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Abstract – Existing polarimetric synthetic aperture radar 

(PolSAR) image classification methods cannot achieve 

satisfactory performance on complex scenes characterized by 

several types of land cover with significant levels of noise or 

similar scattering properties across land cover types. Hence, we 

propose a supervised classification method aimed at 

constructing a classifier based on self-paced learning (SPL). SPL 

has been demonstrated to be effective at dealing with complex 

data while providing classifier.   

In this paper, a novel Support Vector Machine (SVM) 

algorithm based on SPL with neighborhood constraints 

(SVM_SPLNC) is proposed. The proposed method leverages the 

easiest samples first to obtain an initial parameter vector. Then, 

more complex samples are gradually incorporated to update the 

parameter vector iteratively. Moreover, neighborhood 

constraints are introduced during the training process to 

further improve performance. Experimental results on three 

real PolSAR images show that the proposed method performs 

well on complex scenes. 

 

Index Terms—PolSAR, classification, complex scenes, SPL, 

SVM, neighborhood constraint 

 

I. INTRODUCTION 

Polarimetric synthetic aperture radar (PolSAR) technology 

plays an important role in military, agriculture, geology and 

other application areas [1], [2]. Due to this, PolSAR image 

classification is a very active area of research where many 

effective methods have been proposed. Extracting 

polarization features and designing an appropriate classifier 

are common steps in these methods. Polarization features 

have been extracted using several decomposition techniques 

[3] including Pauli decomposition [4], Cloude-Pottier 

decomposition [5], and Freeman decomposition [6].  

After polarization feature extraction, it is important to 

design an appropriate classifier. Studies have reported results 

using the support vector machine (SVM) [7], random forest 

[8], artificial neural networks [9], and other machine learning 

methods [10]. Another common classification method in the 

PolSAR literature is the Wishart classifier (WC) [11-13]. The 

above methods can classify terrain given PolSAR imagery.  

However, for more complex scenes characterized by several 

types of land cover with similar scattering properties, scenes 

with mixed scattering mechanisms, and scenes with 

significant levels of noise, these methods do not provide 

reliable performance. 

Recently, due to the significant success of deep learning 

across a range of applications and data, classification of 

PolSAR images using deep learning architectures have been 

investigated [14-16]. Deep neural networks (DNNs) 

architectures perform well because of their strong non-linear 

fitting ability. Nonetheless, DNNs have a large number of 

parameters and, thus, require large training data sets to 

optimize these parameters. Training DNNs is also a time- and 

resource-consuming process. In addition, obtaining the labels 

of the PolSAR data for network training is time-consuming. 

Self-paced learning (SPL) has attracted increased attention 

in recent years [17, 21]. SPL has been widely used in many 

problems including specific-class segmentation [18], long-

term tracking [19] and visual category discovery [20].  In 

SAR image processing, Shang et al. [22] proposed an 

algorithm based on SPL for change detection in SAR 

imagery which outperforms state-of-the-art algorithms in 

terms of accuracy.  



SPL has shown excellent performance in a wide range of 

classification problems. SPL’s learning mechanism is 

inspired by the human learning process in which the easiest 

aspects of a task learned first and, then, more difficult aspects 

are incorporated and learned. This learning mechanism has 

been empirically demonstrated to be robust to noisy data and 

be instrumental in avoiding local minima to achieve better 

generalization results [23-25]. 

 In this paper, we propose the use of SPL within a novel 

SVM algorithm for classification of complex PolSAR scenes. 

Furthermore, we introduce a new self-paced regularization 

term that incorporates spatial information. Considering the 

robustness and non-linear fitting ability of SVM algorithm, a 

novel SVM algorithm based on SPL with Neighborhood 

Constraints (SVM_SPLNC) for PolSAR image classification 

is proposed. Under this learning mechanism, the SVM 

algorithm learns the easier samples first and then gradually 

involves more difficult samples in the training process.  

