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A Constrained Sparse-Representation-Based Binary
Hypothesis Model for Target Detection in

Hyperspectral Imagery
Qiang Ling , Yulan Guo , Zaiping Lin, Li Liu, and Wei An

Abstract—In this paper, we propose a novel constrained sparse-
representation-based binary hypothesis model for target detection
in hyperspectral imagery. This model is based on the concept that a
target pixel can only be linearly represented by the union dictionary
combined by the background dictionary and target dictionary,
while a background pixel can be linearly represented by both the
background dictionary and the union dictionary. To be physically
meaningful, the non-negativity constraint is imposed to the weight
vector. To suppress the target signals in the background dictionary,
the upper bound constraint is also imposed to the weight vector.
These upper bounds are adaptively estimated by the similarities
between the atoms in the background dictionary and target.
Then, the weight vectors under different hypotheses are recovered
by a fast coordinate descent method. Finally, both the residual
difference and weight difference between the two hypotheses are
used to perform the target detection. An important advantage of
the proposed method is the robustness to varying target contam-
ination. Extensive experiments conducted on real and synthetic
hyperspectral datasets have demonstrated the superiority of the
proposed detector in detection performance and computational
cost. Specifically, for the Avon dataset, our method achieves the
highest area under the receiver operating characteristic (ROC)
curve of 99.91%, and achieves the shortest runtime of 109.76 s.

Index Terms—Binary hypothesis, constrained sparse represen-
tation (SR), hyperspectral imagery (HSI), target detection.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) has opened up new
opportunities for the target detection due to the abundant

spatial and spectral information of distinct objects [1]. Unlike
the traditional spatial-information-based image processing tech-
niques, the rich spectral information available in HSI data can be
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used to build more elaborate spatial–spectral models to achieve
a more accurate target detection. Hyperspectral target detec-
tion aims to locate all instances of an target in a scene with
prior spectral characteristics of target. It has been widely used
in many civilian and military applications including agricul-
tural estimation [2], mineral exploration [3], food safety and
quality monitoring [4], search and rescue [5], and explosive
detection [6].

With prior spectral characteristics of target, target detection
can be considered as a binary classifier where pixels are labeled
as target or background. Therefore, target detection algorithms
are typically derived from the binary hypothesis model (i.e., tar-
get absent hypothesis and target present hypothesis). According
to the model used for spectral variation, classical target detec-
tion approaches can be classified into three types: probabilistic
model, subspace model, and hybrid model. Probabilistic models
assume that the background or target can be modeled with a spe-
cific distribution, e.g., multivariate normal distribution [7], ellip-
tically contoured distribution [8], and finite mixture distribution
[9]. Well-known probabilistic models include spectral matched
filter (SMF) [7] and adaptive coherence estimator (ACE) [10].
The SMF first estimates the background covariance matrix, and
then, adopts the generalized likelihood ratio test to perform
detection with a single target spectrum. Subspace models as-
sume that the background or target lies in a low-dimensional
subspace, but the distribution within the subspace does not mat-
ter. Well-known subspace models include orthogonal subspace
projection (OSP) [11] and sparsity-based detectors [12], [13].
The OSP assumes that target has some components orthogonal
to the background subspace, and detects target by maximiz-
ing the signal-to-noise ratio (SNR) in the subspace orthogonal
to the background subspace. Hybrid models employ both the
probabilistic model and the subspace model. The well-known
hybrid models include matched subspace detector (MSD) [14]
and target-constrained interference-minimized filter [15]. The
MSD is modeled using the target and background subspaces
constructed by significant eigenvectors. Meanwhile, it assumes
that the binary hypothesis follows a multivariate normal distri-
bution with the same scaled identity covariance matrix but dif-
ferent means [13]. Besides, many nonparametric methods have
also been proposed. Examples include kernel-based detectors
[16], [17], manifold-based detectors [18], [19], tensor-based
detectors [20], [21], and multitask-learning-based detectors
[22], [23].
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In recent years, sparse representation (SR) has been success-
fully applied to HSI target detection [12], [13], [22], [24], [25].
The basic sparsity-based detector [12] uses a sparsity model to
represent the test pixel by a few training samples, and directly
employs the residuals (i.e., reconstruction errors) to perform the
target detection. The simultaneous joint sparsity detector [24]
forces the pixels within a small neighborhood to be simultane-
ously represented by a few common training samples but with
different weights. The sparse-representation-based binary hy-
pothesis (SRBBH) detector [13] effectively combines SR and
binary hypothesis, then sparsely and separately represents the
test pixel with different training samples under different hy-
potheses. There are two advantages of these sparsity-based de-
tectors, which are as follows: 1) the background data do not have
to follow any specific statistical distribution and 2) compared
to algorithms using a single target spectrum (such as SMF), the
target spectral characteristics are better represented by sparsity-
based detectors as the target subspace constructed by prior target
spectra is used. These sparsity-based detectors usually use only
the residuals to detect targets. Actually, the weight is also an
important information for the target detection as it represents
the target or background fraction of a test sample.

However, the detection performance of most existing
detectors degenerates when the background is contaminated
by outliers or pixels with target signal [26]. Due to the limited
number of training samples selected in background dictionary,
sparsity-based detectors are especially sensitive to target con-
tamination. For probabilistic models, this contamination results
in a corruption of the estimated background covariance matrix
[27]. Therefore, many robust covariance matrix estimation
methods, such as quasi-local estimation [28] and minimum
covariance determinant [29], have been proposed. For subspace
models, this contamination results in a corruption of the esti-
mated background subspace. The background subspace, which
employs the first few principal components to identify the large
variance directions, can be robustly estimated by robust prin-
cipal components methods [30], [31]. The hybrid sparsity and
statistics (HSS) detector [25] incorporates the statistical distri-
bution characteristics with the sparse representation theory. To
handle target contamination, a purification process is also em-
ployed to obtain a pure background dictionary. Another example
to alleviate the effect of target contamination is the support
vector machine (SVM) [32], which introduces a regularization
term with slack variables to avoid overfitting caused by outliers.

In this paper, a robust HSI target detection method is proposed
based on constrained sparse representation and binary hypothe-
sis model (CSRBBH). Similar to other sparsity-based detectors,
it is a nonparametric model without requiring any background
statistical information. Unlike other sparsity-based detectors,
two constraints are imposed to the weight vector. First, the non-
negativity constraint is imposed for physical meaning. Second,
the upper bound constraint is imposed to suppress the target
signals in the background dictionary. The motivation lies in the
suppression of atoms that are similar to target in the background
dictionary. That is, the weights of atoms similar to the target are
given small upper bounds, and the weights of atoms different
from the target are given large upper bounds. Therefore, adap-

tive estimation of the upper bound vector is achieved. Another
difference between our method and the existing sparsity-based
methods is, both the residual difference and weight difference
between the two hypotheses are used to detect targets in our de-
tector, resulting in an improved detection performance. More-
over, our sparsity model is solved by a fast dual coordinate
descent (DCD) method. The contributions of this paper can be
summarized as follows.

