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Abstract—This study aims at validating the cloud mask 

produced by the Land Surface Reflectance Code (LaSRC) for 
Landsat 8 data. To detect clouds in optical satellite imagery, 
LaSRC uses quality assurance (QA) layers, which are produced 
during the atmospheric correction process. The QA layers include 
a “Cloud mask”, which is based on the estimation of a residual 
metric showing the quality of aerosol inversion, and “High 
aerosol”, which shows the impact of aerosols on the derived 
surface reflectance. Validation is performed using the “L8 Biome” 
cloud validation dataset, which is produced by the US Geological 
Survey (USGS), and consists of 96 Landsat 8 scenes distributed 
globally over 12 different biomes. We show that the LaSRC cloud 
detection algorithm reliably identifies thick clouds with 
commission and omission errors less than 4%. Large cloud 
overdetection errors occur for thin clouds, which is due to the 
subjectivity of defining and extracting thin clouds in the reference 
dataset. We conclude this paper with recommendations on using 
the LaSRC QA layers, and give suggestions on reducing 
subjectivity, when generating cloud validation datasets. 
 

Index Terms—cloud detection, validation, Landsat 8, LaSRC. 
 

I. INTRODUCTION 
LOUD detection in optical satellite imagery is a prerequisite 
to producing and delivering high quality higher-order 

products. Cloud misdetection (cloud omission) may lead to the 
retrieval of an erroneous signal from a satellite sensor (e.g. 
surface reflectance or vegetation indices), and these errors can 
propagate into higher level thematic products used, for example 
in agricultural, environmental or natural hazards monitoring 
applications. On the other hand, overdetection of clouds (cloud 
commission) may reduce the amount of valuable cloud-free 
data which, in this case, would be incorrectly identified as 
clouds. With the availability of high temporal resolution images 
(5–10 days) acquired by moderate spatial resolution (10–30 m) 
sensors aboard Landsat 8 and Sentinel-2 satellites, it is of great 
importance to develop and validate cloud detection algorithms, 
which can be applied globally for multiple conditions within an 
operational context. Development of cloud detection 
algorithms for Landsat-like remote sensing satellites has always 
been an area of active research. However, only a few algorithms 

 
Manuscript received September 12, 2018. This work was supported by the 

NASA grant “Support for the HLS (Harmonized Landsat-Sentinel-2) Project” 
(no. NNX16AN88G). 

S. Skakun, J.-C. Roger and C. O. Justice are with the Department of 
Geographical Sciences, University of Maryland, College Park, MD 20742 USA 
(e-mail: skakun@umd.edu; roger63@umd.edu; cjustice@umd.edu). 

are used in operational context. This is due, in part, to the 
complexity of validating cloud detection algorithms and 
accounting for various cloud types and atmospheric conditions. 
Collecting reference (‘ground truth’) cloud data is a time and 
resource consuming task, and is usually performed through 
photo-interpretation of satellite images by analyst(s). However, 
in such a case, reference data have a certain degree of 
subjectivity, which should be considered, when reporting 
validation results. For example, Scaramuzza et al. (2012) [1] 
cross-compared results of visual photo-interpretation of clouds 
on Landsat 5 and Landsat 7 images by three different analysts 
and found an average 7% error due to subjectivity, with one 
scene having 25% difference among experts due to the 
substantial presence of thin clouds and fog. 

The Automated Cloud Cover Algorithm (ACCA) [2], [3], [4] 
has historically served as the main algorithm for cloud 
screening in Landsat 4, Landsat 5 and Landsat 7 images. 
Additional adjustments were made to make ACCA work for 
Landsat 8 images [1]. The ACCA algorithm is based on top-of-
atmosphere (TOA) reflectance data and/or thermal bands, and 
uses a set of empirical rules and several passes per pixel to 
determine, whether the pixel is cloudy or clear. The Fmask 
algorithm [5] builds upon ACCA and other algorithms and 
utilizes a set of physical based rules to identify cloudy pixels in 
Landsat images. The potentially cloudy pixels are further 
refined based on segmentation and geometrical properties of 
identified objects. The Fmask algorithm produces cloud and 
shadow layers, as well as a snow layer, which is produced using 
the Normalized Difference Snow Index (NDSI) and brightness 
temperature. The Fmask algorithm is constantly improving, and 
several further modifications have recently been proposed, 
including to be applied to other satellites such as Sentinel-2 [6], 
[7], [8]. The C programming language version of the FMask 
algorithm (called CFmask) is used by the US Geological Survey 
(USGS) in a production environment to deliver the quality 
assessment band for Landsat 8 products [9]. Other approaches 
try to incorporate experience gained with detecting clouds using 
MODerate Resolution Imaging Spectroradiometer (MODIS) 
images and adapt those rules to Landsat 8 images [10]. In fact, 
some rules for detecting cirrus clouds and snow in Landsat-8 
imagery were derived from those used for MODIS [11], [12]. 
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The above mentioned algorithms identify clouds using a 
single date satellite image. Other methods, such as those 
proposed in [8], [13], [14], [15], take advantage of multi-
temporal satellite images, when a reference cloud-free image is 
first selected, and an image in question is compared to the 
reference image to identify clouds. While providing good 
performance, these methods have intrinsic drawbacks, such as 
complexity of automatically selecting the reference image or 
images, and the number of reference images required to 
accurately identify cloudy pixels. 