This paper is organized as follows. Section II introduces 

the concept of SPL. Section III describes the proposed novel 

svm with self-paced learning and neighborhood constraints 

(SVM_SPLNC) method. Experiment results on three 

measured PolSAR images are reported in Section IV. Finally, 

conclusions and potential future work are discussed. 

 

II. Self-Paced Learning Background 

As opposed to traditional machine learning methods which 

consider all samples simultaneously, SPL presents training 

data in a meaningful order to facilitate learning. The order of 

the samples is determined by their learning difficulty.  

However, a key issue with this approach is that, typically, we 

are not provided with a readily computable measure of the 

learning difficulty associated with each sample. We address 

this issue using the concept of a loss function. A well-

accepted assumption is that the smaller the training loss of a 

sample, the more likely it is to be an “easy” sample. 

Therefore, the relationship between the learning difficulties 

of sample and the training loss can be established based on 

this assumption. In SPL, a weight v  between 0 and 1 is used 

to denote the learning difficulties of samples, and a gradually 

increasing pace parameter   is introduced to control the 

pace for learning new samples. The value of  v  is 

determined by a regularization term ( , )f v   called “self-

pace regularization term”. The model of SPL is formally 

elaborated below. 

Given a training dataset {( , ),  1... }
i

D x
i

y i n  , in which

ix  denotes the 
thi  observed sample, and iy  represents its 

label, let ( , ( , ))
i

x w
iiL L y g  denote the loss of sample 

i
x , 

which is the cost between the label iy  and the estimated 

label from the classifier, ( , )ix wg . Here w  represents the 

model parameters of the classifier. Furthermore, let  ( )wp  

be a regularization term imposed on classifier parameters. A 

general regularized machine learning objective function can 

then be expressed as shown in (1), 

1

arg min ( , ( , )) ( )iw x w w
n

i
w

i

L y g p


             (1) 

In SPL, a weight v  between 0 and 1 is used to denote the 

learning difficulty of a sample where a small weight 

corresponds to more difficult samples.  Also, a pace 

parameter   is used to control the pace for learning new 

samples. The value of  v  is determined by a regularization 

term ( , )f v   called the self-paced regularization term. Thus, 

the SPL model differs from (1) by using a weighted loss term 

( , ( , ))
i

x w
i i

v L y g  for each sample where [0,1]iv  , 1... ni  , 

and incorporating the self-paced regularization term ( , )
i

f v   

imposed on sample weights, 

 
,

1

 , arg min ( , ( , )) ( ) ( , ),
n

i i i

i

v L y g p f v 


   i
w v
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The weight vector 
1

[ ... ]...v
i n

v v v  is defined based on the fol

lowing two rules [26]: 

a. iv  is monotonically decreasing with respect to increasing 

training loss such that
0

lim 1
i

i
L

v


  and lim 0
i

i
L

v


  

b. iv  is monotonically increasing with respect to the pace 

parameter  , such that 
0

lim 0
i

v


  and lim 1
i

v


 . 

Rule (a) indicates that the model more heavily weights 

easy samples with smaller training loss. Rule (b) indicates 

that as the pace parameter gets larger, the model increases 

the weight of all samples, thus incorporating more complex 

samples into the training procedure. Given these axiomatic 

rules, Meng et al. [26] proposed two self-paced regularization 

terms: the binary and the linear regularization terms. 

1.  Binary regularization term 

The binary self-paced regularization term can be expressed 

as: 

( , )i if v v                                          (3) 

subject to the constraint that the weight of each sample is bin

ary, i.e., 𝑣𝑖 ∈ {0,1}. 

When plugging (3) into the SPL regularization term in (2) 

and simplifying the equation, it can be seen that 
iv  can be 



obtained by: 
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When the weight of the 
th

i  sample iv  is 1 in an iteration, the 

sample is considered to an easy sample and it will be used 

during learning. 