1) A CSRBBH model is proposed. Both non-negativity con-
straint and upper bound constraint are imposed to the
weight vector. This model is nonparametric and physi-
cally meaningful.

2) Both the recovered residual and weight information are
used in the proposed detector. This fully exploits the
weight difference and residual difference between the two
hypotheses to achieve a better detection performance.

3) The upper bound vector is adaptively estimated. This es-
timation is invariant to spectral intensity and can suppress
target signals in the background dictionary. Consequently,
the proposed detector is robust to target contamination.

The rest of this paper is organized as follows. The pro-
posed CSRBBH algorithm and its implementation details are
described in Section II. Experiments on real HSI datasets
are presented in Section III, followed by the conclusions in
Section IV.

II. CSRBBH FOR TARGET DETECTION

In this section, we propose a CSRBBH model for the target
detection. First, the proposed CSRBBH model is derived from
the SRBBH model with constraints on the weight vector. Then,
the adaptive estimation of the upper bound vector is described
in details. Finally, the scheme and some implementation tricks
of the proposed detector are introduced.

A. SRBBH Model

In the SRBBH model [13], a pure background is assumed to
lie in the background subspace, and a pure target or a subpixel
target is assumed to lie in a low-dimensional union subspace
(which is combined by the target and background subspaces).
Therefore, the union of the target and background dictionaries
can linearly and sparsely represent a pure target or a subpixel tar-
get, while the single background dictionary cannot. This binary
hypothesis model is expressed as

H0 : y = Abα + n0 , target absent

H1 : y = Abβb + Atβt + n1 = Aβ + n1 , target present
(1)

where y denotes the test pixel, A = [Ab ,At ] ∈ RM ×(Nb +Nt )

denotes the union dictionary consisting of the background dic-
tionary Ab and target dictionary At , M denotes the number of
bands, Nb and Nt denote the number of atoms in Ab and At ,
respectively. α is the weight vector corresponding to Ab under
hypothesis H0 . βb and βt are the weight vectors corresponding
to Ab and At under hypothesis H1 , respectively. β = [βT

b ,βT
t ]T
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is a sparse vector concatenated by βb and βt . n0 and n1 are
noise terms.

With a specific sparsity level, the sparse vector α and β can
be recovered by solving

min
α

‖y − Abα‖2
2 s.t. ‖α‖0 ≤ K

min
β

‖y − Aβ‖2
2 s.t. ‖β‖0 ≤ K (2)

where ‖·‖0 denotes the l0 norm, and K is a given upper bound on
the sparsity level. These problems can be approximately solved
by the orthogonal matching pursuit (OMP) [33] method.

This recovery process implicitly leads to a competition be-
tween hypothesis H0 and hypothesis H1 . The residuals recov-
ered by these two hypotheses are

r0(y) = ‖y − Abα̂‖2

r1(y) = | |y − Aβ̂| |2 . (3)

Then, the class label of the test pixel y can be determined by
comparing these residuals

DSRBBH(y) = r0(y) − r1(y). (4)

B. CSRBBH Model

Similar to the SRBBH algorithm, the binary hypothesis model
(1) is also used in our CSRBBH algorithm. According to the
linear mixture model (LMM), each mixed pixel can be lin-
early represented by several endmembers (pure pixels) weighted
by their corresponding abundances [34]. These abundances are
non-negative and their sum is equal to one. Due to the varia-
tion of illumination and atmosphere condition, the spectra of
an object exhibit significant intensity variations throughout all
spectral bands [35], especially when the prior target spectra are
collected from other HSIs or measured by ground experiments.
This strong spectral variability is the main criticism about the
abundance sum-to-one constraint [36]. Consequently, we only
impose the non-negativity constraint on the weight vector. Then,
the optimization problem of the hypothesis H1 is changed to

min
β

‖y − Aβ‖2
2

s.t. βi ≥ 0, i = 1, . . . , N (5)

where N = Nb + Nt is the number of atoms in the union dic-
tionary A. The objective function can be replaced by

‖y − Aβ‖2
2 = (y − Aβ)T(y − Aβ)

= βTATAβ − 2yTAβ + yTy (6)

where yTy is a constant and can be removed from the objective
function.

Note that, compared to the SRBBH model, the sparsity con-
straint ‖β‖0 ≤ K is removed in (5). This is due to the Karush–
Kuhn–Tucker (KKT) conditions [37] (which are applied to
constrained convex optimization problems). According to the
KKT conditions, the sparsity of optimal solution β∗ can still be
guaranteed after removing this sparsity constraint, more details
can be found in [38].

In practice, the background dictionary Ab is usually gener-
ated locally by a sliding dual window centered at the test pixel
y [39], while the target dictionary At is usually obtained by a
spectrometer in ground experiments or endmember extraction
from HSI. However, during the sliding process of the dual win-
dow, some target pixels may inevitably fall into Ab , especially
when targets are densely and evenly distributed in the scene.
This will lead to an impure background dictionary for the test
pixel and result in a weakened discriminative performance [25].
To avoid this problem, we introduce parameters Ci as the upper
bound of βi to limit the weights of target atoms presented in
Ab . Then, the optimization problem of hypothesis H1 can be
described as

min
β

βTATAβ − 2yTAβ

s.t. 0 ≤ βi ≤
{

Ci i = 1, . . . , Nb

+∞ i = Nb + 1, . . . , N
(7)

where Ci ≥ 0. If all atoms in At are set with small Ci , and
the spectral intensities of these atoms are much smaller than
the test target pixel, the test target pixel cannot be effectively
recovered. Therefore, Ci corresponding to the atoms in At are
set to +∞. The rest Ci are used to construct an upper bound
vector C(C = [C1 , . . . , CNb

]T). Apparently, Ci corresponding
to target pixels presented in Ab should be small, and Ci cor-
responding to background pixels should be large. The adaptive
estimation of C will be described in Section II-C.

