV) was constructed using the 

spectral angle and change vector in [27] to generate DI. 

The decision-level fusion group improves CD by fusion of 

the results obtained from an ensemble of different DI images. 

Le Hegarat–Mascle et al. [18], [26] applied Dempster–Shafer 

theory (DS) to CD for multiband remotely sensed imagery and 

fused multi-index CD results. Du et al. [17] employed three 

popular decision-level fusion techniques (i.e., majority voting, 

DS, and fuzzy integral) to detect urban expansion. Du et al. [24] 

introduced a two-stage sequential fusion CD strategy, which 

integrates pan-sharpening and decision-level fusion, to fully 

exploit multi-resolution remote sensing images and various 

fusion techniques. Zhang et al. [25] explored the advantages of 

combining the results from different CD algorithms and presented 

a reliability-based fusion CD method. Cai et al. [28] proposed 

an object-oriented CD method for remotely sensed imagery 

based on adaptive multi-method combination. Liu et al. [29] 

developed a dynamic evidential reasoning (DER) fusion method 

for CD in remote sensing images. DER was later extended to a 

more general framework in [30] to deal with heterogeneous 

images. Tian et al. [31] utilized DS theory to combine different 

change indictors for building CD. Luo et al. [32] adopted DS 

theory to fuse multiple CD methods for urban CD. Liu et al. [33] 

used DS theory to develop noise filter for reducing the false 

alarms and missing detections. All the aforementioned fusion 

CD techniques have their own methodological strength, but 

their robustness and applicability need to be further investigated. 

How to design a proper fusion model to achieve more accurate 

and robust CD results remains an open problem [24].  

Following the aforementioned works, this study proposes a 

novel decision-level fusion method to unsupervised CD based 

on indicator kriging and DS theory, termed as DSK. The 

rationale of this method is to select typical comparison operators 

to produce a feature set with four DIs providing complementary 

change information first. The four DIs are then combined using 

a properly designed DSK fusion model to obtain the CD map. 

The proposed DSK CD method has three main characteristics. 

1) It combines the CD results obtained from different DI 

images. 2) It handles the conflicting situations during fusion 

with special care where the CD results disagree among the DIs. 

3) It further introduces the direction and shape change of 

spectral curves compared with the existing decision–level 

fusion CD methods, which mainly exploit the magnitude 

change of spectral values. The two main contributions of this 

study are as follows: 

1. The first introduction of indictor kriging to CD for 

dealing with conflicts during DS fusion  

2. The scheme for producing DI set with complementary 

change information, the novel DSK fusion model for 

information fusion, and the framework formulation for 

the proposed CD method 

The remainder of this paper is structured as follows. Section 

II describes the given scheme for generating DI set. Section III 

discusses the proposed DSK fusion algorithm in detail. Section 

IV introduces the datasets used and experimental settings. 

Section V presents the experimental results on three different 

real remote sensing images to illustrate the effectiveness of the 

proposed CD method. Finally, Section VI draws conclusions. 

II. GENERATING DIFFERENCE IMAGE SET 

As shown in Fig. 1, the proposed method consists of two 

principal steps: 1) generation of DI set (GDI) and 2) unsupervised 

fusion based on DSK (UFD). GDI produces four DI images by 

selecting typical comparison operators, which synchronously 

consider the magnitude, direction, and shape change between 

the two temporal images. Then, the four DI features are fused 

by the DSK algorithm to solve the CD problem. 

This section details the step of GDI. Details of the DSK 

fusion algorithm will be presented in Section III. 

DSK fusion model

Compute multiple difference images

Change detection map

DS +

Magnitude Direction Shape+ +

X1

(at time t1)

...

X2

(at time t2)

...

Indicator krigingFuzzy logic +

Difference image set

 
Fig. 1. Block scheme of the proposed DSK CD approach 

The essence in using remotely sensed imagery for CD is that 

changes in land cover will alter the spectral characteristics of 

earth surface (e.g., reflectance and radiance), which will result 
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in changes in the recorded pixel digital numbers of different 

temporal images. Different land cover types usually have their 

own peculiar spectral curves represented by typical spectral 

values and shapes [7]. For CD, the differences between 

multitemporal remote sensing images can reflect changes in 

spectral features indirectly and provide hints to changes in the 

earth surface during the observation time [17]. 

Many DI generation algorithms, like image differencing, 

image ratioing, vegetation index differencing (VID), change 

vector analysis (CVA), chi-square transformation (CST), 

principal component analysis (PCA), multivariate alteration 

detection (MAD), spectral angle mapper (SAM), spectral 

correlation mapper (SCM), and spectral gradient differencing 

(SGD), have been proposed to recognize spectral changes [2], 

[6], [7], [34]. Image differencing uses subtraction to produce DI, 

which can be performed based on single or multiple image 

bands [8], [35]. Image ratioing generates the DI by computing 

the ratio, rather than the difference, between multitemporal 

images. VID utilizes vegetation indices to identify change 

information. CVA takes the differences of temporal images in 

the multidimensional spectrum space and can deal with images 

with any number of spectral channels. PCA, CST, and MAD 

exploit data transformation to generate DI images, and the main 

advantage lies in reducing data redundancy and emphasizing 

different information in derived components [2]. SAM and 

SCM describe the differences between two multispectral 

images from the perspective of direction or angle [6]. SGD 

employs the spectral gradient for describing spectral shape 

quantitatively and spectral gradient difference to represent the 

shape change between spectral curves [7]. 

A diagrammatic representation of the taxonomy for the main 

DI generation algorithms is shown in Fig. 2. From the 

perspective of describing the difference, the algorithms can be 

divided into those based on magnitude change, direction 

change, and shape change. The existing methods mainly belong 

to the first. From a methodological point of view, the algorithms 

can be grouped into algebra and transformation types. The 

existing methods mainly belong to the former. 

Main DI 

generation algorithms

Image 

differencing

VID

PCA

CST

SAM

SCM

MagnitudeDirection Shape

Image 

ratioing

MAD

CVA

Algebra

Transformation

SGD

 
Fig. 2. Taxonomy of main DI generation methods 

Two co-registered multispectral remote sensing images X1 

and X2 of size I × J are acquired over the same ground area at 

two different times, t1 and t2. Both are composed of B (B > 1) 

spectral bands, and b

l
X  is the bth band of Xl, l =1, 2, b = 1, 2, …, 

B.  

The first step of the proposed method aims at generating a DI 

set for X1 and X2. A changed pixel may have larger change(s) in 

magnitude, direction or shape changes [7], [27]. According to 

these three changing characteristics of the pixels, seven change 

classes (Table I) may occur in images X1 and X2. If any of the 

three types of change information (magnitude, direction, and 

shape change) is ignored, some change categories will be 

missed. For instance, change category 7 cannot be correctly 

detected if the DI set ignores the shape change. Therefore, the 

desired DI set should contain all the three types of change 

information to correctly detect all the seven change classes. In 

addition, the algebra and transformation algorithms can provide 

complementary magnitude change [25] and thus are preferably 

to be both considered for computing the magnitude change. 