 

Algorithm 1. SPL Training Procedure 

Input: Training set {( , ),  1... }
i

D x
i

y i n   

Output: Model parameters w 

SPL Training Procedure： 

Step1: Initialize weights of all samples 
1

[ ... ]v
n

v v  and 

parameter  . 

Step2: Fix v, update w using (2). 

Step3: Fix w, calculate the training loss ( , ( , ))
i

x w
i

L y g  for 

each sample, then update v using (4) or (6). 

Step4: Update   using  1    . 

Step5: Repeat steps 2-4 until the mean of all vi values is equal 

to or approximately equal to 1. Return the estimated w 

parameters. 

 

2.  Linear regularization term 

The linear self-paced regularization term is shown in (5): 

21
( , )

2
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With (5), (2) and simplifying the equation,  
iv  can be 

obtained by: 
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Under the linear regularization term, when the training loss 
iL  

of the 
th

i  sample is less than the pace parameter  , the 

weight of this sample is a value between 0 and 1.  

In SPL, the parameter vector, w, and the sample weights, v, 

are updated iteratively with the procedure outlined in Alg. 1. 

 

III. PROPOSED METHOD 

Support Vector Machines, given their ability address non-

linearity and high generalization capabilities, have potential 

for the classification of complex PolSAR imagery [27].  Thus, 

we extend the SVM with SPL using a neighborhood 

constrained self-paced regularization function.  

In our approach features are extracted using matrix and 

Cloude-Pottier decomposition from PolSAR image[4].  

Specifically, the first three eigenvalues of the coherency 

matrix and their sum are used as feaures.  Furthermore, the 

entropy, alpha and anisotropy parameters of coherency 

matrix T are also used as features.  

In our approach, each pixel is represented by a row feature 

vector, and the feature vectors are obtained by matrix 

decomposition and Cloude-Pottier decomposition [4]. The 

eigenvalues 
1 2 3
, ,    of the coherency matrix T and their 

sum are taken as features. In addition, the Entropy, Alpha and 

Anisotropy parameters are also taken as features. The SVM 

presents high generalization capability even in linearly non-

separable circumstances, they have a great potential for the 

classification of PolSAR images [27]. The SPL is used to 

improve the performances of SVM classifier on the complex 

scenes. In addition, the neighborhood information of each 

pixel in the image is beneficial to improve the classification 

accuracy. Therefore, a new SPL regularization term with 

neighborhood constraints is designed. 

A. Proposed Model 

When training an SVM, the goal is to maximize the margin 

between two classes while maintaining high classification 

accuracy.  This goal is defined mathematically in the SVM 

objective function: 

2

,
1

( , ) arg min  ( ,( )) .
n

i
w b

i

b L y b c


   iw wx w        (8) 

where ,w｛ ｝b  denotes the classifier parameters, which 

includes a coefficient vector w and a bias term b, and 

( , ( ))
i

wx
i

L y b  is the hinge loss function calculated as: 

( , ( )) max(0,1 ( ))
i i

wx w x
T

i i
L y b y b           (9). 

 The parameter c is the standard regularization parameter 

trading off between the hinge loss and the margin size. A 

large c will lead to the larger margin between the classes (and, 

potentially, increased error rates). Hence, the model will have 

lower error rates (and the potential to overfit) with a small c 

value.  

To incorporate self-paced learning into the SVM training 



procedure, weighted samples are used to learn the parameter 

vector at each iteration, and the self-paced regularization 

term is incorporated into the objective function. Therefore, 

the proposed model SVM_SPLNC can be formulated as: 

2 '

, ,
1

( , , ) arg min  ( , ( )) ( , )
i

w v

w v wx w
n

i i i
b

i

b v L y b c f v 


    .  (10) 

When 0
i

v  , the loss incurred by the 
th

i  sample is always 

zero and when the
i

v  values for all samples are equal to 1, 

(10) collapses to the conventional SVM objective shown in 

(8). The pace parameter   controls the learning process, with 

parameter c trading off the margin and other items. Both c 

and   are initialized before training. 