To maintain the comparability between the hypotheses H0
and H1 , the same upper bound constraints for the atoms in Ab

are also used in the hypothesis H0 . Similarly, we can obtain the
optimization problem of the hypothesis H0 as

min
α

αTAT
b Abα − 2yTAbα

s.t. 0 ≤ αi ≤ Ci, i = 1, . . . , Nb. (8)

The optimization problem of (8) can be replaced by

min
α̃

α̃TATAα̃ − 2yTAα̃

s.t. 0 ≤ α̃i ≤
{

Ci, i = 1, . . . , Nb

0, i = Nb + 1, . . . , N
(9)

where α̃T = [αT ,0T ], 0 is an Nt × 1 vector of all zeros.
Equations (7) and (9) are very similar to the Lagrange dual

problem of the linear SVM [40]. They are quadratic program-
ming problems and can be solved by a standard quadratic pro-
gramming solver with a computational cost of O(N 3), which
is too expensive. Due to the extensive applications of the SVM
over past decades, many fast methods have been proposed to
solve these problems, such as the cutting plane method [41], the
bundle methods [42], and the exponentiated gradient method
[43]. In this paper, a DCD method [44] is employed to solve
these problems.

Similar to the SRBBH, once the optimal solution α̃∗ and β∗

are obtained, the residuals can be calculated by

r0(y) = ‖y − Aα̃∗‖2 (10)

r1(y) = ‖y − Aβ∗‖2 . (11)
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Different from the SRBBH, both the residuals and weights
are used to detect targets

DCSRBBH(y) = ‖α̃∗ − β∗‖1 (r0(y) − r1(y)) (12)

where ‖·‖1 denotes the l1 norm. ‖α̃∗ − β∗‖1 denotes the weight
difference between hypotheses H0 and H1 , and r0(y) − r1(y)
denotes their residual difference. If DCSRBBH(y) is larger than a
given threshold, then y is labeled as target.

If y is a pure background pixel, α̃∗ and β∗ are very similar,
then ‖α̃∗ − β∗‖1 is close to 0. Meanwhile, both r0(y) and r1(y)
are close to 0, hence, the detection value DCSRBBH(y) is close to
0. In contrast, if y is a pure target pixel or a mixed target pixel,
α̃∗ and β∗ are different, then ‖α̃∗ − β∗‖1 is large. Meanwhile,
r0(y) is large, r1(y) is close to 0, hence, the detection value
DCSRBBH(y) is much larger than 0. Therefore, the differences
between the background pixels and target pixels are enlarged by
multiplying the weight difference with the residual difference.

C. Estimation of the Upper Bound Vector

In this section, the upper bound vector C is adaptively esti-
mated to suppress the target signals in the background dictio-
nary Ab . As aforementioned, Ci corresponding to target pixels
presented in Ab should be small, and Ci corresponding to back-
ground pixels presented in Ab should be large. Therefore, a
similarity measurement is required to determine which pixels
are more likely to be a target. To achieve invariance to spectral
intensities, the correlation coefficient [45] ρ is used in this paper

ρ(x,y) =
(x − x̄)T(y − ȳ)

‖x − x̄‖2 ‖y − ȳ‖2
(13)

where ρ ∈ [−1, 1], x,y ∈ RM denotes the M -dimensional
spectral vectors, x̄ and ȳ denotes the average value of x and
y, respectively. An ρ close to 1 represents a high similarity be-
tween x and y. This similarity measurement has been widely
used in the hyperspectral classification [46]. One of the most
important property of the correlation coefficient is its invariance
to multiplicative scaling

ρ(k1x + b1 , k2y + b2) = ρ(x,y) (14)

where k1 , k2 > 0. This property means that the correlation co-
efficient between two pixels is invariant to spectral intensities,
and sensitive to spectral shape.

For each pixel ai in Ab , its correlation coefficients to all
prior target spectra are first calculated. Then, due to the multiple
type of prior target spectra, the maximum of these correlation
coefficients are considered as the similarity of ai to target

si = max{ρ(ai ,aj ) | j = Nb + 1, . . . , N} (15)

where i = 1, . . . , Nb .

Finally, we use a piece-wise function to map this similarity
to the upper bound Ci as

Ci =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞, si < smin
1

2ηNb
+

1
2ηNb [1 + ek(si −s0 ) ]

, smin ≤ si ≤ smax

1
2ηNb

, si > smax

(16)
where s0 = (smin + smax)/2, smin, smax, and k are given parame-
ters. η denotes the fraction of target atoms in the background dic-
tionary. If smin ≤ si ≤ smax, the piece-wise function is a sigmoid
function, which is centrosymmetric at point (s0 , 3/(4ηNb)) and
whose bending degree is controlled by k. This sigmoid function
is close to 1/(2ηNb) if si is close to smax, and close to 1/(ηNb)
if si is close to smin.

If si < smin, ai is supposed to be a background pixel, then Ci

is set to +∞. If smin ≤ si ≤ smax, ai can be a target pixel or a
background pixel, then the sigmoid function is used to estimate
Ci . Usually, due to the similar collection conditions within a
small region, the sum-to-one constraint is approximately sat-
isfied when representing a test background pixel. Considering
the background dictionary with contamination level η, there are
ηNb target atoms in Ab . Apparently, Ci < 1/(ηNb), so the sum
of Ci corresponding to the target atoms in Ab is smaller than
1. That means a test target pixel cannot be effectively recovered
by Ab . If si > smax, ai is supposed to be a target pixel, then Ci

is set to 1/(2ηNb) rather than 0. That is because, some back-
ground regions in a scene can be very similar to target. If Ci

is set to 0, Ci corresponding to the background atoms in these
regions are likely all set to 0. Consequently, the test background
pixel cannot be effectively represented, resulting in false alarms.
If Ci is set to 1/(2ηNb), the sum of Ci corresponding to the
background atoms in these regions can be larger than 1 due to
the redundant background information in Ab . Consequently, the
test background pixel can be recovered by Ab . Therefore, the
target signals in the background dictionary are suppressed by
this estimation.

Parameters smin, smax, and k in the sigmoid function need to
be estimated. We have computed the correlation coefficients be-
tween same materials and different materials under different data
collection platforms and instruments. It can be observed from
these data that, samples with correlation coefficients smaller
than 0.5 are very likely to be different materials, samples with
correlation coefficients larger than 0.9 are very likely to be
same materials, and samples with correlation coefficients be-
tween 0.5 and 0.9 can be same materials, different materials,
or mixed materials. Therefore, smin and smax are set to 0.5 and
0.9, respectively. k is set to 20 to ensure the sigmoid function
is close to 1/(2ηNb) at si = 0.9. Under these parameters, the
sigmoid function is shown in Fig. 1.

To detect a target pixel with its spatial neighbors contaminated
by target signals, the adaptive estimation of C can give small up-
per bounds on the weights corresponding to target atoms. There-
fore, the test target pixel cannot be effectively represented by
the background dictionary. In contrast, the test background pixel
can be effectively represented due to the large upper bounds on
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Fig. 1. Sigmoid function with Nb = 100, η = 5%, smin = 0.5, smax = 0.9,
and k = 20.

the weights corresponding to background atoms and the redun-
dant background information in the spatial neighborhood. Con-
sequently, although the background dictionary is contaminated
by target signals, targets can be detected due to the adaptive
estimation of C.