A large body of work is dedicated to applying supervised 
machine learning algorithms for cloud detection in satellite 
imagery. In particular, decision tree (See5) [1], [9], neural 
networks [16], and support vector machine (SVM) [17] 
algorithms were trained to identify clouds in satellite imagery 
using mostly TOA reflectance values. There are two main 
problems with such approaches. First, supervised machine 
learning approaches require reference data for algorithms 
training and testing, collection of which, as mentioned above, 
is not a trivial task. Second, the use of TOA reflectance values 
without incorporating data on atmospheric state (e.g. aerosol 
optical thickness) may run into the problem of data 
normalization, which cannot be necessarily handled by the 
algorithms [18], especially when such data are absent from the 
training set. 

In order to cross-compare operationally ready cloud 
detection algorithms to be used for Landsat quality assurance 
(QA) data products, Foga et al. (2017) [9] performed a large-
scale analysis using USGS cloud reference datasets. These 
validation datasets included “L7 Irish” (for Landsat 7) [4], [1], 
“L8 SPARCS” [16] and “L8 Biome” [9] for Landsat 8. Among 
the algorithms tested were various versions of Fmask, ACCA, 
See5, and the Land Surface Reflectance Code (LaSRC) cloud 
mask. The LaSRC cloud mask is one of the products generated 
within the atmospheric correction process [19]. Foga et al. 
(2017) [9] reported a 73.07% overall accuracy (OA) for the 
LaSRC cloud mask with omission and commission errors 
4.70% and 23.90%, respectively. However, that study did not 
provide algorithm description, did not describe criteria used, 
did not investigate the source of discrepancy between the 
LaSRC produced cloud masks and reference cloud masks, and 
results were not reported for the different types of clouds (thin 
and thick) available in the reference datasets and different types 
of biomes. The present study aims to fill this gap and provide a 
more comprehensive description and analysis of the LaSRC 
cloud detection algorithm for the “L8 Biome” validation data. 
In particular, we show that there are two major factors leading 
to relatively large LaSRC’s commission errors reported in [9]: 
(1) snow cover, for which LaSRC should not be directly 
applied; (2) thin (cirrus) clouds, which have a high degree of 
subjectivity in the reference dataset. We also show some 
inconsistencies in the “L8 Biome” reference cloud mask, which 
can be attributed to the subjectivity of manual cloud 
classification. 

II. METHODOLOGY, DATA DESCRIPTION, AND PERFORMANCE 
METRICS 

A. The LaSRC algorithm for cloud detection 
LaSRC is a generic atmospheric correction algorithm for 

estimating land surface reflectance, taking into account 
absorption by atmospheric gases and scattering by molecules 
and aerosols [19], [20], and is based on the inversion of the 6SV 
radiative transfer code [21], [22]. LaSRC was first developed 
for MODIS [23] and further adopted for other remote sensing 
sensors such as Visible Infrared Imaging Radiometer Suite 
(VIIRS) [24]-[25], Operational Land Imager (OLI) aboard 
Landsat 8 satellite [19], and Multi-Spectral Instrument aboard 
Sentinel-2 satellites [20]. One of the major steps within this 
process is the retrieval of aerosol optical thickness (AOT), 
which is based on the relationship between red (band 4 in 
Landsat 8), and blue (1 and 2) and shortwave infrared (SWIR, 
band 6) spectral bands (Fig. 1).  

 

 
Fig. 1.  A general flowchart of LaSRC algorithm. 
 

First, the reference relationship is calculated at the global 
scale, at a coarse spatial resolution (0.05°) from multi-year 
MODIS/Terra and Multi-angle Imaging Spectroradiometer 
(MISR) data, and parameterized as a function of the 
Normalized Difference Vegetation Index (NDVIMIR), computed 
using the Mid-IR (2.1 µm) band instead of red [26]: 
NDVIMIR = (NIR–MidIR/2)/(NIR+MidIR/2). Such 
parametrization allows accounting for seasonal variability in 
the red/blue ratio, and downscaling from coarse spatial 
resolution to the 30 m Landsat 8 pixel scale. In addition to 
retrieving the AOT map at 30 m resolution, LaSRC algorithm 
estimates the inversion “residual”, which is the metric of the 
goodness of AOT inversion: 
 Residual =

*+
,
-.𝜌S+ − 𝑟+,4𝜌S45

6
+ .𝜌S6 − 𝑟6,4𝜌S45

6
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6
9, (1) 
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Landsat 8 bands 1, 2, 4 and 6, respectively, derived using AOT 
inverted from the red (band 4) and blue (band 1), and 𝑟+,4, 𝑟6,4 
and 𝑟8,4 are ratios between red and blue and SWIR bands 
derived from MODIS and MISR and downscaled at Landsat 8 
spatial resolution. 