'
( , )

i
f v   is the new self-paced regularization term with 

neighborhood constraints imposed on the weight 
iv . In 

PolSAR imagery, each pixel generally has physical properties 

in common with pixels in its spatial neighborhood.  Therefore, 

using neighborhood information can help to improve 

classification accuracy [26,33]. In order to incorporate this 

information, the weight vi for a data point is determined using 

a linear combination between the training loss for the data 

point under consideration as well as the average loss for the 

sample’s spatial neighborhood.  Thus, (7) can be rewritten as 

follows: 

'
'

'
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iL  denotes the training loss of the 
th

i  sample and 
'

i
L  

represents the average training loss of the thi  sample’s eight 

neighboring pixels 
ijL .  The parameter i  is used to tradeoff 

between 
i

L  and 
'

i
L .  The value for the i  parameter can be 

determined by the Shannon entropy of neighborhood pixels’ 

training loss. Namely, the larger the Shannon entropy, the 

more likely the 
th

i sample belongs to a homogeneous region 

and 
i

L  is subject to a stronger neighborhood constraints. The 

value 
'

1

i ii

i

L L






 represents the training loss of the central 

pixel. Fig.1 illustrates the 
th

i  sample’s training loss with 

eight neighborhood constraints. 
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 is the training 

loss of    sample

   is the average training 

loss of    sample’s 
eight neighborhoods 

Represent the new 

training loss of    sample

'
iL
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thi

thi

iL

'

i i iL L L 

Fig.1. 
th

i sample’s training loss with eight neighborhood constraints 

 

B. Solving the Proposed Model  

Eqn. (10) can be rewritten as: 

2 '

, ,
1

1
( , ) arg min  ( , )

2

. .  ( ) 1 ,   0,   [0,1]i
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Eq. (12) is optimized iteratively as outlined below.  

Step 1. Initialization 

    Initialize the weight
1

[ ... ]v
n

v v , iv  is randomly given to 

positive numbers, approach to 0.  is given a number, c, is 

kernel function.  

Step 2.  Fix v  and optimize w and b.  

Given fixed v values, the objective function can be 

expressed as: 
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,
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With this form, the optimization process of w and b is 

similar to the process used for a conventional SVM. 

Introducing Lagrange multipliers   and   , the Lagrangian 

of the problem can be defined as: 
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According to the Karush-Kuhn-Tucker (KKT) conditions, the 

optimal solution must satisfy the conditions listed in (14): 
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Substituting (15) into (14), the objective function (13) is 

modified to the following dual form: 
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where
i is [0,

icv ]. The  ,
i j

x xK  represent the kernel 

function. Gaussian kernel is selected as kernel function [29]. 

Since Eq. (16) is a quadratic programming in its dual form, 

we used CVX toolkits [30] to solve it. 

Step 3.  Fix w and b, then optimize v  

After obtaining  , the value of w, b can be calculated 

using (14), and the value of il  by (9). Then, given fixed w 

and b values the objective function in (11) becomes: 

'

1

min  ( , )
v

v
n

i i i

i

c v l f v 


                        (17) 

where iv  is calculated using (10). 

Step 4.  Update  , then repeat steps 2-3 

After updating the SVM parameters and the SPL weight 

for each data point, the  value is updated according to (18),  

,  1                                    (18) 

where k is constant of the step update. 

Then, Step 2 and Step 3 are repeated until the mean of v  

is equal to 1. All training samples have been included in the 

training set used to update the SVM.     