D. Final Scheme for the CSRBBH

The final scheme for the proposed CSRBBH algorithm is
described in this section. Some implementation tricks are used
to accelerate the CSRBBH. To be more suitable for the HSI
target detection, we have slightly modified the DCD method,
details are described in the Appendix. The gradient of the ob-
jective function is introduced as an additional both input and
output parameter in the modified DCD method. It will be used
in the following tricks. The semigradients of (7) and (9) can be
expressed as

Gb = Qα̃ + p, G = Qβ + p (17)

where Q = ATA and pT = −yTA. The computational com-
plexity of Q and p is O(MN 2) and O(MN), respectively.

1) Trick 1: The calculation of C can be simplified. The cor-
relation coefficient between ai and aj can be replaced as

ρ(ai ,aj ) =
(ai − āi)T(aj − āj )

‖ai − āi‖2 ‖aj − āj‖2

=
Qij − M āiāj√

(Qii − M āiāi)(Qjj − M āj āj )
(18)

where Qij , Qii , and Qjj can be extracted from Q. ā denotes the
average value of a. The computational complexity of all ā is
O(MN). Therefore, the computational complexity of the upper
bound vector C is O(MN + NtNb).

2) Trick 2: The modified DCD method can be accelerated
by a proper initial point. When solving (7) and (9), the DCD
requires an initial feasible solution (α̃,Gb) and (β,G). As
mentioned in the Appendix, the initial feasible solution is usu-
ally set to (0,p). This initialization strategy is adopted when

solving (9)

α̃ = 0, Gb = p. (19)

The same initialization strategy can also be adopted when
solving (7). In this case, solving (7) and solving (9) have similar
computational cost. Using the optimal solution information of
(9), we propose a more effective initialization strategy when
solving (7)

β = α̃∗, G = G∗
b . (20)

If y is a pure background pixel without any target compo-
nents, it can and only can be effectively represented by the atoms
in Ab . Therefore, the optimal solution of (7) and (9) will be the
same. In this case, the number of iterations is zero when solving
(7). Fortunately, targets are usually small and rarely present in
the scene, and most of the pixels in the scene are background
pixels. Therefore, the computational cost of solving (7) in the
whole scene can be ignored.

3) Trick 3: The computational cost of calculating the resid-
uals can also be reduced. Combining (6), (11), and (17), r1(y)
can be calculated in a more efficient way as

r1(y) =
√

β*TATAβ∗ − 2yTAβ∗ + yTy

=
√

β*T(G∗ + p) + yTy. (21)

The computational complexity of (11) is O(MN), such op-
erations are expensive. While the computational complexity of
(21) is O(M + N), which is much smaller than O(MN). Sim-
ilarly, r0(y) can be calculated by

r0(y) =
√

α̃*T(G∗
b + p) + yTy. (22)

As described in the Appendix, the modified DCD method is
terminated when the decrease of objective value reaches a tol-
erance ε. Usually, a large tolerance ε should be set for a large
absolute optimal objective value. To easily set ε for different
HSI datasets with different ranges of pixel values, we linearly
normalize an HSI to interval (0, 1). In this paper, ε is set to 10−6 .
Combining these tricks, the implementation details of the pro-
posed CSRBBH method are presented in Algorithm 1. The mod-
ified DCD method has a computational cost of O(log(1/ε)N).
Therefore, the total computational complexity of our CSRBBH
algorithm is about O(MN 2 + log(1/ε)N) for each test pixel.
As described in Algorithms 1 and 2, the maximum matrices to
save are A and Q, which have the space complexity of O(MN)
and O(N 2), respectively. Therefore, the space complexity of our
CSRBBH algorithm is about O(MN + N 2). Using the kernel
trick, the proposed CSRBBH algorithm can be easily extended
to a kernel version.

III. EXPERIMENTAL RESULTS

In this section, three widely used HSI datasets are first intro-
duced. Then, the capability of the proposed method to represent
a target pixel, a mixed pixel, and a background pixel is ana-
lyzed in details. The robustness of the proposed method with
respect to target contamination is also demonstrated. Finally, the
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Algorithm 1: The CSRBBH Algorithm for Target
Detection.
Input: Three-dimensional hyperspectral cube, target
dictionary At , dual window size (ωin, ωout), and parameter η.
Initialize: Linearly normalize the whole HSI.
for each test pixel y in the scene do

1) Collect Ab based on (ωin, ωout), A = [Ab ,At ];
2) Q = ATA, pT = −yTA. Calculate C by (16);
3) Initialize the solution of DCD by (19);
4) Solve (9) and obtain the optimal solution (α̃∗,G∗

b );
5) Initialize the solution of DCD by (20);
6) Solve (7) and obtain the optimal solution (β∗,G∗);
7) Calculate r0(y) and r1(y) by (22) and (21);
8) Compute the detection result via (12).

end for
Output: Target detection map.

Fig. 2. Synthetic Urban dataset. (a) False color image. (b) Prior target spectra.
(c) Ground-truth map of Urban-I. (d) Ground-truth map of Urban-II.

detection performance and execution time of the proposed
method are compared to several existing methods.

A. Dataset Description and Evaluation Metrics

The first dataset was collected by the Hyperspectral Digi-
tal Image Collection Experiment (HYDICE) sensor. The whole
dataset has a size of 307 × 307, while a region in the lower right
with a size of 180 × 180 is selected for experiments, as shown in
Fig. 2(a). It covers an urban area, with a spatial resolution of 1 m.
This dataset has 210 bands covering the spectral range of 400–
2500 nm, with a spectral resolution of 10 nm. After removing the
water absorption bands and low SNR bands (1–4, 76, 87, 101–
111, 136–153, and 198–210), 162 available bands are remained.

Fig. 3. Avon dataset. (a) False color image. (b) Ground-truth map.

Based on the LMM, 36 target panels constructed by three target
spectra are implanted as a grid, which has in four rows and nine
columns. These three target spectra are selected from the vehi-
cles in the upper right of the whole scene, as shown in Fig. 2(b).
These 36 target panels are implanted into the scene with two
spatial distribution densities, namely, Urban-I and Urban-II. In
Urban-I, the target panels are sparsely distributed, the distances
between neighboring panels within each row and each column
are 40 pixels and 15 pixels, respectively, as shown in Fig. 2(c). In
Urban-II, the target panels are densely distributed, the distances
between neighboring panels within each row and each column
are both 10 pixels, as shown in Fig. 2(d). The sizes of the panels
in the first, second, third, and fourth rows are 1 × 1, 2 × 2,
3 × 3, and 4 × 4 pixels, respectively. The first–third columns
of these panels are mixed by target 1 and the background, the
fourth–sixth columns of these panels are mixed by target 2 and
the background, the seventh–ninth columns of these panels are
mixed by target 3 and the background. The target abundances
of these panels in each column (from left to right) are 10%,
30%, 50%, 10%, 30%, 50%, 10%, 30%, and 50%, respectively.
For this dataset, the target dictionary At is constructed by these
three vehicle spectra.