TABLE I  

DIFFERENT CHANGE CATEGORIES 

 
Change Categories 

1 2 3 4 5 6 7 

 With larger 

magnitude change √ √ √ × √ × × 

With larger 

 direction change √ √ × √ × √ × 

With larger  

shape change √ × √ √ × × √ 

 

Given the above analysis, a DI set with four elements is 

generated, denoted by SDI = {DI1, DI2, DI3, DI4}. DI1 and DI3 

are based on magnitude change, DI2 based on direction change, 

and DI4 based on shape change. DI1 and DI3 are computed using 

the algebra and transformation algorithms, respectively.  

DI1 is defined by the most widely used CVA (algebra) [2], 

which is essentially Euclidean distance between X2 and X1. 

  
2

1 2 1
1

B
b b

b

DI X X


    (1) 

2

bX  and 
1

bX  are the bth band of X2 and X1, respectively.  

DI2 is generated by SCM [6], which describes the difference 

between X2 and X1 from the perspective of direction. First, the 

correlation coefficient of X2 and X1, denoted by SCM(X2, X1), is 

computed as follows: 

 

   

   

2 2 1 1
1

2 1
2 2

2 2 1 1
1 1

SCM( ), 

 



  

  



 

B

b b

b

B B

b b

b b

X X X X

X X

X X X X

,  

where 
l

X  is the mean of spectral bands of image Xl (l = 1, 2). 

SCM is a centered version of spectral angle mapper (SAM) by 

the means 
2

X and 
1

X  [6]. The value of SCM(X2, X1) ranges 

between -1 and 1. SCM(X2, X1) takes the value of -1 when the 

two vectors are in perfect negative correlation and 1 when they 

are in perfect positive correlation. SCM(X2, X1) is then converted 

to the correlation distance (i.e., DI2): 

  2 2 1
1 SCM ,DI X X    (2) 
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DI3 is produced based on PCA [2]. Let CovR be the 

covariance matrix of the ratioing change vector RX = 
1 1

2 1 2 1
1 1( - , , - ) .B BX X X X  Let β1, β2, …, βH be the 

eigenvalues of CovR satisfying β1≥β2≥…≥βH≥0; H is the 

eigenvalue number. Let η1, η2, …, ηH be the standard orthogonal 

eigenvectors corresponding to the eigenvalues β1, β2, …, βH. 

Then, the hth principal component Yh for RX can be achieved by 

the following: 

 T 1 2, , 
h h

Y RX h Hη .  

T is the transpose operation. DI3 is then computed by (3), and αh 

is the variance contribution rate of the hth principal component. 

 
3

1 1 2

,
H

h

h h h
h H

DI Y 


 
  


β

β β β
  (3) 

DI4 is created with the use of SGD [7]. Let G1 = (g11, g12, … , 

g1B-1) and G2 = (g21, g22, … , g2B-1) be the spectral gradient 

vectors from X1 and X2, respectively, where 

1

1

1 2 1 2
ζ

1
ζ

, ， , , ,，
b b
l l

lb

b b

X X
g l b B






  


 , 

and 
b
ζ  is the wavelength of band b. Euclidean distance is then 

applied to G2 and G1 to generate DI4, expressed as follows: 

  
1 2

1
2

4 2 1
1

/
B

b b
b

DI g g




 
  
 
   (4) 

The obtained DIs are then normalized with their pixel values 

falling in [0, 1] to make the data sets possess the same value 

range. 

III. DSK FUSION ALGORITHM 

The proposed DSK fusion algorithm consists of three main 

steps (Fig. 3). 1) Preliminary fusion step: the four pieces of DI 

evidence are fused by fuzzy logic and DS theory to achieve a 

preliminary CD map. 2) Adaptive partition step: the preliminary 

CD map is divided into three regions adaptively by computing 

the conflict degree of evidence for each pixel: weakly conflicting 

region of no change, weakly conflicting region of change, and 

strongly conflicting region. 3) Indicator kriging step: the pixels 

in the weakly conflicting region are labeled as the current class, 

and the strongly conflicting pixel-patterns are reclassified by 

indicator kriging.  
Let wu and wc be the unchanged and changed classes. The 

three steps are detailed in the following subsections. 

A. Preliminary fusion step 

DS theory initiated from the work of Dempster on the system 

of probabilities with upper and lower bounds [36] and was later 

extended by Shafer to a general reasoning framework based on 

evidence [37]. As an important generalization of the traditional 

Bayesian theory, DS theory can handle individual as well as 

composite hypothesis.  

DS theory can model both uncertainty and imprecision 

through the definition of belief (Bel) and plausibility (Pls) 

functions, which are derived from a mass (m) function [17]. Let 

Θ be a frame of discernment and P(Θ) be the power set of Θ. 

For any hypotheses A of P(Θ), m(A) belongs to [0, 1] and 

satisfies 

  

( )

( ) = 0

( ) = 1
A P

m

m A
 

 



 ,  (5) 

where   designates the empty set and m(A) denotes the mass 

value of hypothesis A.  

 

Preliminary change 

detection map

Weakly conflicting 
region of change

Weakly conflicting 
region of no change

Final change detection 
map

 Strongly 
conflicting region

Fuse the difference images  by fuzzy 

logic and DS theory 

Difference image set

Compute the conflict 

degree of evidence

Reclassify the strongly conflicting 

pixels using indicator kriging 

 

Fig. 3. Flowchart of the proposed DSK fusion model 

Consider N evidence with mass functions m1, m2, …and 
N

m , 

respectively. The joint mass function m can be computed using 

the Dempster’s combination rule [37]:  

 
1 1

1
( )  

1( )

0

N

N

n n
A A A n

m A A
m A

A

 


 

 


 

 
  (6) 

with 

 

1 1

( )
N

N

n n
A A n

m A
 

      (7) 

  denotes the degree of conflict between the evidence, called 

the conflict coefficient.   

In our case, Θ = {wu, wc} and P(Θ) = { , wu, wc, Θ}, where 

wu denotes no change and wc denotes change. Four pieces of 

evidence are available for Θ, i.e., the four DI images generated 

in Section II. The first task is to determine a mass function for 

each DI data to fuse the evidence using DS theory.  

Generally, the boundaries of the changed and unchanged 

classes in DI are not well defined (fuzzy), and the transition 

between the two classes is smooth. The DI analysis bears 

inherent fuzziness to a certain extent. Furthermore, operations 

of assigning pixels to the changed or unchanged class are 

subjective. Intrinsic uncertainty exists in the DI analysis. Fuzzy 

clustering is an effective tool to deal with this issue because it 

can model uncertainty. The DI pixels in fuzzy logic are 

classified neither to the changed nor the unchanged class but to 

both classes with certain membership degrees.  
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Accordingly, this study analyzes the DI images by the 

concept of fuzzy logic. The most popular fuzzy clustering 

algorithm FCM is employed to compute the membership 

functions for each DI. The mass functions of the four pieces of 

DI evidence are then determined automatically based on the 

computed FCM membership functions. The details of FCM can 

be referenced in [38].  