 

IV. EXPERIMENTS 

In this section, three measured PolSAR data sets are used 

to validate the performances of the proposed method. The 

proposed method is compared with three typical PolSAR 

classification methods, including the SVM [31], the Wishart 

classifier (WC) [32] and Sparse Representation-based 

classification (SRC) [33]. For the SVM, a radial basis 

function (RBF) kernel is used, the parameter gamma for RBF 

is 1, and the tolerance of termination criterion and the cost 

factor are 0.00001 and 50. For WC, the training samples are 

used to calculate the Wishart centers of each class, and the 

Wishart distance is used to classify each pixel. For SRC, an 

over-complete dictionary is first generated from the training 

samples. Then, the test samples are classified by obtaining 

the sparse representation of the test samples and calculating 

the residuals of each class. Finally, in order to validate the 

newly constructed regularization term, the SPL based SVM 

with original linear regularization term (SVMSPL) is also 

used as a comparison algorithm.  

For the proposed SVM_SPLNC algorithm, the parameters 

are set as the RBF kernel, c=100, 1  , 0.1  ,  k=1.05 

which are based on our experimental experience. For these 

comparison algorithms, we use the same numbers of training 

samples per class and extract the same. All the experiments 

are performed on an Intel i5-6500 CPU 3.2GHz, and the code 

is written with MATLAB R2015b development environment. 

 

A. Flevoland Data Set from AIRSAR 

 

  

             (a) Pauli RGB                                 (b) Ground truth 

 Stembeans  Rapeseed  Bare soil  Potatoes  Wheat 

 Grasses       Beet          Wheat 2   Peas        Wheat 3 

 Lucerne       Barley      Water       Forest 

Fig.2. (a) Pauli RGB of Flevoland. (b) Ground truth 

 

The first data set investigated was the NASA/JPL AIRSAR 

L-Band four-look PolSAR data of Flevoland, Netherlands, 

which has the size of 1024×750 pixels. The spatial resolution 

is 6.6 m in the slant range direction and 12.10 m in the 

azimuth direction. Fig. 2 illustrates the corresponding Pauli 

RGB image and ground truth, respectively. The ground-truth 

map was obtained from reference [35]. There are 14 classes 

in this data with each class indicating a type of land covering. 

A total of 167712 pixels are labeled as ground truth and only 

2% of them were used to train the classifiers with the 

remainder used for testing.  The training areas are marked 

with red blocks in Fig. 2(a), which are randomly selected 

from each terrains. The reported testing accuracies are 

obtained by testing on the 98% residual pixels. For the 

SVM_SPLNC, the parameters are follows  c=100, 0.1  , 

k=1.05 and kernel function is RBF. 

 

a. Convergence analysis  

Fig. 3 shows that the average training loss over all of the 



training points each iteration for multiple runs is decreases 

during the training process, indicating the proposed algorithm 

is likely to converge. In the experiments, the weights of all 

samples were randomly initialized positive numbers 

approaching 0, then updated at each iteration. We can see the 

weight increases with the number of iterations in Fig. 3. At 

iteration 35, the average weight is only 0.5, indicating that all 

training samples have not been included or learned. Given 

that only a portion of the samples have been learned, the 

generalization and classification ability of the model at 

iteration 35 is poor.  For example, the overall accuracy is 

0.66 at this iteration as shown in Fig. 4(b) where several easy 

samples (e.g., Forest, Lucerne, and Bare soil) are classified 

correctly but other complex samples (such as Wheat, Wheat 3 

and Rapeseed, as shown with the red circles) are 

misclassified. Fig. 4(c) shows the overall accuracy is 0.81 at 

50 iterations of the model, and the average weight for 

training samples is 0.7. The average weight is close to 1 at 

iteration 90.  In this iteration, it can be considered that the 

entire training data has been included in the training process. 

The final result is relatively very good with an overall 

accuracy of 0.91 as shown in Fig. 4(d) with Wheat, Wheat 3 

and Rapeseed being correctly classified (as shown in the red 

circles). 

 
Fig. 3 average weight and average training loss of all training 

samples vary with the number of iterations in the process of training 

respectively. 