The second dataset was collected by a pushbroom hyperspec-
tral ProSpecTIR-VS sensor during the “SpecTIR Hyperspectral
Airborne Experiment 2012” (SHARE 2012) data collection
campaign [47]. From the Avon-morning reflectance data, a
region with a size of 330 × 330 is selected for experiments,
as shown in Fig. 3(a). It covers a driving park in Avon, south
of Rochester, NY, USA, with a spatial resolution of 1 m.
This dataset has 360 bands covering the spectral range of
400–2450 nm, with a spectral resolution of 5 nm. There are
24 tarps and three red or blue felts with 67 target pixels to be
detected in the scene, as shown in Fig. 3(b). For this dataset, we
select 5 pixels from different targets in the scene to construct
the target dictionary At .

The third dataset was collected by the Airborne Visi-
ble/Infrared Imaging Spectrometer sensor. The whole dataset
has a size of 400 × 400, while a region with a size of 300 × 300
is selected for experiments, as shown in Fig. 4(a). It covers a
naval air station in San Diego, CA, USA, with a spatial resolu-
tion of 3.5 m. This dataset has 224 bands covering the spectral
range of 370–2510 nm, with a spectral resolution of 10 nm.
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Fig. 4. San Diego dataset. (a) False color image. (b) Ground-truth map.

After removing the water absorption bands and low SNR bands
(1–6, 33–35, 97, 107–113, 153–166, and 221–224), 189 avail-
able bands are remained. There are six airplanes with 132 target
pixels to be detected in the scene, as shown in Fig. 4(b). For this
dataset, we select 6 pixels from different targets in the scene to
construct the target dictionary At .

The proposed CSRBBH algorithm was compared to several
existing methods including SMF [48], MSD [14], SVM with
composite kernel (SVM-CK) [49], SRBBH [13] integrated with
a purified background dictionary (SRBBH-PBD), and HSS inte-
grated with a purified background dictionary (HSS-PBD) [25].
Pixels falling between the inner and outer window regions are
used to construct the background dictionary Ab . For all de-
tectors, we use the same target dictionary At and background
dictionary Ab as the prior training samples. For the SMF, the
prior target spectrum is determined as the mean of the target
atoms in At . For the MSD, the significant eigenvectors of the
target and background covariance matrices are used to generate
the target and background subspaces [50]. For the SVM-CK,
the composite kernel combines the spectral and spatial features
via a weighted summation, where the commonly used Gaussian
radial basis function kernel is adopted [12]. For the SRBBH and
HSS, a purification process proposed in [25] is applied to the
background dictionary to handle target contamination.

The receiver operating characteristic (ROC) curve with con-
fidence intervals of the false alarm rate [51] is used for perfor-
mance evaluation. According to the detection map, a specific
threshold is applied to calculate the detection probability (Pd )
and false alarm rate (Pf ), which can be used to plot the ROC
curve. The ROC curve of a better detector lies close to the upper
left corner [52]. For each point on the ROC curve, the confi-
dence interval of false alarm rate can be computed using an
appropriate statistical model under a specific significance level.
Therefore, each ROC curve is surrounded by these confidence
intervals. If one ROC curve of a detector is on the upper left of
the other and their confidence intervals do not overlap, it can be
considered that this detector statistically performs better. Oth-
erwise, if the confidence intervals are overlapped, there is no
statistical difference. In this paper, the significance level is set
to 0.05.

However, if the detection probabilities of one detector are
higher than that of the other at some false alarm rates, but lower
than that of the other at other false alarm rates, the ROC curve

Fig. 5. Background dictionary Ab and target dictionary At . (a) Ab with 95
background atoms and five target atoms. (b) At with five pure target atoms.

cannot clearly distinguish which detector is better. In this case, it
is more proper to use the area under the ROC curve (AUC) [53]
to evaluate the comprehensive performance. The AUC value is
defined as the area between the ROC curve and the axis of false
alarm rate, it can be calculated by a number of trapezoids

AUC =
1
2

n−1∑
i=1

(P i+1
f − P i

f )(P i+1
d + P i

d) (23)

where (P i
f , P i

d)(i = 1, . . . , n) denotes the ith point on the ROC
curve. n is the total number of these points. A larger AUC value
indicates a better detection performance.

B. Representation Ability

To illustrate the superiority of the proposed CSRBBH algo-
rithm, an experiment is conducted to reconstruct a target pixel,
a mixed target pixel, and a background pixel. First, we se-
lect 95 background samples from the boundary area between
grass and soil, and three target samples from the sports court
area in the Avon dataset. Two mixed target samples are sim-
ulated based on the LMM, one with 80% of target and the
other with 20% of target. All samples are used to construct
the background dictionary Ab , as shown in Fig. 5(a). The tar-
get samples are located at the 48th, 49th, 50th, 51st, and 52nd
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Fig. 6. Example of reconstructing a target pixel by the background dictionary Ab and the union dictionary A. (a) Weight vector α̂ and β̂ recovered by Ab and
A using the SRBBH. (b) Target pixel reconstructed by Ab and A using the SRBBH. (c) Weight vector α∗ and β∗ recovered by Ab and A using the CSRBBH.
(d) Target pixel reconstructed by Ab and A using the CSRBBH.

Fig. 7. Example of reconstructing a mixed target pixel by the background dictionary Ab and the union dictionary A. (a) Weight vector α̂ and β̂ recovered by
Ab and A using the SRBBH. (b) Mixed pixel reconstructed by Ab and A using the SRBBH. (c) Weight vector α∗ and β∗ recovered by Ab and A using the
CSRBBH. (d) Mixed pixel reconstructed by Ab and A using the CSRBBH.