This residual metric (Eq. 1) is the main criterion for detecting 
thick clouds, since the latter will either prevent the AOT 
inversion process from convergence, or will drive the residual 
metric to high values. It should be noted that, unlike most cloud 
detection algorithms which use TOA reflectance values, the 
LaSRC cloud detection algorithm uses surface reflectance 
residual values and incorporates data on atmospheric 
conditions. These differentiate the proposed approach from the 
previous ones. A specific threshold should be selected to 
determine cloudy and clear pixels in Landsat 8 imagery. This 
threshold was set to 0.05. Pixels with residual values exceeding 
this threshold are marked as cloudy ones. Pixels adjacent to 
clouds within 5 pixels (150 m) are separately masked as being 
‘adjacent to clouds’. The rationality for marking adjacent 
cloudy pixels is that cloud boundaries are, as a rule, ambiguous 
and very difficult to detect precisely at moderate spatial 
resolution, and, therefore, such masking ensures that unreliable 
pixels are removed from further processing. The LaSRC 
algorithm also estimates a metric, which shows the impact of 
aerosols on the derived surface reflectance values: 
 Aerosol	impact = abs(𝜌S+ − 𝜌T+), (2) 
where 𝜌S+ and 𝜌T+ are surface reflectance and reflectance not 
corrected for aerosol for band 1 in Landsat 8, respectively. 
Pixels with aerosol impact values (Eq. 2) exceeding 0.03 (in 
reflectance units) are marked as ‘high aerosol’ values (low 
quality pixels) and should be excluded from further processing 
along with pixels detected as cloudy ones. Table I summarizes 
QA layers produced by the LaSRC algorithm. The thresholds 
(Table I) for detecting cloud and high aerosol were determined 
empirically from visual inspection and 6SV simulations. 

B. Data description 
The “L8 Biome” cloud validation dataset [27] consists of 96 

Landsat 8 scenes, which were selected using a semi-random 
sampling by biomes [9]. These biomes included barren, forest, 
grass/crops, shrubland, snow/ice, urban, water and wetlands. 
For each biome, 12 Landsat 8 scenes were selected, and each 

scene was manually classified into the following classes: clear, 
thin cloud, cloud, and cloud shadow. It should be noted that no 
specific threshold was used to detect thin clouds, which were 
primarily determined by the analyst. Also, the cloud shadow 
class in the validation dataset was not provided for all the 
Landsat 8 scenes. 

Out of 96 reference Landsat 8 scenes in the “L8 Biome” 
validation dataset, only 79 scenes were included for evaluating 
the LaSRC cloud detection algorithm. Among the 17 scenes not 
considered, 16 scenes were fully covered with snow/ice (12 
from the snow/ice biome and 4 from other biomes), and 1 scene 
had inconsistencies in depicting thin clouds (Fig. 2). Fig. 2 
shows a subset of the Landsat 8 scene 
(LC80350192014190LGN00) with inconsistent detection of 
thin clouds. While the reference image shows the existence of 
the boundary between thin clouds and clear pixels, no clear 
boundary exists in the satellite imagery, including when using 
true/false color combinations or the cirrus band. As per our 
analysis, this was the only scene with such major 
inconsistencies in the validation dataset. The reason for 
removing snow/ice scenes is that snow/ice pixels are detected 
as cloudy or high aerosol by the LaSRC algorithm, are 
considered low quality pixels and should not be used for further 
processing. This was the main reason for the OA=73.07% 
reported by Foga et al. (2017) [9], when major overdetection 
(CE=23.90%) was due to the presence of ice/snow. 

 

C. Performance metrics 
We used a set of performance metrics, similar to those used 

in [9], to validate the LaSRC cloud detection algorithm against 
the “L8 Biome” dataset. These metrics included overall 

 
Fig. 2.  A subset of the LC80350192014190LGN00 scene from the “L8Biome” cloud validation dataset, showing inconsistencies in detecting thin cloud: 
(a) classified validation data; (b) blue band 1 reflectance stretched from 0.15 to 0.22 (reflectance units); (c) false color composition of the LaSRC derived 
surface reflectance values from Landsat 8 bands 6-5-4 (SWIR1-NIR-Red, which correspond to 1.566-1.651 µm, 0.851-0.879 µm and 0.636-0.673 µm, 
respectively) stretched from 0 to 0.55; (d) cirrus band 9 reflectance (corresponds to 1.363-1.384 µm) stretched from 0.0005 to 0.006. 