 
                 (a) Ground truth                        (b) 35 iterations 

 
                (c) 50 iterations                       (d) 90 iterations 

Fig.4 (a) Ground truth of Flevoland. (b)~(d) classification results of 

models obtained at different number of iterations 

 

b. Classification results  

 

(a) SVM                                       (b) SRC 

 
   (c) WC                                 (d) SVM_SPL 

 

(e) SVM_SPLNC                                 (f) Ground truth 

Fig.5. classification results of five methods  

 

Fig. 5 shows visual classification results with accuracies for 

each class are listed in Table I. To compare the SVM and the 

proposed SVM_SPLNC method, the two methods are 

implemented using CVX toolkit [30]. As shown with black 

circles in Fig. 5(a), the SVM cannot distinguish Rapeseed, 

Potatoes, Wheat 3 and Water from each other very well.  For 

the SRC method, results indicated that most of the Rapeseed, 

Potatoes and Grasses were misclassified to other categories. 

WC from [35] (see Fig. 5(c)) had satisfactory accuracies on 

most categories except for Water and Rapeseed. The 

proposed SVM_SPLNC method had the highest overall 

accuracy of 0.91. Furthermore, from Fig. 5 we can see that 

the classification result by SPLNC is smoother and 



outperforms comparison methods on most of the classes 

including Rapeseed, Potatoes, Wheat 2, Wheat 3 and Water. 

Compared to SVM, our method trained with the learning 

mechanism of SPL produces better results, e.g., Wheat 3 and 

Water are recognized better (see black circles in Fig 5.(a) and 

(e)), and the overall accuracy (OA) increases by 10%. 

Moreover, compared to SVM_SPL, SVM_SPLNC has higher 

accuracy rate for most land cover types indicating that the 

proposed regularization term with neighborhood constraints 

is effective. 

 

TABLE I 

ACCURACIES OF FLEVOLAND DATA SET FROM AIRSAR 

AA: AVERAGE ACCURACY; OA: OVERALL ACCURACY 

 SVM SRC WC SVM_SPL SVM_SPLNC 

Stembeans 0.9721 0.9642 0.9508 0.9615 0.9874 

Rapeseed 0.7175 0.6049 0.7484 0.7617 0.7902 

Bare soil 0.9933 0.9211 0.9920 0.9702 0.9975 

Potatoes 0.9800 0.6631 0.8775 0.9638 0.9865 

Beet 0.9540 0.9561 0.9513 0.9549 0.9788 

Wheat 2 0.7323 0.7797 0.8272 0.7945 0.8393 

Peas 0.9259 0.9396 0.9628 0.8968 0.9428 

Wheat 3 0.2460 0.8226 0.8864 0.9049 0.9277 

Lucerne 0.9293 0.9513 0.9293 0.9733 0.9760 

Barley 0.9329 0.9322 0.9526 0.9476 0.8822 

Wheat 0.8313 0.7610 0.8622 0.8367 0.8605 

Grasses 0.9289 0.6284 0.7246 0.7516 0.8113 

Forest 0.7891 0.9797 0.8791 0.9021 0.9239 

Water 0.4263 0.8002 0.5175 0.7666 0.8435 

AA 0.8113 0.8360 0.8616 0.8847 0.9105 

OA 0.7528 0.8231 0.8504 0.8797 0.9067 

 

B. San Francisco Data Set 

The San Francisco data set is a fully polarimetric L-band 

airborne SAR data set acquired by the AIRSAR sensor of the 

NASA/JPL, which has the size of 1024×900 pixels. The 

scene is comprised of Urban, Vegetation, Mountain, Ocean 

and Bare soil classes. In Fig. 6(a), the data are represented as 

RGB color composed of the Pauli matrix representation. In 

this experiment, 0.5% samples (the areas with red blocks in 

Fig. 6(a)) are used to train the classifier. For the algorithm 

SVM_SPLNC, we set parameters as RBF kernel, c=50, 

gamma=1, 0.1  , k=1.1 based on this experimental data. 