Fig. 8. Example of reconstructing a background pixel by the background dictionary Ab and the union dictionary A. (a) Weight vector α̂ and β̂ recovered by
Ab and A using the SRBBH. (b) Background pixel reconstructed by Ab and A using the SRBBH. (c) Weight vector α∗ and β∗ recovered by Ab and A using
the CSRBBH. (d) Background pixel reconstructed by Ab and A using the CSRBBH.

columns. Then, we select five target samples from the shadow
area in the sports court to construct the target dictionary At ,
as shown in Fig. 5(b). The test pixels contain a target pixel, a
mixed target pixel, and a background pixel, the mixed target
pixel consists of 60% of target (the 50th column of Ab ) and
50% of soil (the eighth column of Ab ). Finally, the same dic-
tionaries are employed to reconstruct the test samples for the
CSRBBH or SRBBH, and their reconstructions are calculated
by Abα

∗ (or Abα̂) and Aβ∗ (or Aβ̂). In this experiment, η is set
to 5%. The examples of reconstructing a target pixel, a mixed
target pixel, and a background pixel are shown in Figs. 6–8,
respectively.

First, we demonstrate the effectiveness of the estimation of
the upper bound vector C. For the 95 background atoms in Ab ,
the estimated upper bounds Ci are mostly +∞. While for the
five target atoms in Ab , Ci are 0.1, 0.1, 0.1, 0.1102, and 0.1981,
respectively. Consequently, a target pixel or a mixed target pixel
is represented by Ab using the CSRBBH, the recovered weights
of the five target atoms in Ab are smaller than Ci , as shown in
Figs. 6(c) and 7(c). In this case, the target pixel and mixed pixel
are not well reconstructed by Ab , as shown in Figs. 6(d) and
7(d). In contrast, the weights of the SRBBH corresponding to
the atoms in Ab are not constrained, thus the target pixel and
mixed pixel are well reconstructed by Ab , as shown in Figs. 6(b)
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and 7(b). This clearly demonstrates the effectiveness of the es-
timation of C. The upper bounds of the five target atoms in At

are +∞. Therefore, even the spectral intensities of the target
pixel and mixed target pixel are significantly different from At ,
they are well recovered by A using the CSRBBH. In summary,
by adaptively estimating C, target signals in the background
dictionary are suppressed, so targets can be detected.

Then, we demonstrate the superiority of using both residuals
and weights. From Figs. 6(c), 7(c), and 8(c), we can find that,
for the example of reconstructing a target pixel or a mixed target
pixel using the CSRBBH, the weights recovered by Ab and A
have a large difference. While for the example of reconstructing
a background pixel, the weights recovered by Ab and A are ex-
actly the same. Specifically, the weight difference ‖α̃∗ − β∗‖1
for the target pixel and the mixed target pixel is 1.73 and 1.56,
respectively. While for the background pixel, the weight differ-
ence is zero. Therefore, compared to using (4), the detection
value differences between target pixels and background pixels
are increased by using (12), resulting in an improved detection
performance. As shown in Fig. 8(c), the similar weights recov-
ered by Ab and A also mean that the time consumption of recov-
ering the background pixel by the union dictionary is very small
and can be ignored according to Trick 2 (see Section II-D). Due
to the huge number of background pixels presented in the scene,
the computational cost of the CSRBBH is greatly reduced.

C. Robustness to Target Contamination

In this section, we test the robustness of the proposed
CSRBBH algorithm with respect to different target contami-
nation levels. In this experiment, the synthetic Urban-I dataset,
Urban-II dataset, and the Avon dataset are used. The AUC per-
formance of our CSRBBH algorithm is further compared to
several algorithms dealing with target contamination: SVM-
CK, SRBBH-PBD, and HSS-PBD. For the synthetic Urban-I
dataset and Urban-II dataset, the inner window is varied from 3
to 7, and the outer window is varied from 11 to 17. According
to the ground-truth map, the contamination level for these win-
dows ranges from 0 to 0.1071 for both the Urban-I dataset and
Urban-II dataset. For the Avon dataset, the inner window size
is varied from 1 to 5, and the outer window size is varied from
7 to 13. According to the ground-truth map, the contamination
level for these windows ranges from 0 to 0.0764. In this exper-
iment, η is set to 8% as some inappropriate dual window sizes
are adopted. All parameters of other detectors are empirically
set to obtain the optimal performance.

The AUC performance achieved on the synthetic Urban-I
dataset, Urban-II dataset, and the Avon dataset with different
window sizes (ωin, ωout) is shown in Tables I–III, respectively.
As expected, the AUC performance of the proposed CSRBBH
algorithm is robust to different window sizes. That is attributed
to the adaptive estimation of the upper bound vector, which lim-
its the weights of the target atoms in the background dictionary.
For the synthetic Urban-I dataset, the AUC performance of the
SVM-CK is robust to different window sizes. That is attributed

TABLE I
AUC (IN PERCENT) PERFORMANCE ACHIEVED ON THE SYNTHETIC URBAN-I

DATASET WITH DIFFERENT WINDOW SIZES

TABLE II
AUC (IN PERCENT) PERFORMANCE ACHIEVED ON THE SYNTHETIC URBAN-II

DATASET WITH DIFFERENT WINDOW SIZES

TABLE III
AUC (IN PERCENT) PERFORMANCE ACHIEVED ON THE AVON DATASET WITH

DIFFERENT WINDOW SIZES



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

to the introduction of slack variables, which can avoid over-
fitting caused by outliers. However, for the Avon dataset, the
AUC performance of the SVM-CK degenerates rapidly if the
outer window size is increased. That is because, the scene of
the Avon dataset has lots of small structures, making it diffi-
cult for the SVM-CK to accurately model the background when
the outer window size is increased. The AUC performance of
the SRBBH-PBD and HSS-PBD is not robust to different win-
dow sizes due to the ineffectiveness of the purification process
when detecting subpixel targets. This purification process first
finds all the doubtful target pixels in the whole scene using
spectral angle mapper, and then, removes these doubtful tar-
get pixels falling into the background dictionary. However, the
spectral angle between pure pixel target and subpixel target
with low target abundance is usually very large. Consequently,
the pixels with low target abundance in the scene are not con-
sidered as doubtful targets and cannot be removed from the
background dictionary, resulting in a degeneration of the de-
tection performance. In general, compared to the SVM-CK,
SRBBH-PBD, and HSS-PBD, the proposed CSRBBH algo-
rithm exhibits a stronger robustness to different window sizes,
and achieves the best AUC performance among these detec-
tors. These results have clearly demonstrated the robustness of
CSRBBH to various levels of contamination in the background
dictionary.

D. Detection Performance Under Different Settings of
Parameter η

In this section, we test the detection performance of the pro-
posed CSRBBH algorithm with different values of parameter
η. In this experiment, the Avon dataset is used. The proposed
CSRBBH algorithm is further compared to several detectors in-
cluding SMF, MSD, SVM-CK, SRBBH-PBD, and HSS-PBD.
The dual window size is set to (3, 9) and (1, 9) to obtain a pure
and a contaminated background dictionary. The contamination
level for window size (1, 9) is 0.05. η is set to 0% (Ci = +∞),
2%, and 5%, respectively. All parameters of other detectors are
empirically set to obtain the optimal performance.