TABLE I 
QA LAYERS PRODUCED BY THE LASRC ALGORITHM 

QA data layer Criterion Threshold 

Cloud mask Residual (Eq. 1) 0.05 
Adjacent to clouds Neighborhood pixels 

identified as cloudy 
5 pixels 

High aerosol Aerosol impact (Eq. 2) 0.03 
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accuracy (OA), cloud omission error (OE) and commission 
error (CE), and were calculated on a per pixel basis using the 
following equations: 
 𝑂𝐴 = 100 × Kclear_as_clearMKthin_as_cloudMKthick_as_cloud

Ktotal
, (3) 

 𝑂𝐸 = 100 × Ktotal_cloudRKthin_as_cloudRKthick_as_cloud
Ktotal_cloud

, (4) 

𝐶𝐸 = 100 ×
T Kclear_as_cloudMKshadow_as_cloud
Kthin_as_cloudMKthick_as_cloudMKclear_as_cloudMKshadow_as_cloud

V, (5) 

where 𝑛total is the total number of valid pixels in the scene; 
𝑛clear_as_clear, 𝑛thin_as_cloud, 𝑛thick_as_cloud are the numbers of 
correctly classified pixels by the LaSRC algorithm; 𝑛total_cloud 
is the total number of cloud pixels (both thin and thick) in the 
“L8 Biome” dataset; 𝑛clear_as_cloud and 𝑛shadow_as_cloud are the 
numbers of pixels incorrectly classified as cloud by the LaSRC 
algorithm. OE and CE errors were estimated for all clouds as 
well as for thin and thick clouds separately. 

III. RESULTS 
Fig. 3 shows examples of LaSRC cloud detection 

performance in some of the Landsat 8 images from the 
reference dataset. 

Fig. 4 shows a histogram of the residual metric values (Eq. 1) 
for clear and cloudy pixels from all scenes of the reference 
datasets. We selected a rather conservative threshold value of 
0.05 (Table I) and Fig. 4 validates the selection of this threshold, 
so clear and cloudy pixels can be discriminated.  

Table II shows overall performance of the LaSRC cloud 
detection algorithm for Landsat 8 images in terms of OA, cloud 
OE and CE, depending on the QA layers applied. 

Thick clouds were reliably detected by the LaSRC algorithm 
with OE=3.86% and CE=3.16%. Adding the adjacent cloud 
layer to the cloud mask decreased OE from 3.86% to 2.19%, 
while increased CE from 3.16% to 13.02%. This finding relates 
to the ambiguity of cloud boundary detection both in the 
validation dataset and LaSRC derived cloud mask. Adding the 
high aerosol layer to the cloud mask decreased OE from 3.86% 
to 0.63%, while substantially increased CE from 3.16% to 
27.58%. This shows that the LaSRC cloud and high aerosol 
masks basically captured all the thick cloud pixels in the 
validation dataset.  

 
Fig. 3.  Examples of cloud masks derived from LaSRC for scenes from different biomes along with the indicated overall accuracy: 
LC81080182014238LGN00 (wetlands biome, 93.72%) (a-b), LC81750622013304LGN00 (forest, 81.32%) (c-d), LC81750512013208LGN00 
(grass/crops,, 85.38%) (e-f), and LC82150712013152LGN00 (water, 83.15%) (g-h). Subplots (a), (c), (e), (g) show false color composites of Landsat 8 
images  (SWRI1-NIR-red), while corresponding cloud masks are show in (b), (d), (f), (h). 

TABLE II 
LASRC PERFORMANCE AGAINST “L8 BIOME” VALIDATION DATA IN TERMS 
OF OVERALL ACCURACY (OA, %) EQ. (3), CLOUD OMISSION ERROR (OE, %) 

EQ. (4), AND COMMISSION ERROR (CE, %) EQ. (5). 

QA mask OA  Thin cloud 
   OE      CE 

Thick cloud 
  OE        CE 

Cloud 
  OE         CE 

Cloud 90.30 42.86 14.91 3.86 3.16 13.17 2.68 
Cloud & 
adjacent cloud 89.16 23.13 37.74 2.19 13.02 7.19 10.72 

Cloud & 
high aerosol 83.09 4.94 55.86 0.63 27.58 1.67 22.64 

Cloud, adjacent & 
high aerosol 81.85 1.75 58.00 0.26 29.97 0.62 24.62 
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As expected, thin clouds from the validation dataset were in 
disagreement with the LaSRC cloud layer only yielding 
OE=42.86% and CE=14.91%. Adding the high aerosol layer 
substantially improved detection of thin clouds with OE 
improving from 42.86% to 4.94%, however at the expense of 
overdetection, i.e. with CE increasing from 14.91% to 55.86%. 
Adding the adjacent cloud layer also improved detection of thin 
clouds: CE decreased from 42.86% to 23.13%. This means that 
a portion of thin clouds in the validation dataset were detected 
as the boundary of thick clouds. Further visual inspection 
confirms this explanation. Overall, performance of the LaSRC 
algorithm for thin clouds suggests that the LaSRC high aerosol 
layer can be used to detect thin clouds; however, large 
discrepancies with the “L8 Biome” validation dataset exist in 
terms of overdetection, which corresponds to the statement of 
subjectivity of detecting thin clouds in the reference dataset [9]. 
Moreover, when analyzing the distribution of the Landsat 8 
cirrus band TOA reflectance values for thin clouds from the “L8 
Biome” dataset, approximately 47% pixels identified as thin 
cloud are uniformly distributed in the range 0.0005 to 0.01 
(reflectance units) (Fig. 5). This means that to detect such thin 

clouds, a low threshold should be selected for the cirrus band. 
These thin clouds will be misidentified by most existing 
algorithms, which use the following thresholds (reflectance 
units): 0.0113 [10], 0.02 and 0.04 [5], [6]. The other 53% of 
pixels identified as thin cloud in the “L8 Biome” dataset have 
reflectance values in the cirrus band of more than 0.01. 

