
1

Clustering Algorithm for a spaceborne Lightning
Imager: design, trade-off and FPGA

implementation.
Pietro Nannipieri, Daniele Davalle, Stefano Nencioni, Paolo Lombardi and Luca Fanucci

Abstract—In this paper, the development and implementation
of the Clustering Algorithm developed for an instrument to
detect lightning phenomena (Lightning Imager) is presented. The
aim of the Lightning Imager instrument is to provide informa-
tion relevant to the localization and the radiance of lightning
events with respect to terrestrial systems. A CMOS sensor with
1170 × 1000 resolution and 1000 fps frame rate is used on the
instrument, making the Lightning Imager able to identify the
smaller lightning in terms of dimension (minimum diameter 10
km) and temporal pulse duration (minimum 0,6ms). The amount
of acquired data is very large but only a small subset of pixels con-
tains useful lightning information, thus information clustering is
fundamental for downlink data-rate reduction. Raw sensor data
are processed by an ASIC in order to extract pixels coordinates
belonging to lightning flashes (Detected Transients) which are
then directly sent to the Clustering Algorithm implemented in an
FPGA. Detected Transients must be processed as they come to the
Clustering Algorithm due to high throughput requirement. The
Clustering Algorithm objective is to define rectangular windows
that enclose more Detected Transients in order to send more
compact information to Earth. The design presented in this
paper was carried out through the development of an high-level
model in order to verify algorithm functionality and compliance
with performance requirements. A lightning event generator was
developed to simulate the Detected Transients coming from the
ASIC part.The hardware architecture was conceived and a bit-
true model was developed to evaluate the implementation loss.

Index Terms—Lightning Imager, Clustering Algorithm,
RTAX2000.

I. INTRODUCTION

Clustering is a very general problem in which many re-
searches have been carried out, within a broad range of fields
of study. Its applications can be found in the fields of data
mining, image analysis, pattern recognition to name just a few.
Basically, it consists in classifying a set of unlabelled objects
into groups of “similar” objects. The concept of similarity is
defined by the specific application and the algorithm used to
solve the clustering problem. This paper presents a clustering
algorithm for a space borne Lightning Imager: In section I a
brief literature review of the clustering algorithm is done, and
the system where the clustering algorithm will be implemented
is described at block and requirement level; in section II a data

P. Nannipieri and L. Fanucci are with the Department of Information
Engineering, University of Pisa, Italy (e-mail: pietro.nannipieri@ing.unipi.it
luca.fanucci@unipi.it).

D. Davalle is with IngeniArs S.r.l., Pisa, Italy (e-mail:
daniele.davalle@ingeniars.com).

S. Nencioni and P. Lombardi are with Leonardo S.p.A., Campi
Bisenzio, Firenze, Italy (e-mail: stefano.nencioni@leonardocompany.com
paolo.lombardi@leonardocompany.com).

saving preliminary estimation achievable adopting a clustering
algorithm on the described application is derived; in section III
the detailed description of the adopted clustering algorithm is
given, together with its implemented hardware architecture; in
section IV results are presented in terms of execution time
and hardware complexity; finally in section V conclusions
are drawn and possible future development of the work are
proposed.

A. Clustering algorithms

A review on clustering techniques is presented in [1], where
a classification of the different approaches used in clustering is
described. Clustering algorithms can be divided in incremental
and non-incremental algorithms. Non-incremental algorithms
assume to have the whole distribution of elements to be
clustered, while incremental algorithms process elements one
by one. Non-incremental algorithms include the k-means and
density-based algorithms as DBSCAN [2]. K-means algorithm
has known drawbacks, i.e., the number of clusters must be
known a priori and it aims at identifying spherical clusters,
not arbitrary shapes. Multiple scans of data are also required,
therefore k-means is not directly applicable to the streaming
approach [3]. Algorithms based on density are useful to
recognize data with arbitrary shapes. Density-based algorithm
also overcome the problem of the number of clusters, which
can be unknown. Incremental clustering algorithms belong
to the category of streaming algorithms, i.e., algorithms for
processing data streams. These algorithms process data point-
by-point, without considering the whole image. Incremental
algorithms are useful when memory resources are limited and
the execution time is an issue. Points are processed in a single
scan without being stored and randomly accessed. STREAM
[4] is based on the k-median algorithm for streaming data.
The data is divided into blocks and locally clustered, then all
the local medians are clustered to produce the final medians.
CluStream [5] uses online and offline components for the
clustering. The online component collects information of the
streaming data into micro-clusters. Micro-clusters are finally
clustered with k-means by the offline component. Clustream
often produces spherical clusters because it takes distance
as measurement. D-Stream is a streaming algorithm based
on density and grids [3]. The algorithm uses a two-phase
approach, inspired by CluStream. In the online phase data is
recorded into a grid, the density vector is updated, then in
the off-line phase clusters are adjusted once every number of