Let = [ ( ), ( )]i i

n n u n c
U u w u w  be the membership functions 

(fuzzy partition matrix) provided by FCM based on the DIn, n = 

1, 2, 3, 4, and ( )i

n
u k  is the membership grade of pixel pi to class 

k obtained from DIn, meeting the following constraints: 

 
 0 ( ) 1, 

( ) + ( ) = 1

,i

n

i i

n c

c

u

u

n

u k

u w u

k w

w

w   



  (8) 

The mass function mn for evidence DIn is derived from Un. 

Given a pixel pi, its mass values for the two simple hypotheses 

wu and wc can be defined using its membership degrees ( )i

n
u k : 

  ( ) = ( ) ,
un c

i i

n
m k u k wk w   (9) 

where ( )i

n
m k  denotes the mass value of pixel pi for hypothesis k 

according to DIn. Let ( ) i

n
m denote the mass value of pixel pi 

for the universal set Θ according to DIn.  

Next, we present the method of defining ( ). i

n
m  In general, 

the mass assigned to the universal set Θ is used to describe the 

imprecision of evidence. For a given pixel pi, its membership 

degree set = { ( ), ( )}i i i

n n u n c
π u w u w  (n = 1, 2, 3, 4) is a fuzzy set. 

The fuzziness of 
i

n
π  can reflect the imprecision in the 

classification result of pixel pi obtained from DIn to a certain 

extent. Thus, we employ the fuzziness of 
i

n
π  (denoted as 

i

n
E ) 

to define ( ) :i

n
m   

 ( ) i i

n n
m E    (10) 

The information entropy [39] which is widely used to measure 

the fuzziness of fuzzy set is applied to compute 
i

n
E : 

 
-[ ( )ln( ( )) + ( )ln( ( ))]

ln2
=

i i i i

i n u n u n c n c

n

u w u w u w u w
E   (11) 

where ln is the natural logarithm operator, and ln2 is a 

normalization factor to make 
i

n
E  fall in [0, 1] .  

A scale factor Sca is introduced into (9) and (10) to further 

improve the mass assignment strategy and control the maximum 

value of ( ) i

n
m , expressed as follows: 

 
( ) ( ) { }

( ) ( )

, ,

1-

i i
n n u c

i i
n n

m k u k Sca k w w

m E Sca

  


  

  (12) 

The scale factor Sca is empirically set to 0.7. Finally, the mn 

function (n = 1, 2, 3, 4) is such normalized that ( ) 0i

n
m    

and ( ) 1
( )

i

nk P
m k

 
 . 

If the reliabilities of the four DI evidence are known, the 

discounting operation [37] can be applied to the computed mass 

functions for better fusion performance. Unfortunately, testing 

samples are unavailable for the considered unsupervised CD 

problem, thus it is difficult to accurately evaluate the reliabilities 

of the DI evidence. Given that all the four DI-generation 

methods have been proved effective, in this study we combine 

the mass functions with equal weights.  

The joint mass function m is computed with the combination 

rule (6). The joint Bel and Pls functions are then derived from 

the joint mass function m. A preliminary CD map can be 

obtained according to the maximum belief procedure. The label 

Li for a given pixel pi is assigned as follows:  

 
if ( ) ( )

if ( ) ( )

i i

u u c

i i i

c u c

w Bel w Bel w
L

w Bel w Bel w

 
 



  (13) 

where ( )i

u
Bel w and ( )i

c
Bel w  denote the joint belief values for 

pi on the unchanged and changed classes, respectively.  

 

B. Adaptive partition step 

DS theory can integrate multi-source information effectively. 

However, when the evidence to be fused has strong conflict, the 

DS theory may result in questionable decisions [20]. Thus, many 

pixels in the strong conflict region are often misclassified in the 

preliminary CD map yielded by DS. The preliminary CD result 

must be further processed to solve this problem. First, the conflict 

degree between evidence for each pixel is computed and the pixel 

patterns with strong conflicts (called strongly conflicting pixels) 

are recognized. The recognized patterns are then reclassified 

using indicator kriging.  

Many measurements have been developed to characterize the 

conflict of evidence, like the conflict coefficient, J distance dJ 

[40], cosine based distance cosd [41], and dissimilarity measure 

DismP [42]. Although the conflict coefficient is not suitable to 

measure conflicts in some cases [42], [43] and may lead to DSK 

getting some weak or no conflict pixel patterns, DSK can be 

tolerant of such an issue to a certain extent thanks to the effective 

reclassification step. Moreover, the conflict coefficient indicates 

uncommitted belief [44] and has advantages of finding the 

pixels whose mass functions have close (or same) beliefs in wc 

and wu. Such pixels are likely to be misclassified due to the 

similar confidences in wc and wu, although they may have weak 

or no conflicts. Consider two pixels A and B: 

A: m1(wu) = 0.5, m1(wc) = 0.5; m2(wu) = 0.5, m2(wc)=0.5. 

B: m1(wu) = 0.51, m1(wc) = 0.49; m2(wu)=0.51, m2(wc)=0.49. 

Then,  

A(m1, m2) = 0.5 B(m1, m2) = 0.4998.  

dJA(m1, m2) = dJB(m1, m2) = 0.  

cosd
A(m1, m2) = cosd

B(m1, m2) = 0.  

DismPA(m1, m2) = DismPB(m1, m2) = 0.  
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The pixels A and B are easily to be misclassified because 

their mass functions have similar confidences in wc and wu. The 

conflict coefficient is more effective in recognizing such easily 

misclassified pixels compared with the other three conflict 

measures.  

Given the above analysis, in this study the conflict coefficient 

is employed to measure the conflicts of DI evidence. Following 

previous studies (e.g. [45]), the conflict among the four pieces of 

DI evidence is calculated by the average of conflicts between 

two pieces of evidence. Let  i

gh
 denote the conflict degree 

between the two pieces of evidence DIg and DIh on pixel pi. It is 

calculated by the following equation:  

 = ( ) ( ) + ( ) ( )i i i i i
gh g u h c g c h u

m w m w m w m w     (14) 

where g h = 1, 2, 3, 4 and g h . Equation (14) is the simplified 

version of (7) for the evidence number is equivalent to 2 and Θ 

= {wu, wc}. The total conflict degree  i  between the four 

pieces of evidence on pixel pi is evaluated by  

 
3 4

1 1

1

6
i i

gh
g h g+ 

      (15) 

The larger the  i  is, the more the four pieces of evidence are 

conflicting on the pixel pi. Based on this property, an adaptive 

thresholding technique is presented to recognize the strongly 

conflicting pixels.  

Let DSu and DSc denote the sets of unchanged and changed 

pixels in the preliminary CD map obtained by DS. Let  k
DS  be 

the set made up of the total evidence conflict degrees  i  on the 

pixels in DSk. That is { | }k
DS i

i k
p DS    and k∈{u, c}. 

Let k
DS

Con  be the set composed of the strongly conflicting 

pixels in DSk.  