 

 
Fig. 5.  Distribution of the Landsat 8 cirrus band TOA reflectance for thin cloud 
from the “L8 Biome” cloud validation dataset. 
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TABLE III 
LASRC PERFORMANCE DEPENDING ON THE BIOME TYPE. LASRC QA LAYERS 

CLOUD AND ADJACENT CLOUD WERE COMBINED. 

Category OA  Thin cloud 
   OE      CE 

Thick cloud 
  OE        CE 

Cloud 
  OE         CE 

Barren 90.43 8.51 27.70 4.62 14.13 5.83 10.32 
Forest 84.28 40.27 51.58 3.02 14.22 10.54 12.55 
Grass/Crops 92.67 25.63 45.05 0.19 9.49 3.92 8.51 
Shrubland 87.01 23.51 35.54 0.75 20.70 9.41 15.05 
Urban 89.10 7.40 48.22 5.73 13.57 5.98 11.85 
Water 90.23 24.97 40.32 0.42 10.66 5.08 9.21 
Wetlands 90.38 30.50 24.50 0.12 9.51 9.77 7.36 
        
Mean 89.16 22.97 38.99 2.12 13.19 7.22 10.69 
Standard 
deviation 

2.74 11.68 10.26 2.33 3.92 2.62 2.65 

 

TABLE IV 
LASRC PERFORMANCE DEPENDING ON THE BIOME TYPE. LASRC QA LAYERS 

CLOUD, ADJACENT CLOUD AND HIGH AEROSOL WERE COMBINED. 

Category OA  Thin cloud 
   OE      CE 

Thick cloud 
  OE        CE 

Cloud 
  OE         CE 

Barren 80.82 1.82 53.74 0.22 33.85 0.72 26.21 
Forest 81.98 2.39 58.34 0.48 25.80 0.86 21.79 
Grass/Crops 76.61 0.62 76.78 0.02 36.09 0.11 32.54 
Shrubland 84.47 0.83 44.94 0.04 33.24 0.34 23.62 
Urban 84.22 0.75 65.48 0.78 24.57 0.78 21.75 
Water 78.24 3.33 65.24 0.11 29.95 0.73 25.83 
Wetlands 87.16 2.31 41.90 0.04 24.77 0.76 18.44 
        
Mean 81.93 1.72 58.06 0.24 29.75 0.61 24.31 
Standard 
deviation 

3.70 1.03 12.31 0.29 4.77 0.28 4.50 

 

 
Fig. 4.  A histogram of inversion residual metric (Eq. 1) for clear and cloudy pixels from the USGS reference dataset “L8 Biome. Total number 
of pixels is 2.8×109. 
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When thin and thick cloud masks from the validation dataset 

are combined together, the LaSRC cloud detection algorithm 
yielded the following performance (Table II): OE=13.17% and 
CE=2.68% for the cloud layer only, and OE=0.62% and 
CE=24.62% for the combined cloud, adjacent cloud and high 
aerosol layers. Again, these numbers are dependent on the 
subjective criteria used to define the cloud boundary and thin 
cloud. 

Table III and IV show results of the LaSRC categorized by 
biomes (for two combinations of QA layers: cloud & adjacent 
cloud, and cloud, adjacent & high aerosol). Results from Table 
III and IV, in general, follow the same numerical pattern as 
Table II, and show similar performance across different biomes. 
For cloud and adjacent cloud layers (Table III), 
OE=7.22%±2.62% and CE=10.69%±2.65%, compared to 
OE=7.19% and CE=10.72% from Table II. For all three QA 
layers combined (Table IV), OE=0.61%±0.28% and 
CE=24.31%±4.50%, compared to OE=0.62% and CE=24.62% 
from Table II. These suggest that the LaSRC cloud detection 
algorithm performs reliably across different land cover 
conditions. 

IV. RECOMMENDATIONS AND OUTLOOK 
When using the LaSRC algorithm for atmospheric correction 

and cloud detection, users are recommended to mask out QA 
cloud and adjacent cloud pixels. Masking out the LaSRC 
derived high aerosol pixels depends on users’ requirements and 
applications. Users requiring high quality land surface 
reflectance values with the lowest uncertainties should also 
mask out high aerosol pixels, in addition to cloud and adjacent 
cloud pixels, recognizing that doing so will decrease the 
number of observations available for analysis. Users with less 
strict requirements and intending to provide additional post-
processing steps, such as time-series filtering/fitting or 
incorporating quality information into higher-level algorithms, 
may use surface reflectance values identified as high aerosol 
and mark them as lower quality compared to other pixels. 

Users, working on snow/ice applications and requiring 
discrimination between clouds and snow/ice, are recommended 
to use other algorithms, for example Fmask [6], as LaSRC will 
mask out both snow/ice and clouds as unreliable retrievals. 