2

Detector

Threshold

ASIC

Threshold

ASIC

Threshold

ASIC

Threshold

ASIC

 Clustering FPGA

L
V

D
S

Sp
W

 L
in

k

Pixels

DTs

Windows

CA

Single event

filter

Window Manager

L
V

D
S

L
V

D
S

L
V

D
S

L
V

D
S

L
V

D
S

L
V

D
S

L
V

D
S

Fig. 1. System block diagram

predefined steps. The grid is useful for a first classification
of raw data, to avoid raw data storing. The algorithm adjusts
clusters over time, thanks to a density decaying technique.
D-Stream is concerned on dealing with high-dimensionality
data and the evolution of clusters over time. MD-Stream
is an extension of D-Stream to cope with variable density
clusters [6]. DenStream [7] is a streaming algorithm based
on DBSCAN. [8] presents a streaming version of the fuzzy c-
means algorithm: the online fuzzy c-means. Data is processed
in chunks, each one processed with fuzzy c-means. The results
coming from each chunk of data is merged into the final result.

B. Lightning Imager System Description

A possible use case for the implementation of the clustering
algorithm is presented in this section. A Lightning Imager
(LI) instrument is a system, generally mounted as satellite
payload, able to detected and map the presence of lighting on
various geographical location. To do that, the system needs
to process a considerable amount of data in a restricted time
interval, considered the natural characteristics of the lighting
phenomena. An example of a LI instrument is presented in [9],
together with an architectural system description including the
optical part.

The block diagram of the LI processing system consid-
ered for this work is shown in Figure 1. Pixels are ac-
quired by a 1170 × 1000 detector. The sensor frame-rate is
1000 fps which means that the amount of acquired data is
very large, thus information clustering is required to reduce
the downlink data-rate. First, these pixels must be processed
to detect the lightning events. Pixels are sent directly to
the a dedicated “Threshold Application-Specific Integrated
Circuits (ASICs)” trough dedicated Low Voltage Differential
Signallings (LVDSs) signal lines. The “Threshold ASICs”
separately elaborate pixels coming from the four quadrant to
estimate the background and to identify Detected Transients
(DTs)s. In fact the surface of the Earth is not uniformly
illuminated, thus a background-estimation is carried out and
an adaptive-threshold is used. Pixels whose difference with
the estimated background is above the threshold are defined

DTs and are considered as lightnings. Threshold is set as a
trade-off between false-alarm and detection efficiency and is
assumed to be the same over all the Field Of View (FOV),
therefore the detection probability is constant for all the pixels
while the false-alarm rate is not. DTs are fetched by the Field-
Programmable Gate Array (FPGA) trough dedicated LVDSs
connection; the extracted DTs are processed by the Clustering
Algorithm (CA) module, which must be capable of processing
1000 events in 1 ms. Finally, clustered and filtered data are
temporary stored in output buffers, ready to be transmitted
to the Host (i.e. a mass memory) trough the SpaceWires
(SPWs) interface of the system. The frame is divided into
4 quadrants for parallel processing of 4 different sections of
the sensor. In this work, both the quadrant-specific clustering
and full-frame clustering were treated. In quadrant-specific
clustering, the DTs coming from the different quadrants are
processed by separate CA units, to exploit hardware (HW)
parallelisation. Full-frame clustering foresees that all the DTs
are processed by a single CA unit. This technique may be
useful because one of the system requirement is that 813 of
the 1000 DTs can be concentrated into one single quadrant.
This high concentration is therefore voiding the benefit given
by quadrant parallelization, because each quadrant CA unit
must be almost as powerful as the full frame CA unit. Given
the nature of lightning flashes seen from above the clouds,
the maximum window size is 8 × 8. CA modules produce
the clustering windows for each quadrant. Occasionally some
spurious DTs can be present depending on the noise level
affecting the sensor. If spurious DTs are isolated, i.e., far
from other DTs relative to real lightning events, they can
be recognized by observing the radiometric data of their 8-
pixel neighbourhood. To this aim, a 3 × 3 window filter is
present in the system: every 3 × 3 window produced by
the CA is analysed and possibly discarded. This technique
improves noise robustness and reduces the volume of data to
be transmitted, as described in Section II.
System optimisation has a fundamental role in the reduction
of the data rate. From the point of view of the algorithm,
compare operations are limited to the necessary ones. In
window-window comparisons, only windows near the DT are
selected for comparison with the window candidate for DT
inclusion. In this way, only windows which can really interfere
with window expansion are taken into consideration, avoiding
processing time waste. Other compare operations are avoided
by considering the DT ordering, i.e., the usual raster scan.
From the point of view of HW architecture, with the aim of
reducing the DT processing time, data loading and processing
is parallelized as much as possible. The limit to parallel
processing is represented by the area occupation. The target
device for the LI CA is a Microsemi RTAX2000, a radiation-
tolerant FPGA from Microsemi with 30 k to 500 k ASIC gates
(250 k to 4 M system gates), largely employed in several space
missions [10]. The work presented in this paper describes the
design and implementation process of the clustering algorithm,
which in future may be integrated with the overall system
containing also the detector and the ”threshold ASIC”.