A reasonable strategy for determining the k
DS

Con  set is to 

relate it to the statistical features of .k
DS  Mean and standard 

deviation are two commonly used statistical parameters that can 

greatly represent a dataset [8]. The  k
DS  mean (denoted as 

( )k
DSM  ) and standard deviation (denoted as ( )k

DSStd  ) are 

therefore adopted to define the k
DS

Con  set, expressed as 

follows: 

  ( ) ( )| ，k k kDS DS DSi
i k k

Con p DS M T Std         (16) 

where Tk is a constant, k∈{u, c}. The greater the Tk-value is, 

the fewer elements the set k
DSCon  has.  

Each class DSk in the preliminary CD map is partitioned into 

two parts by (16): strongly conflicting part k
DS

Con  and weakly 

conflicting part ，k k
DS DS

k
Non DS Con   k∈{u, c}. As a 

result, the preliminary CD map is split into three regions: weakly 

conflicting region of no change ,u
DS

Non  weakly conflicting 

region of change ,c
DS

Non  and strongly conflicting region 

.u c
DS DS

Con Con  

C. Indicator kriging step 

The dividing process demonstrates that the pixel patterns in 

u
DSNon and c

DSNon  regions have little or no conflict. The DS 

theory works well on such patterns, so their preliminary CD 

results yielded by DS are taken as the final CD results: The 

pixels in u
DS

Non  region are finally labeled as the unchanged 

class, and the ones in c
DSNon  region as the changed class. As 

for the strongly conflicting pixels in u c
DS DS

Con Con  region, 

DS theory often produces problematic results, so these patterns 

must be reclassified. This study particularly utilizes the 

indicator kriging to accomplish this task.  

Kriging is an interpolation technique to estimate the values of 

unknown points with observed data, which has been successfully 

applied in many application areas.  

Let Z(x) be a second-order stationary random field with Q 

observed values {Z(x1), Z(x2)…，Z(xQ)}, where xi  represents the 

spatial locations, i = 1, 2, …, Q. Then a kriging estimator Z *(x0) 

of the unknown value Z(x0) can be produced through a linear 

combination of the observed values: 

 
0

1

( ) ( )
Q

i i
i

Z x Z x



   (17) 

where λi is the kriging weight denoting the contribution degree 

of Z(xi) on Z *(x0), i = 1, 2, …, Q. The kriging weights {λi} can be 

determined by solving the kriging system [46].  

Ordinary kriging provides an “optimum” estimator of Z(x0) 

and estimate error [47]. In our reclassification problem, 

however, a model providing the probability that a pixel belongs 

to the unchanged or changed class is more useful than a model 

giving an estimated value at an unknown location. Indicator 

kriging, which uses the indicator variables Ik(x) of a random 

field Z(x) instead of Z(x) itself, provides this capability [48].  

We then use indicator kriging to reclassify the strongly 

conflicting pixels. The main idea is to exploit the class labels of 

the labeled neighborhood pixels in a window to compute the 

probabilities that the central pixel (of the window) belongs to 

the unchanged and changed classes. The window is termed as 

kriging window. 

Let Ni be a neighborhood of pixel pi. Ni is called a kriging 

window if it meets the following conditions: 1) pi does not belong 

to Ni; and 2) pi is the center of Ni. Fig. 4 shows an example of a 

5×5 kriging window: wu indicates that the corresponding pixel 

has been labeled as the unchanged class, wc represents the 

corresponding pixel labeled as the changed class, and “none” 

means that the corresponding pixel is a strongly conflicting 

pattern that needs to be reclassified.  

 

Fig. 4. Example of a 5×5 kriging window 
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Let 
0i

p  be a given strongly conflicting pixel. An indicator 

variable related to the unchanged class wu, Iu(∙), is defined to 

compute the probability that pixel 
0i

p belongs to wu. Indicator 

values for the pixels labeled as wu and wc are set to 1 and 0, 

respectively. For unlabeled pixels (i.e., the strongly conflicting 

pixels), which have equal chances to be unchanged and changed, 

their indicator values are set to ½. 

 

1 if pixel

( ) 0 if pixel

1 2 if pixel  is unlabeled

=

i u

u i c

i

p w

I i p w

p

 






  (18) 

The probability that pixel 
0i

p  belongs to the unchanged class 

wu (denoted as Pu(i0)) is estimated as follows [48]: 

 
0

0

0
( ) ( ) ( )

i i

Iu

u i u i u
p N

P i = P p w I i


     (19) 

where 
0i

N is a kriging window of 
0i

p , and uI

i
  denote the 

kriging weights of the pixels in 
0i

N . The weights { uI

i
 } can be 

computed by solving the kriging equation of the indicator 

variable Iu(∙):  

 

   
0

0

0

0

1

,
- -

u

j i

uu u

j i

I

j
p N

i iII I

i j j i i
p N

p N
C p p C p p









 



 






 (20) 

where  is a Lagrange multiplier, ( )-u
I

i j
C p p  represents the 

spatial covariance function of the indicator random field Iu(∙), 

and pi – pj denotes the spatial distance between the pixels pi and 

pj. 

Negative kriging weights obtained by solving (20) may 

create negative probabilities in (19). A simple and useful 

scheme is presented to adjust the weights yielded by (20) to 

avoid such a situation. First, each weight is checked to find the 

negative weights. The negative ones are then set to 0. Finally, 

the positive ones are renormalized so that the sum of the 

weights is equivalent to 1.  

The probability that the pixel 
0i

p  belongs to the changed class 

wc (denoted as Pc(i0)) can be computed through the same way, 

in which an indicator variable related to wc, Ic(∙) is defined, and 

its spatial covariance function ( )-c
I

i j
C p p  is computed. 

The Chebyshev distance is selected to measure the location 

differences between pixels to reduce the complexity of 

computing the spatial covariance function. In addition, the 

indicator variable Ik(∙) (k = u or c) is assumed isotropic, and an 

experimental covariance function ( )-k
I

i j
C p p that considers 

eight directions is calculated for each Ik(∙). The eight directions 

are east, south, west, north, southeast, northeast, southwest, and 

northwest.  

If the size and shape of 
0i

N do not change, then (20) is 

independent of pixel 
0i

p . Equation (20) only needs to be solved 

once for the unchanged class wu, and the same coefficients { uI

i
 } 

are used to compute the probabilities Pu(i0) for all the strongly 

conflicting pixels 
0i

p . This also holds for the changed class. 

Two main factors must be considered to determine the kriging 

window size: Its radius R should be 1) smaller than the 

correlation “range” of Ik(∙) and 2) large enough to provide 

sufficient labeled pixel patterns. When 
0i

p  is located near the 

image bounder, 
0i

N  may extend beyond the bounder of the 

image; to avoid recalculating the kriging equation for a 

modified 
0i

N , as done in [47], we assign Iu(i) = Ic(i) = 0.5 for 

the pixels pi in the unmodified 
0i

N that locate outside the image. 

After the probabilities Pu(i0) and Pc(i0) having been estimated 

for all strongly conflicting pixels 
0i

p , the maximum probability 

rule is used to reclassify them. The label 
0i

L for a given strongly 

conflicting pixel 
0i

p  is assigned as follows:  

 
0

0 0

0 0

if ( ) ( )

if ( ) ( )

 
 



u u c

i

c u c

w P i P i
L

w P i P i
 (21) 

IV. DATASET DESCRIPTION AND EXPERIMENTAL SETTINGS  

A. Datasets 

Three real multispectral remotely sensed images referring to 

different kinds of changes are used in the experiments to assess 

the effectiveness of the proposed method. Image preprocessing 

techniques like radiometric correction, geometric correction, 

and co-registration have been carried out on the three datasets 

considered before applying the DSK method. The reference 

maps (ground truth) are produced manually according to a 

meticulous visual interpretation of the two original images with 

the help of ENVI.  