Further research should be performed to provide a more 
objective validation of the LaSRC cloud mask, especially for 
thin clouds. A more formal and quantitative definition of thin 
cloud should be adopted, which will reduce subjectivity in 
producing ‘ground truth’ datasets for cloud validation. This, in 
our opinion, should combine, in addition to photointerpretation, 
ground based photos of the sky [28], e.g. from the Atmospheric 
Radiation Measurement (ARM) Climate Research Facility 
[29], and data on the atmospheric properties measured by 
NASA’s Aerosol Robotic Network (AERONET) [30] of sites, 
which are distributed globally. Although ground based photos 
provide a limited field of view, which makes it difficult to cover 
the full satellite scene swath (e.g. from Landsat 8), they can be 
used as a ‘seed point’ to direct an analyst to manually produce 
a cloud mask or as training data to classify clouds for the full 
scene using machine learning approaches. Also, ground based 
photos together with AOT retrievals from the Aeronet stations 
can provide a cloud opacity classification [28] and, thus, can 
provide a quantitative approach for thin clouds definition. An 
example of a geo-referenced ground photo of clouds made 
synchronously with Landsat 8 acquisitions over NASA’s 
Goddard Space Flight Center (GSFC) is shown in Fig. 6. 

V. CONCLUSION 
In this study, we validated the LaSRC derived cloud mask for 

snow/ice-free Landsat 8 images using the “L8 Biome” cloud 
validation dataset, generated by USGS. Within the atmospheric 
correction process, the LaSRC algorithm generates several QA 
layers related to clouds, which, unlike many other cloud 
detection algorithms, are based on land surface reflectance and 
incorporate information on atmospheric properties. The 
analysis was performed using 79 Landsat 8 scenes, which are 
distributed globally over multiple biomes. The LaSRC cloud 
detection algorithm was reliable in identifying thick clouds 

 
Fig. 6.  A geo-referenced ground photo (a) and corresponding Landsat 8 images, namely a true-color composition of bands 4-3-2 (Red-Green-Blue) 
stretched from 0 to 0.25 (reflectance units) (b) and cirrus band stretched from 0.0005 to 0.006 (c), acquired on October 25, 2017 at 11:46 local time. 
The AOT at 500 nm was 0.1, according to AERONET measurements over NASA Goddard Spec Flight Center (GSFC) (the center of images is 
76.84109°W, 38.99532°N). 
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from the reference data with commission and omission errors 
less than 4%. Larger discrepancies were observed for thin 
clouds, which can be related to the subjectivity in identifying 
thin cloud in the reference data. We have provided 
recommendations on using QA layers produced by LaSRC, 
when users are advised to mask out cloud and adjacent cloud 
pixels, as well as high aerosol pixels, depending on the 
applications and requirements. We have outlined further 
research to potentially reduce subjectivity in producing 
reference cloud masks in optical satellite imagery. In our 
opinion, these results are promising, since the same generic 
LaSRC algorithm can be relatively easy extended to other 
satellites, for example Sentinel-2 [31], especially taking into 
account the absence of a thermal band. 

REFERENCES 
[1] P. L. Scaramuzza, M. A. Bouchard, and J. L. Dwyer, “Development of 

the Landsat data continuity mission cloud-cover assessment algorithms,” 
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1140–1154, 2012. 

[2] B. Hollingsworth, L. Chen, S. Reichenbach, and R. Irish, “Automated 
cloud cover assessment for Landsat TM images,” in Proc. SPIE Conf., 
vol. 2819, Imaging Spectrometry II, 1996, pp. 170–179. 

[3] R. R. Irish, “Landsat 7 automatic cloud cover assessment,” in Proc. SPIE 
Int. Soc. for Optical Eng., Apr. 2000, pp. 348–355. 

[4] R. R. Irish, J. L. Barker, S. N. Goward, and T. Arvidson, “Characterization 
of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) 
algorithm,” Photogramm. Eng. Remote Sens., vol. 72, no. 10, pp. 1179–
1188, Oct. 2006. 

[5] Z. Zhu, and C. E. Woodcock, “Object-based cloud and cloud shadow 
detection in Landsat imagery,” Remote Sens. Environ., vol. 118, pp. 83–
94, 2012. 

[6] Z. Zhu, S. Wang, and C. E. Woodcock, “Improvement and expansion of 
the Fmask algorithm: cloud, cloud shadow, and snow detection for 
Landsats 4–7, 8, and Sentinel 2 images,” Remote Sens. Environ., vol. 159, 
pp. 269–277, 2015. 

[7] S. Qiu, B. He, Z. Zhu, Z. Liao, and X. Quan, “Improving Fmask cloud 
and cloud shadow detection in mountainous area for Landsats 4–8 
images,” Remote Sens. Environ., vol. 199, pp. 107–119, 2017. 

[8] Z. Zhu, and C. E. Woodcock, “Automated cloud, cloud shadow, and snow 
detection in multitemporal Landsat data: An algorithm designed 
specifically for monitoring land cover change,” Remote Sens. Environ., 
vol. 152, pp. 217–234, 2014. 