First, we analyze the effects of parameter η on a pure back-
ground dictionary. The ROC curves achieved on the Avon
dataset with dual window size (3, 9) is shown in Fig. 9. It can
be seen that, if η is set to 5%, the detection probability achieved
by the CSRBBH is lower than HSS-PBD and MSD when the
false alarm rate is lower than 10−3 and 2 × 10−4 . However, if
η is set to 0% and 2%, the detection probability achieved by
the CSRBBH is comparable to HSS-PBD and higher than other
detectors when the false alarm rate is lower than 5 × 10−4 .
That is because, η denotes the fraction of target atoms in the
background dictionary. According to (16), if η is too large, the
upper bounds of some background atoms in the background
dictionary will be set with small values. When representing
a test background pixel, this can result in a larger recovery
residual if the fraction of background atoms in the background
dictionary is small. Consequently, some background pixels can
have large detection values, resulting in a weakened detection
performance.

Fig. 9. ROC curves achieved on the Avon dataset with dual window size
(3, 9).

Fig. 10. ROC curves achieved on the Avon dataset with dual window size
(1, 9).

Second, we analyze the effects of parameter η on a contami-
nated background dictionary. The ROC curves achieved on the
Avon dataset with dual window size (1, 9) is shown in Fig. 10.
It can be seen that, if η is set to 0%, the ROC performance
achieved by the CSRBBH is not superior to other detectors. If
η is set to 2%, the ROC performance achieved by the CSRBBH
is comparable to the SVM-CK and superior to other detectors.
However, if η is set to 5%, the detection probability achieved
by the CSRBBH is higher than other detectors at all false alarm
rates. That is attributed to the adaptive estimation of the upper
bound vector. According to (16), if η is set with a large value,
the upper bounds of target atoms in the background dictionary
will be set with small values. When representing a test target
pixel with the background dictionary, this can result in a larger
recovery residual. Consequently, the target pixels can have large
detection values, resulting in a better detection performance.

E. Comparison to the State-of-the-Art

In this experiment, the proposed CSRBBH algorithm is com-
pared to several detectors including SMF, MSD, SVM-CK,
SRBBH-PBD, HSS-PBD, and CSRBBH-NA [CSRBBH with



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LING et al.: CSRBBH MODEL FOR TARGET DETECTION IN HSI 11

Fig. 11. Detection map achieved on the Urban-I dataset. (a) SMF. (b) MSD. (c) SVM-CK. (d) SRBBH-PBD. (e) HSS-PBD. (f) CSRBBH-NA. (g) CSRBBH.

Fig. 12. Detection map achieved on the Avon dataset. (a) SMF. (b) MSD. (c) SVM-CK. (d) SRBBH-PBD. (e) HSS-PBD. (f) CSRBBH-NA. (g) CSRBBH.

Fig. 13. Detection map achieved on the San Diego dataset. (a) SMF. (b) MSD. (c) SVM-CK. (d) SRBBH-PBD. (e) HSS-PBD. (f) CSRBBH-NA. (g) CSRBBH.

detection discriminant defined in (4)]. For a fair comparison,
the inner window size should be set large enough to generate
a relatively pure local background. Therefore, the dual win-
dow size is set to (7, 15) for the Urban-I dataset, (3, 9) for the
Avon dataset, and (15, 21) for the San Diego dataset, resulting
in 176, 72, and 216 background training samples in Ab , re-
spectively. Usually, the contamination level in the background
dictionary is lower than 5% when a suitable dual window is
adopted. Therefore, η is set to 5% in this experiment. All param-
eters of other detectors are empirically set to obtain the optimal
performance.

The detection map achieved on the synthetic Urban-I dataset,
the Avon dataset, and the San Diego dataset are shown in
Figs. 11(a)–(f), 12(a)–(f), and 13(a)–(f), respectively. From
these figures, we can see that all methods except SMF and
MSD can successfully distinguish all targets from the back-
ground. The detection map of the SMF has more noisy pixels
as compared to other detectors, resulting in higher false alarm
rates. The MSD produces few background false alarm pixels
and achieves a promising background suppression. However,
the target pixels are more darker as compared to other detec-
tors, resulting in lower detection probabilities. The SVM-CK
achieves a promising target enhancement performance, but still
remains a lot of background edges. Some target pixels are not
enhanced by the SRBBH-PBD, and some background pixels are

also retained. Compared to SRBBH-PBD, HSS-PBD achieves a
better background suppression. As shown in Figs. 11(a), 12(g),
and 13(a)–(f), the target pixels of the proposed CSRBBH al-
gorithm are more obvious. Meanwhile, only a few background
pixels have high detection values. In summary, our CSRBBH
algorithm has achieved good performance in both background
suppression and target enhancement. Comparing the detection
map of CSRBBH-NA and CSRBBH, we can see that CSRBBH
achieves better background suppression. This demonstrates the
superiority of using both residuals and weights.

The ROC curves with 95% confidence intervals of the false
alarm rate achieved on the three datasets are shown in Fig. 14(a)–
(c), and the AUC results are shown in Table IV. We mainly
illustrate the superiority of the proposed CSRBBH algorithm by
the ROC performance achieved on the Avon dataset. As shown
in Fig. 14(b), when the false alarm rate is higher than 2 × 10−3 ,
the proposed CSRBBH algorithm achieves a much higher de-
tection probability than other traditional detectors. Meanwhile,
its confidence intervals are distinctly separated from other tra-
ditional detectors. Consequently, the ROC performance of the
CSRBBH outperforms other traditional detector when the false
alarm rate is higher than 2 × 10−3 . When the false alarm rate
is lower than 2 × 10−3 , the ROC performance of MSD, SVM-
CK, SRBBH-PBD, HSS-PBD, CSRBBH-NA, and CSRBBH
outperform the SMF, but their confidence intervals of the false
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Fig. 14. ROC curves with 95% confidence intervals of the false alarm rate achieved on the three datasets. (a) Urban-I dataset. (b) Avon dataset. (c) San Diego
dataset.