The first dataset is the Neimeng dataset, which is made up of 

two multispectral images acquired by Landsat-5 Thematic 

Mapper (TM) on August 22, 2006 (t1) and June 17, 2011 (t2) on 

the border of Neimeng and Heilongjiang Provinces, China. An 

area with 1200×1350 pixels was cropped from the entire 

available Landsat scene as the test site. Parts of the forest in the 

considered area were destroyed by a wildfire between the two 

acquired times. Bands 1–5, and 7 were used for CD. The images 

of 2006 and 2011 are shown in Figs. 5(a) and (b), and their 

reference image is shown in Fig. 5(c). Black denotes the 

unchanged pixels, whereas white denotes the changed pixels.  

The second dataset is the Liaoning dataset, which consists of 

two images taken by the Landsat-7 Enhanced Thematic Mapper 

Plus (ETM+) sensor on August 11, 2001 (t1) and August 14, 

2002 (t2) in Liaoning Province, China. The area selected for the 

experiment is a section with 1100×1500 pixels. The changes 

occurred mainly because of the new crop planting. Bands 1– 4 

were used for CD. Figs. 6(a)–(c) show the images of 2001 and 
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2002 and their reference map, respectively.  

The third dataset, the Hunan dataset, comprises two Landsat-8 

Operational Land Imager (OLI) images with an area of 3000 

×1600 pixels acquired on September 17, 2013 (t1) and July 23, 

2016 (t2) in Hunan Province, China. There are roughly four 

land cover categories in these images (Figs. 7(a) and (b)): water, 

farmland, building and bare soil, and woodland. The area 

contains multiple types of change, which were mainly caused 

by the persistent rain, new crop planting, and urban construction. 

Bands 1-7 were used for CD. 

 
Fig. 5. (a) Landsat-5 TM image of 2006 (RGB (3, 2, 1)), (b) Landsat-5 TM 

image of 2011 (RGB (3, 2, 1)), and (c) reference map  

 
Fig. 6. (a) Landsat-7 ETM+ image of 2001 (RGB (3, 2, 1)), (b) Landsat-7 ETM+ 

image of 2002 (RGB (3, 2, 1)), and (c) reference map 

 

Fig. 7. (a) Landsat-8 OLI image of 2013 (RGB (7, 5, 4)), (b) Landsat-8 OLI 

image of 2016 (RGB (7, 5, 4)), and (c) reference map 

For the third dataset, its larger size and diversity in change 

aggravate the difficulties in the CD process, and also make it 

difficult to generate reference map for the whole area. Following 

[17], sampling technique is used for performance evaluation of 

Hunan data. To this end, eight image blocks of size 400×400 

pixels were selected based on stratified sampling. The blocks 

include all the kinds of change and have a balanced space 

distribution. Fig. 7(c) shows the reference images of the eight 

selected areas.  

B. Experiment setup and evaluation criteria 

The parameter tests and compared experiments are conducted 

based on the three considered multispectral remotely sensed 

datasets to verify the effectiveness of the proposed DSK CD 

technique.  

In the DSK model, two constants, Tu and Tc, determine the 

thresholds used to recognize the pixels with strong conflicts. 

The radius R of kriging window determines the window size. 

Before the compared experiments, how these parameters’ values 

influence the DSK CD results is tested. The test also provides 

the reasonable parameter values (or ranges) through which 

better results can be obtained.  

The proposed CD method is compared with 1) the ensemble 

of single-DI detectors based on DI1 (CVA), DI2 (SCM), DI3 

(PCA), and DI4 (SGD) used to produce the input of DSK, and 

2) some similar fusion-based approaches: the data-level fusion 

method based on a hybrid feature vector (HFV), combining 

SAM and CVA [27], the well-known decision-level fusion 

techniques DS theory and majority voting rule (MV) [17], as 

well as the adaptive object-oriented multi-method combination 

technique (OMC) [28]; and 3) three non-fusion based 

approaches: the reformulated fuzzy local information C-means 

(RFLICM) clustering, which is a state-of-the-art fuzzy clustering 

CD method [22], the FCM clustering incorporating both local 

and global information (FLGICM) [49], and the trial-and-error 

(TAE) thresholding (termed as Optimal-T), in which the optimal 

performance of thresholding is obtained by applying a manual 

TAE procedure to the reference image of changes. The aim of 

using Optimal-T as a comparison algorithm is to compare our 

method with the state-of-the-art thresholding algorithm, such as 

the method in [35]. 

The CD results of the four single-DI methods (i.e., DI1, DI2, 

DI3, and DI4) are yielded by applying FCM to the DI images 

separately. In HFV method, after generating the hybrid DI, the 

changes are detected also by FCM. The RFLICM, FLGICM, 

and Optimal-T are performed based on DI1, which is defined by 

the most widely used CVA. The weighting exponent of FCM, 

RFLICM, and FLGICM used to control fuzziness degree of 

membership is set to 2. The other parameters in the comparative 

algorithms are experimentally explored, and only the best CD 

results are presented for performance evaluation. In addition, 

the challenging Hunan data set is taken as an example to analyze 

the enhancing process of DSK. The impact of image size on 

different algorithms is analyzed by comparing the CD results 

from the entire areas and sub-areas in the red rectangles (Figs. 

5–7) of the three datasets. 

The CD results are analyzed from both visual (qualitative) 

and quantitative aspects. In the visual analysis, the binary CD 

map of each method is compared with the binary reference 

image. Four accuracy indices are then calculated for each CD 

map to provide the quantitative assessment: 1) missed detections 

(MD), the number of changed pixels wrongly classified as 

unchanged ones; 2) false alarms (FA), the number of unchanged 

pixels wrongly classified as changed ones; 3) overall error (OE), 

the sum of MD and FA; and 4) Kappa coefficient (KC) [12], 

[50]. The last two accuracy indices are overall evaluation 

criteria. KC is reported to be more cogent than OE because more 

detailed classification information is involved [13]. In addition, 

the time consumed in the whole process is recorded to compare 

the computational complexity of different algorithms. The time 

unit is the second.  
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V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Test of parameters 

This section tests the parameters Tu, Tc, and R to analyze their 

effect on the DSK CD results and find the appropriate ranges for 

which relatively high detecting accuracy can be achieved. Tu 

and Tc are two important parameters of DSK used to recognize 

strongly conflicting pixels. We set Tk (k = u and c) to {0.5, 1, 1.5, 

2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8} for testing them. The 

cogent and reliable KC is employed to evaluate the CD results 

of DSK. Figs. 8(a)–(c) show the relationship between the 

criterion KC and the parameters Tu and Tc for the three datasets 

for constant R (taking R = 3). Only part of the testing values is 

given to show the relationship clearly.  