[9] S. Foga, et al., “Cloud detection algorithm comparison and validation for 
operational Landsat data products,” Remote Sens. Environ., vol. 194, 
pp. 379–390, 2017. 

[10] M. J. Wilson, and L. Oreopoulos, “Enhancing a simple MODIS cloud 
mask algorithm for the Landsat data continuity mission,” IEEE Trans. 
Geosci. Remote Sens., vol. 51, no. 2, pp. 723–731, 2013. 

[11] B. A. Baum, et al., “MODIS cloud-top property refinements for Collection 
6,” J. Appl. Meteorol. Climat., vol. 51, no. 6, pp. 1145–1163, 2012. 

[12] A. Frei, M. Tedesco, S. Lee, J. Foster, D. K. Hall, R. Kelly, and D. A. 
Robinson, “A review of global satellite-derived snow products,” Adv. 
Space Res., vol. 50, no. 8, pp. 1007–1029, 2012. 

[13] O. Hagolle, M. Huc, D. V. Pascual, and G. Dedieu, “A multi-temporal 
method for cloud detection, applied to FORMOSAT-2, VENµS, 
LANDSAT and SENTINEL-2 images,” Remote Sens. Environ., vol. 114, 
no. 8, pp. 1747–1755, 2010. 

[14] B. Wang, A. Ono, K. Muramatsu, and N. Fujiwara, “Automated detection 
and removal of clouds and their shadows from Landsat TM images,” 
IEICE Trans. Inf. Sys., vol. 82, no. 2, pp. 453–460, 1999. 

[15] D. Frantz, A. Röder, T. Udelhoven, and M. Schmidt, “Enhancing the 
detectability of clouds and their shadows in multitemporal dryland 
Landsat imagery: Extending Fmask,” IEEE Geosci. Remote Sens. Lett., 
vol. 12, no. 6, pp. 1242–1246, 2015. 

[16] M. J. Hughes, and D. J. Hayes, “Automated detection of cloud and cloud 
shadow in single-date Landsat imagery using neural networks and spatial 
post-processing,” Remote Sens., vol. 6, no. 6, pp. 4907–4926, 2014. 

[17] Y. Yuan, and X. Hu, “Bag-of-words and object-based classification for 
cloud extraction from satellite imagery”, IEEE J. Sel. Topics Appl. Earth 
Observ. Remote Sens., vol. 8, no. 8, pp. 4197–4205, 2015. 

[18] S. A. Ackerman, R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and 
M. McGill, “Cloud detection with MODIS. Part II: validation,” J. 
Atmosph. Ocean. Technol., vol. 25, no. 7, pp. 1073–1086, 2008. 

[19] E. Vermote, C. Justice, M. Claverie, and B. Franch, “Preliminary analysis 
of the performance of the Landsat 8/OLI land surface reflectance 
product,” Remote Sens. Environ., vol. 185, pp. 46–56, 2016. 

[20] G. Doxani, E. Vermote, J.-C. Roger, F. Gascon., S. Adriaensen, D. Frantz, 
et al., “Atmospheric correction inter-comparison exercise,” Remote 
Sens., vol. 10, no. 2, art. no. 352, 2018. 

[21] E. Vermote, D. Tanre, J. Deuze, M. Herman, and J. Morcette, “Second 
Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview,” 
IEEE Trans. Geosci. Remote Sens., vol. 35, no. 3, pp. 675–686, 1997. 

[22] S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm Jr, 
“Validation of a vector version of the 6S radiative transfer code for 
atmospheric correction of satellite data. Part I: Path radiance,” Appl. 
Optics, vol. 45, no. 26, pp. 6762–6774, 2006. 

[23] E. F. Vermote, and S. Kotchenova, “Atmospheric correction for the 
monitoring of land surfaces,” Journal of Geophysical Research: 
Atmospheres, vol. 113, art. no. D23, 2008. 

[24] E. Vermote, C. Justice, and I. Csiszar, “Early evaluation of the VIIRS 
calibration, cloud mask and surface reflectance Earth data records,” 
Remote Sensing of Environment, vol. 148, pp. 134-145, 2014. 

[25] S. Skakun, C. O. Justice, E. Vermote, and J. C. Roger, “Transitioning from 
MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for 
agricultural monitoring,” International Journal of Remote 
Sensing, vol.39, no. 4, pp. 971-992, 2018. 

[26] R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, 
“Second-generation operational algorithm: Retrieval of aerosol properties 
over land from inversion of Moderate Resolution Imaging 
Spectroradiometer spectral reflectance,” J. Geophys. Res.: Atmosph., vol. 
112, art. no. D13211, 2007. 

[27] L8 Biome Cloud Validation Masks. (2016). U.S. Geological Survey, data 
release. [Online]. Available: http://doi.org/10.5066/F7251GDH 

[28] M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and 
J. Kleissl, “A method for cloud detection and opacity classification based 
on ground based sky imagery,” Atmosph. Meas. Techn., vol. 5, no. 11, pp. 
2881–2892, 2012. 

[29] G. M. Stokes, and S. E. Schwartz, “The Atmospheric Radiation 
Measurement (ARM) Program: Programmatic background and design of 
the cloud and radiation test bed,” Bull Am. Meteorol. Soc., vol. 75, no. 7, 
pp. 1201–1221, 1994. 