Fig. 6(b)~(f) shows the visual classification results of the 

respective algorithms. The SVM confuses the ocean class 

with the orban class in the top right area of the image. SRC 

has the ability to recognize the ocean class but the results of 

other categories contain a significant amount of noise. The 

Wishart classifier misclassifies nearly half of the ocean class 

in the bottom left area as bare soil. The mountain class in the 

top left area of the image is more difficult to classify because 

the shadows in this area are easily misinterpreted as the urban 

class. Fig. 6(e)-(f) show better results in this area, which 

correspond to SVM_SPL and SVM_SPLNC.  

 

  

(a) Pauli RGB                                      (b) SVM 

  

(c) SRC                                            (d)WC 

  

(e) SVM_SPL                                  (f) SVM_SPLNC 

 Ocean     Vegetation    Urban area   Mountain    Bare soil 

Fig.6. (a) Pauli RGB of San Francisco. (b)~(f) classification results 

of SVM, SRC, WC, SVM_SPL and SVM_SPLNC  

 

C. Flevoland Data Set from RADARSAT-2 

The Flevoland data set from RADARSAT-2 is a C-band 

single-look fully PolSAR data with a resolution of 10×5 m 

and was obtained at fine quad-mode in 2008. A sub-region of 

1200 × 1400 pixels was selected, as shown in Fig. 7(a). The 

areas with red blocks are used to train the classifier and 

corresponds to 0.4% of the data. The ground-truth reference 

map is shown in Fig. 7(b) [36]. There are mainly four types 

of terrain: 1) forest; 2) cropland; 3) water; and 4) urban area. 

For the algorithm SVM_SPLNC, we set parameters as RBF 

kernel, c=30, gamma=5, 0.1  , k=1.1 in this experiment. 

Fig. 8 shows visual classification results for the methods, 

and Table II lists the classification accuracies obtained for 

each class. The proposed SVM_SPLNC method provided the 

best visual results and highest overall accuracy at 0.91. The 



improvement is obtained primarily from the better 

performance on the urban areas. Urban areas have a mixed 

scattering mechanism that results in areas that are more 

difficult to classify than the other categories. SVM_SPLNC 

performs better than SVM and SRC in recognizing these 

complex terrains. Although the proposed SVM_SPLNC 

performs worse than SRC in recognizing Water and Forest, it 

still provides a better overall accuracy. 

    
(a) Pauli RGB                                    (b) Ground truth 

 Urban        Water         Forest         Cropland 

Fig.7. (a) Pauli RGB of Flevoland. (b) Ground truth 

    
(a) SVM                                          (b) SRC 

    
(c) WC                                     (d) SVM_SPL 

 

(e) SVM_SPLNC 

Fig.8. (a)~(e) classification results of SVM, SRC, WC, SVM_SPL 

and SVM_SPLNC 

 

TABLE II 

ACCURACIES OF FLEVOLAND DATA SET FROM AIRSAR 

AA: AVERAGE ACCURACY; OA: OVERALL ACCURACY 

 SVM SRC WC SVM_SPL SVM_SPLNC 

Urban 0.7169 0.7579 0.6022 0.8270 0.8315 

Water 0.9695 0.9779 0.9854 0.9732 0.9663 

Forest 0.8388 0.9195 0.8479 0.8539 0.9016 

Cropland 0.9425 0.8759 0.8071 0.9512 0.9568 

OA 0.8894 0.8978 0.8382 0.9126 0.9177 

 

V. CONCLUSION 

In this paper, a novel SVM algorithm based on SPL with 

neighborhood constraints is proposed for PolSAR image 

classification. We used this learning mechanism to train the 

SVM classifier, which learns the easy samples first then 

gradually involves complex samples into model until the 

entire training dataset is learned. In addition, a new self-

paced regularization term with neighborhood constraints is 

proposed and implemented. Three measured PolSAR datasets 

are used to demonstrate the effectiveness of our proposed 

method. The experimental results indiciate that our proposed 

method can achieve competitive classification performance 

on complex scenes with mixed scattering mechanism or on 

scenes characterized by several types of land cover with 

similar scattering properties.  
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