The KC values for the three datasets follow the same 

tendency with Tu and Tc varying. When the parameter Tu is 

fixed, the value of KC increases with the Tc-value. On the 

contrary, when the parameter Tc is fixed, the value of KC 

decreases as the Tu-value increases. The KC values are stable 

and best when Tu∈ [0.5, 1.5] and Tc∈ [6, 8]. That is, we can 

select any value pair (Tu, Tc) in the region ([0.5, 1.5], [6, 8]) for 

a reasonable DSK performance for all the three datasets.  

The radius R of the kriging window exerts an effect on the 

final DSK CD result. We set R to 1, 2, 3, 4, and 5 to reveal the 

relationship between the criterion KC and the parameter R. Fig. 

8(d) plots KC against R for the three datasets for constant Tk 

(taking Tu = 0.5 and Tc = 6). When R changes from 1 to 3, the 

KC value slowly increases, whereas when R is from 3 to 5, the 

KC value slightly decreases. The DSK CD results are stable 

under different R values in the range [1, 5] for all the three 

datasets used. The stability of KC under various R values shows 

that DSK is robust for R. 

 
Fig. 8. Relationships between KC and parameters Tu and Tc for (a) Neimeng, (b) 

Liaoning, and (c) Hunan datasets and (d) relationships between KC and radius 

R for three datasets  

The results with the optimum Tu-, Tc- and R values are given in 

subsequent compared experiments for performance assessment. 

Table II lists the Tu, Tc, and R values used in experiments.  

TABLE II  

VALUES OF THE PARAMETERS USED FOR THE THREE DATASETS 

Datasets Neimeng Liaoning Hunan 

Parameter 
values 

Tu = 1, Tc = 6, and 
R = 3 

Tu = 0.5, Tc = 6, 
and R = 3 

Tu = 0.5, Tc = 6, 
and R = 3 

B. Results on the Neimeng dataset 

We exhibit the experimental results in two ways: the CD 

maps in figure format and quantitative indices in tabular format. 

Fig. 9 shows the CD maps obtained from the Neimeng dataset: 

(a)–(d) are generated by FCM based on DI1 (CVA), DI2 (SCM), 

DI3 (PCA), and DI4 (SGD), respectively; (e)–(l) are generated 

by Optimal-T, RFLICM [22], FLGICM [49], MV [17], DS, 

HFV [27], OMC [28], and the proposed DSK method. White 

denotes the changed pixels correctly detected, yellow denotes 

the false alarms, black denotes the unchanged pixels correctly 

detected, and red denotes the missed detections. Table III 

displays the behavior of the four quantitative indices achieved 

by different algorithms, where the results of the proposed DSK 

are written in bold.  

 
Fig.9. Final CD maps obtained by different methods on Neimeng dataset 

As shown in Figs. 9(a)–(d), all the four single-DI detectors 

can detect most of change information of the Neimeng dataset 

and they produce different but complementary CD maps. The 

maps yielded from DI1 and DI4 include many yellow scattered 

noise spots but small red areas (missed detections), whereas the 

CD map from DI2 has few yellow false alarms but large red 

missed detection errors (Table III). This observation shows that 

it is possible to enhance the performance of individual detectors 

by using fusion strategies, thereby verifying the rationality of 
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the proposed scheme for generating DI set. The map of DI2 is 

the best amongst four single-DI methods for the Neimeng data 

set.  

For the other algorithms, Optimal-T, RFLICM, FLGICM, 

MV, HFV, and OMC produce better change maps than DI1, but 

many false alarms are also detected in their change maps (Figs. 

9(e)–(h), (j), and (k)). DS yields similar CD results to DI2 and 

better ones than the other comparative methods applied in this 

work (Table III). The map obtained by DS contains fewer noise 

spots than those from DI1, DI4, Optimal-T, RFLICM, FLGICM, 

MV, HFV, and OMC, and the missed detection problem is 

partly solved compared with DI2 and DI3 (Figs. 9(a)–(k) and 

Table III). However, the CD map of DS is not satisfactory 

enough compared with reference map. Some missed detections 

and apparent scattered noise spots still exist. The major reason 

is that though DS works well on weak or no conflict patterns, it 

often produces problematic fusion results for the patterns with 

strong conflicts of evidence.  

TABLE III 

QUANTITATIVE ANALYSIS INDICES FOR CD RESULTS ON NEIMENG DATASET 

Methods MD FA OE KC 

DI1 3400 87835 91235 0.6037 

DI2 12280 1174 13454 0.9067 

DI3 11534 7989 19523 0.8708 

DI4 5521 12956 18477 0.8852 

Optimal-T 13994 19215 33209 0.7911 

RFLICM 4356 53102 57458 0.7099 

FLGICM 4000 28412 32412 0.8161 

MV 5703 16354 22057 0.8654 

DS 6384 8447 14831 0.9049 

HFV 4594 31556 36150 0.7975 

OMC 6276 12798 19074 0.8809 

DSK 3362 2528 5890 0.9616 

 

By introducing indicator kriging into DS fusion, the proposed 

DSK first recognizes the strongly conflicting pixels and then 

uses the spatial covariance of data to reclassify them. DSK 

notably improves the DS performance and generates the most 

accurate CD map (Fig. 9(l)): it removes almost all scattered 

yellow noise spots in the CD map of DS. Also, the red missed 

detection area is reduced significantly in the DSK map. 

The superiority of the proposed DSK can also be seen from 

the quantitative analysis indices (Table III). DSK achieves the 

smallest overall error and the highest Kappa coefficient. The 

Kappa coefficient value resulted from DSK, 0.9616, has gains 

between 5.49% and 35.79% compared with all alternative 

methods.  

 

C. Results on the Liaoning dataset 

The change maps generated by different methods on Liaoning 

dataset are shown in Figs. 10: (a)–(d) are obtained by FCM 

based on the four DI images; (e)–(l) are obtained by Optimal-T, 

RFLICM, FLGICM, MV, DS, HFV, OMC, and the proposed 

DSK. Table IV summarizes the four accuracy indices for each 

CD map. 

As seen from Fig. 10 and Table IV, the CD results for the 

second test dataset are similar to the ones for the Neimeng 

dataset. The CD maps generated from individual DI images 

(Figs. 10(a)–(d)) are varied but complementary, which provides 

the potentials of increasing the CD accuracy of single detectors. 

The change maps from DI1 and DI4 have many yellow noise 

spots but small missed detection errors (Figs. 10(a) and (d)), 

whereas the maps of DI2 and DI3 contain large missed detection 

(red) areas but few yellow false alarms (Figs. 10(b) and (c)).  

The CD map from DI4 shows the best performance among the 

four single-DI methods. For the other seven non-fusion-based 

and fusion-based algorithms, RFLICM and OMC produce 

worse CD results, whereas FLGICM, MV, DS, and HFV yield 

better CD results than those obtained from DI4 (Figs. 10(f)–(k) 

and Table IV). However, the maps of FLGICM, MV, and HFV 

still have many false alarms and the DS map has large red 

missed detections. 