[30] B. N. Holben, et al., “AERONET—A federated instrument network and 
data archive for aerosol characterization,” Remote Sens. Environ., vol. 66, 
no. 1, pp. 1–16, 1998. 

[31] S. Skakun, E. Vermote, J.-C. Roger, and C. Justice, “Multispectral 
Misregistration of Sentinel-2A Images: Analysis and Implications for 
Potential Applications,”’ IEEE Geosci. Remote Sens. Lett., vol. 14, no. 12, 
pp. 2408–2412, 2017. 

 
Sergii Skakun received the M.S. (Hons.) 
degree in applied mathematics from the 
Physics and Technology Institute, NTUU 
“Kyiv Polytechnic Institute,” Kyiv, 
Ukraine, in 2004, and the Ph.D. degree in 
computer science from the National 
Academy of Sciences of Ukraine, in 2005.  

He is currently an Associate Research 
Professor at Department of Geographical 

Sciences at University of Maryland, College Park, MD, USA, 
and Research Scientist at the Terrestrial Information Systems 
Laboratory at NASA Goddard Space Flight Center (GSFC), 
Greenbelt, MD, USA. His research interests are in advancing 
methods, models and emerging technologies in the area of data 
science for heterogeneous remote sensing data fusion, 
processing and analysis, and their applications to the areas of 
societal benefit. 



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 
 

8 

 
Eric Vermote received the Ph.D. degree 
in atmospheric optics from the University 
of Lille, Lille, France, in 1990.  

Until 2012, he was a Research 
Professor with the Department of 
Geographical Sciences, University of 
Maryland, College Park, MD, USA. He 
is currently a Research Physical Scientist 

with the Terrestrial Information Systems Laboratory, NASA 
Goddard Space Flight Center, Greenbelt, MD. He is a member 
of the Moderate Resolution Imaging Spectroradiometer Science 
(MODIS) Team, the Soumi-NPP VIIRS Science Team, and the 
Landsat Science Team, and is responsible for the atmospheric 
correction over land surfaces in the visible to middle infrared. 
His research interests are in radiative transfer modeling, 
vicarious calibration, atmospheric correction, aerosol retrieval, 
and the generation of climate data record for terrestrial studies. 

 
Jean-Claude Roger received the 
Ph.D. degree in atmospheric 
physics from the University of Lille 
1, Villeneuve-d’Ascq, France, in 
1991 for a thesis on “Spatial 
Studies in Polarized Light - 
Preparation of the POLDER 
instrument”.  

He became a Full-Professor in 
atmospheric physics in 2007 at the University Blaise Pascal, 
Clermont-Ferrand, France. He is currently a Research Professor 
with the Department of Geographical Sciences, University of 
Maryland, College Park, MD, USA. He is also a Research 
Scientist with the Terrestrial Information Systems Laboratory 
(Code 619), NASA Goddard Space Flight Center, Greenbelt, 
MD, USA. He does research for land and atmosphere 
applications (remote sensing, radiative transfer, polarization, 
field experiments, etc.). He is particularly involved in 
atmospheric correction, aerosols characterization for climatic 
impact, land product with applications to agriculture, satellite 
Cal/Val exercises and radiative transfer code development such 
as 6S. He is a Co-PI of the CEOS-WGCV ACIX and CEOS-
WGCV ACIX II – CMIX activities. 

 
Chris Justice received the Ph.D. 
degree from the University of 
Reading, Reading, U.K., in 1977. 

He became a Professor and 
Research Director of Geography with 
the University of Maryland, in 2001, 
and in 2010 became the Department 
Chair to the Department of 

Geographical Sciences. He is a Program Scientist for NASA’s 
Land Cover Land Use Change (LCLUC) Program. He is the 
Land Discipline Leader for the NASA Moderate Imaging 
Spectroradiometer (MODIS) and the Soumi-NPP VIIRS 
Science Team and is responsible for the MODIS Fire Product. 
He is the Co-Chair of the NASA LANCE User Working Group. 

He is a member of the international GOFC/GOLD-Fire 
Implementation Team. He is the Co-Chair of the GEOGLAM 
Initiative. His current research is on land cover and land use 
change, land observations and data products, global agricultural 
monitoring, and their associated information technology and 
decision support systems. 

 
Jeffrey G. Masek received the B.A. 
degree in geology from Haverford 
College, Haverford, PA, USA, in 1989 
and the Ph.D. degree in geological 
sciences from Cornell University, 
Ithaca, NY, USA, in 1994.  

He is currently a Chief of the 
Biospheric Sciences Laboratory, 
NASA Goddard Space Flight Center, 

Greenbelt, MD, USA. He also serves as the NASA Landsat 
Project Scientist, and has previously held positions at 
University of Maryland, College Park, MD, USA; Hughes 
Information Systems; and Cornell University. His research 
interests include mapping land cover change in temperate 
environments, application of advanced computing to remote 
sensing, and satellite remote sensing techniques. 

 