3

II. CLUSTERING RATIONALE

In the following, a simplified calculation of data saving is
presented to justify the clustering strategy.

Without noise filtering and clustering, all DTs are packeted
and transferred independently. Each packet is composed of a
3-byte packet header, 3-byte DT coordinates, radiometric (12
bit per pixel) and background (16 bit per pixel) data of a 3x3
window around the DT. To understand why the size of the
considered window is 3x3, note that a single pixel is equivalent
to an area of 10 × 10 km2 and that the average dimension
of a lighting event is roughly 30× 30 km2, as indicated in a
similar work [11]. The total data to be transferred for each DT
is SDT = (3 + 3) · 8 + [(12 + 16) · (3 · 3)] = 300 bits. Suppose
to have 1000 DTs per millisecond, i.e., NDT = 1000. Con-
sidering that in a communication protocol such as SpaceWire
(SpW) [12] 2 bits have to be added every 8 bits and for each
packet there has to be a 4 bits end-of-packet, the amount of
data to be transferred in Mbps is:

RTX =
NDT

1000

[
10

8
SDT + 4

]
= 379 Mbps (1)

If noise filtering only is activated, assuming that NDTi =
250 of the 1000 DTs are isolated events and that the filter has
an efficiency η = 87 %, 250 · η noise events are filtered out.
The amount of data to be transferred in this case is:

RTX =
NDT − ηNDTi

1000

[
10

8
SDT + 4

]
= 297 Mbps (2)

leading to a saving of 22 %.
If clustering only is activated, assume that the 750 aggre-

gated DTs are clustered under half-full 7× 7 windows, which
means that each window has half of its pixel by an event.
Therefore, we have NW7×7 =

⌈
750
7·7/2

⌉
= 31 7 × 7 windows.

The packet used for transferring a 7× 7 window is composed
of the 3-byte header, the 3-byte coordinate of the top-left
pixel plus 2 bytes for window width and window height,⌈
12·(7·7)

8

⌉
= 74 bytes for radiometric data and 16·7·7

8 = 98

bytes of background information. The total packet size to
transfer a 7× 7 window is SW7×7 = (3 + 3 + 2 + 74 + 98 =
1440 bits. The amount of data to be transferred in this case is:

RTX =
NW7×7

1000

[
10

8
SW7×7 + 4

]
+

+
NDTi

1000

[
10

8
SDT + 4

]
= 159 Mbps (3)

leading to a saving of 60 %.
If both noise filtering and clustering are activated, in the

same conditions, the amount of data to be transferred is:

RTX =
NW7×7

1000

[
10

8
SW7×7 + 4

]
+

+
(1− η) ·NDTi

1000

[
10

8
SDT + 4

]
= 71 Mbps (4)

leading to a combined saving of 82 %.

find candidate

windows

Try DT inclusion in

window(i)

DT

included?

end of frame?

START

New window

F

T

Neighbor inclusion

END

i++

read new

DT

window(i)

candidate list

i = 0 .. N-1

i = 0

i < N ?

T

F

F

T

Fig. 2. High level algorithm flowchart

III. CLUSTERING ALGORITHM

As seen in Section I-B, LI adopts the clustering technique
in order to save data to be transmitted to the ground station, as
described in Section II. Performance requirements are stringent
and the clustering must be achieved within a frame period.

Considering that the interface data throughput is limited,
a low-level clustering is only possible. Further processing is
delegated to ground.