 

Fig. 10. Final CD maps obtained by different methods on Liaoning dataset 

TABLE IV 

QUANTITATIVE ANALYSIS INDICES FOR CD RESULTS ON LIAONING DATASET 

Methods MD FA OE KC 

DI1 21151 60038 81189 0.7876 

DI2 66165 2765 68930 0.7740 

DI3 68740 7276 76016 0.7519 

DI4 24625 40854 65479 0.8207 

Optimal-T 33833 29844 63677 0.8180 

RFLICM 23104 47023 70127 0.8109 

FLGICM 24396 34886 59282 0.8357 

MV 23453 34087 57540 0.8406 

DS 39430 8693 48123 0.8540 

HFV 22228 38563 60791 0.8336 

OMC 46595 22654 69249 0.7932 
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DSK 22679 9760 32439 0.9055 

 

Again, the proposed DSK method outperforms the benchmark 

methods used in this study and obtains a CD map closest to the 

reference image (Fig. 10(l)). With respect to the quantitative 

analysis, DSK demonstrates the lowest overall error and the 

highest Kappa coefficient. For instance, its overall error is 

32439 pixels, which is reduced by at least 15500 pixels 

compared with the eleven alternative methods. 

D. Results on the Hunan dataset 

The third experiment is conducted on the Hunan dataset. Fig. 

11 displays the CD maps produced by different methods as well 

as the spatial distribution of the strongly conflicting pixels 

recognized in DSK. Due to the larger size of Hunan data, the 

detailed information of CD maps cannot be clearly exhibited in 

one page. To ease the visual analysis, three typical image 

blocks are selected for visual comparison. Fig. 12 shows the 

false color composite images of the three image blocks and their 

CD maps. Table V reports the quantitative results for the twelve 

methods computed based on all eight image blocks (Fig 11(n)).  

  

 
Fig. 11. Final CD maps obtained by different methods on Hunan dataset and 
spatial distribution of strongly conflicting pixels recognized in DSK  
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Fig. 12. Image blocks A, B, and F and their CD maps obtained from different 

methods: (a) DI1, (b) DI2, (c) DI3, (d) DI4, (e) Optimal-T, (f) RFLICM, (g) 

FLGICM, (h) MV, (i) DS, (j) HFV, (k), OMC, and (l) the proposed DSK 

With reference to Figs. 12(a)–(d), the four single-DI detectors 

provide complementary change maps; the CD maps obtained 

from DI1 and DI4 contain small missed detections but a number 

of yellow false alarms, whereas the maps of DI2 and DI3 have a 

little yellow area but large red area. This fact shows the 

necessity to perform fusion strategy.  

As shown in Table V, except RFLICM and FLGICM, the 

other comparison algorithms produce better CD results than the 

four single-DI detectors. However, many yellow false alarms 

are still resulted from Optimal-T, MV, HFV, and OMC (Figs. 

12(e), (h), (j) and (k)), and large red missed detection area 

remains in DS result (Fig. 12(i)). For this challenging data set, 

the proposed DSK approach also yields the most accurate CD 

map (Fig. 12(l)).  

For the quantitative analysis, DSK has significantly better 

performance than the eleven benchmark methods, in terms of 

the decrease of overall error and increase of Kappa coefficient 

(Table V). For instance, DSK has the highest Kappa coefficient 

0.8271, which is 8.09%, 12.34%, 11.29%, 7.65%, 6.00%, 7.73%, 

13.75%, 6.68%, 6.62%, 5.52%, and 6.53% larger than DI1, DI2, 

DI3, DI4, Optimal-T, RFLICM, FLGICM, MV, DS, HFV, and 

OMC, respectively. The proposed DSK holds for the same 

behaviors for the three datasets, and, thus, its robustness can be 

validated.  
TABLE V 

QUANTITATIVE ANALYSIS INDICES FOR CD RESULTS ON HUNAN DATASET 

Methods MD FA OE KC 

DI1 98603 42243 140846 0.7462 

DI2 149608 6455 156063 0.7037 

DI3 137465 14987 152452 0.7142 

DI4 86756 53509 140265 0.7506 

Optimal-T 70010 62914 132924 0.7671 

RFLICM 101180 37026 138206 0.7498 

FLGICM 147678 17094 164772 0.6896 

MV 93986 39105 133091 0.7603 

DS 119602 8835 128437 0.7609 

HFV 93148 33121 126269 0.7719 

OMC 80422 54049 134471 0.7618 

DSK 74742 21306 96048 0.8271 

 

E. Analysis and discussion 

1) Enhancing process of DSK  

The three experimental results show that the newly proposed 

DSK approach yields a comparatively high CD accuracy. As 

reported in Tables III–V, DSK achieves significantly better 

results in terms of the Kappa coefficient and overall error, 

compared with the eleven alternative methods. This is mainly 

because: 1) as shown in case studies, the four DI images created 

by the proposed DI-generation scheme can produce different but 

complementary CD results, providing the potential of improving 

CD accuracy by fusing these results. 2) DSK is based on DS 

and inherits its merits on working with the weak conflict pixels. 

3) DSK uses indicator kriging to manage conflict information 

in DS fusion and can improve the CD accuracy on strongly 

conflicting pixels (Table VI).  
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In the following paragraphs, the challenging Hunan data is 

taken as an example to show the effect of using indicator kriging. 

Fig. 11(m) shows the spatial distribution of the strongly 

conflicting pixels recognized in DSK. Table VI displays the CD 

results of different methods on the recognized strongly 

conflicting pixels, where OE is the overall error; SCOE and 

SCA are the overall error and detection accuracy, respectively, 

of the strongly conflicting pixels; and PSCOE denotes the ratio of 

SCOE and OE, which is computed with PSCOE = SCOE/OE×

100%.  

TABLE VI 

CD RESULTS ON STRONGLY CONFLICTING PIXELS FOR DIFFERENT METHODS 

Methods OE SCOE PSCOE SCA 

DI1 140846 100371 71.26% 0.524 

DI2 156063 88096 56.45% 0.582 

DI3 152452 89080 58.43% 0.577 

DI4 140265 79919 56.98% 0.621 

Optimal-T  132924 95556 71.89% 0.546 

RFLICM 138206 97094 70.25% 0.539 

FLGICM 164772 95563 58.00% 0.546 

MV 133091 95459 71.72% 0.547 

DS 128437 91580 71.03% 0.566 

HFV 126269 88364 69.98% 0.581 

OMC 134471 69700 51.83% 0.669 

DSK 96048 59191 ---- 0.719 

 

Owing to the diversity of disturbances, complexity of land 

cover changes, and limitations of comparison operators, many 

pixels have results where single-DI detectors disagree, as shown 

in Fig. 11(m). The conflicting pixel patterns are likely to be 

misclassified in the fusion process. For instance, for Hunan data 

91580 misclassified pixels exist in the DS change map, which 

account for roughly 71% of the DS overall error (128437). The 

poor capability of handling the strongly conflicting pixels is the 

main reason for the unsatisfactory CD performance of DS.  

By introducing indicator kriging to DS fusion, DSK obtains 

considerably higher CD accuracy in the recognized strongly 

conflicting pixels. The CD accuracy of the recognized pixels 

increases from 56.6% for DS to 71.9% for DSK. As a result, 

DSK produces the greatest SCA amongst all twelve algorithms. 