TABLE IV
AUC (IN PERCENT) PERFORMANCE ACHIEVED ON THE THREE DATASETS

TABLE V
RUNTIMES (IN SECONDS) ACHIEVED ON THREE DATASETS

alarm rate are overlapped with each other. That is, there is no sta-
tistical difference among these algorithms when the false alarm
rate is lower than 2 × 10−3 . Moreover, our CSRBBH algorithm
achieves the best AUC performance among all detectors. Specif-
ically, the AUC value achieved by the CSRBBH-NA is 99.88%,
which is 29.35% higher than the AUC value achieved by the
SRBBH-PBD. This clearly demonstrates the effectiveness of the
non-negativity constraint and the estimation of the upper bound
vector. Comparing the ROC performance of the CSRBBH-NA
and CSRBBH, we can see that CSRBBH achieves a higher
detection probability at most false alarm rates. Meanwhile,
the AUC value of the CSRBBH is slightly larger than the
CSRBBH-NA. This also clearly demonstrates the superiority of
using both residuals and weights. Similar conclusions can also
be obtained from the experiments conducted on the Urban-I
dataset and the San Diego dataset. Note that, for the San Diego
dataset, HSS-PBD achieves the best ROC performance when
the false alarm rate is lower than 3 × 10−3 . However, when the
false alarm rate is higher than 3 × 10−3 , our CSRBBH achieves
the best ROC performance. Considering the whole range of
the false alarm rate, the AUC value achieved by our CSRBBH
algorithm is 1.07% higher than that of the HSS-PBD. In sum-
mary, compared to other traditional detectors, our CSRBBH
algorithm has achieved the best overall detection performance.

F. Execution Time

The runtime consumed by the aforementioned detectors on
three datasets is shown in Table V. All experiments were con-
ducted in Python 3.5 on an PC with an Intel Core i7-3770 CPU
and a 8 GB of RAM. Note that, SVM and DCD were im-
plemented in C++, and wrapped into a pyd extension module
by SWIG. The inverse operation and eigenvalue decomposi-
tion operation were computed by scipy functions, which uses
the high-performance LAPACK library. Therefore, the runtime
of these algorithms is comparable. On these three datasets, our
CSRBBH algorithm costs the shortest execution time. It is faster
than the SMF, MSD, and SVM-CK by a large margin. In sum-
mary, compared to existing detectors, the proposed CSRBBH
algorithm has a relatively lower computational complexity.

IV. CONCLUSION

In this paper, we have proposed a novel target detection al-
gorithm based on cCSRBBH model. The non-negativity con-
straint is imposed to ensure the physical meaning. The upper
bound constraint is imposed to suppress the target signals in the
background dictionary. The upper bound vector is adaptively es-
timated by the similarities between the atoms in the background
dictionary and the target dictionary. This CSRBBH model is
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solved by a fast DCD algorithm. It can handle target subpix-
els with different levels of contamination in their surrounding
background. The proposed method have been tested on both real
and synthetic HSI datasets. Experimental results have clearly
demonstrated the superiority of the proposed detector in robust-
ness and detection performance. Moreover, our detector also has
a relatively low computational complexity. Specifically, for the
Avon dataset, our detector achieves the highest AUC value of
99.91%, and achieves the shortest runtime of 109.76 s.

APPENDIX

DCD METHOD

In this Appendix, we describe a DCD method [44] to solve
constrained quadratic programming problems. Consider the fol-
lowing problem:

min
α

f(α) =
1
2
αTQα + pTα

s.t. 0 ≤ αi ≤ Ci, i = 1, . . . , N (24)

where Q denotes an N × N positive semi-definite matrix, and
p denotes the linear term. Ci is the upper bound of αi , and C =
[C1 , . . . , CN ] denotes the upper bound vector. The gradient G
of f(α) is

G = ∇f(α) = Qα + p. (25)

The DCD method updates only one variable αi each time by
solving the following sub-problem:

min
di

f(α + diei) s.t. 0 ≤ αi + di ≤ Ci (26)

where ei = [0, . . . , 0, 1, 0, . . . , 0]T. Therefore, the decrease of
the objective function can be derived as

Dfi = f(α + diei) − f(α) =
1
2
Qiid

2
i + Gidi (27)

where f(α) is a constant and Gi is the ith component of G.
Equation (26) has an optimum at di = 0 if and only if PGi = 0,
where PG means the projected gradient

PGi =

⎧⎨
⎩

min(Gi, 0), if αi = 0
max(Gi, 0), if αi = Ci

Gi, if 0 < αi < Ci.
(28)

If |PGi | 	= 0, (26) has an optimum at

di = min(max(−Gi/Qii,−αi), Ci − αi). (29)

The original DCD method is designed for the large-scale
sparse dataset. The implementation details can be found in [44,
Algorithm 3]. In experiments, we found that it is very slow for
the processing of HSI dataset. Therefore, we modify this method
as follows.

1) Working Set Selection. Instead of permuting k(k =
1, . . . , N) randomly and updating all αk in each itera-
tion t, we only update αi where i is the index that makes
the objective function decrease fastest.

2) Update Method. Instead of updating Gk and PGk before
the update of αk , we update vector G and vector PG
after the update of αi .

Algorithm 2: The Modified DCD Method.
Input: Q, p, C, α, G, ε, and tmax.
Initialize: t = 0,d = 0,Df = 0, initialize PG by (28).
while t < tmax do

1) for k = 1, . . . , N do
if |PGk | 	= 0 and Ck > 0,

dk = min(max(−Gk/Qkk ,−αk ), Ck − αk )
Dfk = Qkkd2

k + 2Gkdk

end for
2) i = arg min

k
{Dfk | k = 1, . . . , N}

3) if |Dfi | < ε, break
4) αi = αi + di

5) for k = 1, . . . , N do
a) Gk = Gk + Qikdi

b) PGk =

⎧⎨
⎩

min(Gk, 0), if αk = 0
max(Gk , 0), if αk = Ck

Gk , if 0 < αk < Ck

end for
6) t = t + 1

end while
Output: α and G.

3) Stop Strategy. Instead of stopping the method using the
difference between the maximum and minimum value of
PG, the method is stopped when the decrease of the
objective value reaches a tolerance ε.

The objective value of the modified DCD method decreases
with the number of iterations. Meanwhile, the decrease of objec-
tive value is maximized at each iteration. The implementation
details of the modified DCD method is shown in Algorithm 2.
Usually, the optimization process starts from an initial point
α = 0, so G = p.

For the global optimal solution α∗, an ε-accurate solution αt

is defined as f(αt) ≤ f(α∗) + ε. The modified DCD method
reaches an ε-accurate solution in O(log(1/ε)) iterations. The
proof can be found in [44, Th. 1 and Appendix 7.1]. Clearly, our
stop strategy |Dfi | < ε satisfies

f(αt) ≤ f(α∗) + ε ≤ f(αt+1) + ε. (30)

Therefore, (30) means the modified DCD method can be
terminated within O(log(1/ε)) iterations. Algorithm 2 spends
most time in steps 1), 2), and 5), and their computational cost is
O(N). Therefore, the computational cost of the modified DCD
method is about O(log(1/ε)N).
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