In addition, Table VI shows that for all methods, more than half 

of the misclassified pixels exist in the strongly conflicting area 

determined by DSK.  

2) McNemar’s test 

McNemar’s test [50] is employed to evaluate the statistical 

significance of differences in CD accuracy for different 

algorithms. The test follows the standard normal test statistic. 

The significance of difference between two detectors is:  

 12 21

12

12 21

f f
Z

f f





, (22) 

where 
12

f  is the number of pixels correctly detected by detector 

1 but wrongly detected by detector 2, and 
21

f is vice versa. 

Under the 95% confidence level, if the absolute Z12 value is 

greater than 1.96, then the difference between two CD results is 

statistically significant.  

Table VII shows the McNemar’s test results between DSK 

and the eleven other methods for the three test datasets. The Z12 

values are computed from all pixels in Neimeng and Liaoning 

datasets, and the pixels of the eight selected areas (Fig. 11(n)) in 

Hunan data. Table VII shows that the proposed method can 

generate statistically significant higher CD results than the 

benchmark methods applied in this work. 

TABLE VII 

MCNEMAR’S TEST RESULTS (Z VALUES ) BETWEEN DSK AND OTHER METHODS  

Detector 1 Detector 2 Neimeng Liaoning Hunan 

DSK DI1 287.33 177.18 149.93 

DSK DI2 73.65 157.96 193.40 

DSK DI3 105.45 171.38 189.13 

DSK DI4 100.15 137.39 128.19 

DSK Optimal-T 156.19 134.21 118.92 

DSK RFLICM 221.71 150.05 146.60 

DSK FLGICM 155.49 118.37 212.32 

DSK MV 116.78 112.87 133.01 

DSK DS 82.28 88.90 133.08 

DSK HFV 166.40 119.82 110.91 

DSK OMC 99.87 144.28 120.83 

 

3) Computational complexity  

Table VIII lists the computing time of different algorithms 

on the three datasets. The “Single-DI detector” column presents 

the average time of the four single-DI detectors. As shown in 

Table VIII, single-DI detectors take the least time in each 

experiment, as they use the classical FCM to perform CD task. 

Since RFLICM and FLGICM need to compute the spatial term 

in each iteration, and MV and DS need to repeat FCM four 

times, they demand more computation time than single-DI 

detectors. DSK requires some more time than RFLICM, 

FLGICM, MV, and DS, but much less time than OMC. When 

we want to obtain more accurate results, it is better to adopt 

DSK, whereas, when the change maps need producing in 

shorter time, other methods (except OMC) used in this paper 

can be exploited. OMC takes the most time as it involves 

(spatial) feature extraction, image segmentation, and multi- 

method fusion.  

TABLE VIII 

COMPUTING TIME OF DIFFERENT ALGORITHMS ON THE THREE DATASETS (S) 

 
Single-DI 

detector 
RFLICM FLGICM MV DS HFV OMC DSK 

Neimeng 15.5 75.1 77.3 65.7 67.4 17.2 178.3 93.8 

Liaoning 13.6 68.5 70.8 58.3 59.2 15.5 172.7 86.4 

Hunan 39.7 163.6 188.7 125.3 128.5 45.2 421.5 232.1 

4) Impact of image size  

This subsection analyzes the impact of image size on the CD 

results. To this end, a sub-area accounting for about a quarter of 

the whole image, marked by the red rectangles (Figs. 5–7), is 

selected from each dataset for comparison. The sizes of the 

sub-regions from Neimeng, Liaoning, and Hunan data are 600

×700, 600×800, and 1750×800, respectively. Fig. 13 shows 
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the CD results obtained by different algorithms on both the 

sub-regions and the entire regions. 

From Fig. 13, it can be seen that: 1) the proposed DSK yields 

the smallest overall error and the highest Kappa coefficient for 

all the entire datasets and sub-regions. 2) Generally, the overall 

error of the methods increases with the image size, whereas the 

Kappa coefficient decreases. 3) DSK has the smallest increases 

in overall error values and the most stable Kappa coefficient as 

the image sizes increase. In addition, the computing time of the 

algorithms increases with image size increasing. The speed 

problem of DSK can be partly solved by parallel computing 

because the generating and clustering of the four DIs can be 

carried out at the same time.  

 
Fig. 13. CD results on the sub-regions and entire regions for (a) Neimeng, (b) 

Liaoning, and (c) Hunan datasets 

5) Future Research 

Experimental results show that the proposed DSK approach 

outperforms the other eleven approaches compared in all three 

cases, and it can fit different kinds of changes and Landsat 

images.  

In the future work, we will test the DSK CD method in more 

cases and extend it to other types of remote sensing images, like 

very high-resolution or synthetic aperture radar (SAR) images. 

The DSK fusion model can be easily extended to other types of 

images, but the DI generation scheme needs to be modified 

according to the characteristics of the used data. For instance, the 

speckle noises must be considered when extracting DI features 

for SAR images. 

VI. CONCLUSION 

This paper proposes a novel unsupervised CD method for 

multispectral remote sensing images based on the DSK fusion 

framework. By selecting typical comparison operators, four DI 

features are extracted, which simultaneously consider the 

magnitude, direction, and shape change between spectral curves. 

The four pieces of DI evidence are fused using fuzzy logic and 

DS theory, and a preliminary CD map is achieved. The 

preliminary CD map is then adaptively partitioned into three 

parts: weakly conflicting part of no change, weakly conflicting 

part of change, and strongly conflicting part. Finally, the pixels 

in the weakly conflicting parts are assigned to the current class, 

and the strongly conflicting pixels are reclassified using 

indicator kriging, which mainly exploits the spatial correlation 

of pixels. Therefore, the proposed method can aggregate the 

CD results from different DIs and largely resolve the 

conflicting situations where the results disagree. 

Three case studies show that the four DI features used can 

provide different but complementary change information. For 

all the three experiments, DSK performs better clearly in terms 

of both qualitative and quantitative measures, compared with the 

four single-DI detectors and the other seven benchmark methods 

applied, Optimal-T, RFLICM, FLGICM, MV, DS, HFV, and 

OMC. These verify the effectiveness and robustness of DSK.  

Theoretically, this work contributes to the development of 

CD by first introducing indicator kriging to solve the conflicting 

situations in the DS fusion process. Methodologically, this study 

provides a scheme for generating DI set with complementary 

change information, proposes a novel DSK fusion model for 

data fusion, and forms a new CD framework.  

An important feature of the proposed DSK method lies in its 

generalization for fusion in decision level. Four pieces of 

evidence are used in this study. However, adding or removing 

evidence in the fusion process is easy. The generality also holds 

for the inclusion of multiple algorithms. Different algorithms 

are applied to the same DI image, and the fusion is then done 

with the results provided by the algorithms. In determining mass 

functions, other fuzzy clustering like RFLICM can be adopted to 

substitute for FCM.  

Future work will focus on the methods of managing 

conflicting information and extending the proposed DSK to 

other types of remotely sensed data, like very high-resolution 

images. 
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