With the aim of the hardware implementation, the algorithm
and the HW architecture were jointly optimized to reach the
desired performance within the limits of the selected device.

With reference to the classification reported in Section I-A,
the clustering algorithm used in LI falls under the category
of the incremental clustering algorithms, since input data
arrives in a streaming form. Non-incremental approaches such
as k-means or DBSCAN are not feasible since incoming
DTs cannot be stored in internal memory and the throughput
requirement impedes the usage of these algorithms. The algo-
rithm is bidimensional, input DTs are represented on (x, y)
rectangular coordinates.

LI CA is non-iterative, i.e., as DTs are clustered, the
clustering configuration is not further refined as in partitional
or hierarchical algorithms. Only a single-pass approach is
feasible, considering the short processing time available and
the number of DTs to be clustered every frame. Two-phase so-
lutions like CluStream and D-Stream were therefore discarded.

The number of clusters is not known a priori. However,
the maximum expected number of clusters is derived on a
statistical basis. Therefore algorithms as STREAM, fuzzy c-

4

means in which the number of clusters is a parameter were
not considered.

LI CA defines rectangular windows containing all DTs.
The size of such windows is dynamically determined (see
algorithm flowchart in Figure 2) based on if there are still
adjacent DTs that can be embedded. This choice allows easy
manipulation of windows, calculations for DT adjacency and
window overlap checks are simpler to carry out with respect to
other types of windows, e.g., circular windows. The adoption
of rectangular windows, together with the usage of a simple
distance metric allow an efficient hardware implementation.
The algorithm computation requires fixed point additions and
comparisons only.

Additionally, rectangular windows are fully characterized
with four parameters, therefore they are easily manageable and
memory-efficient when compared to more complex shapes.
The set of window parameters adopted in this work is the
vector: (x, y, ∆x, ∆y), where x, y are the coordinates of
the top-left corner of the window, while ∆x, ∆y are the width
and height of the window, respectively.

Background information and radiometric data are trans-
ferred for every pixel in each window. In order to reduce the
transmission of insignificant data, windows must contain at
least one DT for each row and column. Similarly, complete
window overlapping has to be avoided, since duplicate infor-
mation is transmitted to ground if overlapping is allowed.

Almost all the algorithms presented in Section I-A present a
dynamic nature, in the sense that they cope with the evolution
of data and clusters evolve to follow the distribution of points.
LI CA initiates a new clustering operation every frame, in
order to simplify the on-board processing.

Online window merging and splitting are not implemented
by LI CA to reduce the processing. This drastically reduces
the computation time but leads to a less optimal clustering,
which, according to our analysis, is perfectly acceptable for
this application.

Isolated DTs are included in a dedicated 3×3 window when
the noise filter described in Section I-B is activated. A decision
whereas the analysed windows contains valid information is
made thanks to it: if only a single pixel is active within a 3×3
window, it is considered to be false (incompatible with the size
of the natural event). Otherwise, the event is considered to be
true, neglecting the very low probability of two adjacent false
pixel.

A. Algorithm description

Figure 2 shows the frame elaboration flowchart of the
clustering algorithm.

For each DT read from the input FIFO, the algorithm scans
the actual defined windows. Windows neighbouring the new
DT are “candidates” to be expanded to include the new DT.
A window is considered neighbour to the new DT if the
DT is located in the one-pixel frame around the window.
In general, there are more than one candidate for each DT,
therefore the output of the search is a list of windows. DT
inclusion is attempted on the candidate windows according
to predetermined priority rules. DT inclusion can fail because

B

A

2

(a)

3 3 3

3 2

(b)

Fig. 3. (a) Window overlapping case. (b) The new DT, the neighbouring
pixels to be explored for windows (grey) and future pixels (blue)

the candidate window has reached the maximum size or the
candidate window expansion produces overlap with another
window, as shown in Figure 3a.

If there are no candidate windows or neither one of the
found candidates can be expanded to include the new DT, a
new window is opened.

This process is repeated for each DT in the frame. At the
end of the frame, the windows are transmitted and window
neighbours are included according to the neighbour setting.

Neighbours can be deactivated, activated or selectively
activated. When neighbours are deactivated, windows are
transferred as they are. If neighbours are activated, a one-pixel
frame is added to every window. If neighbours are selectively
enabled, the one-pixel frame is added to 1× 1 windows only.

Figure 3a shows an example where window overlapping
could occur. The new DT is next to window A, which is the
only candidate for expansion as it is the only adjacent one. If
window A is expanded one pixel to the right to include the
new DT, a portion of window A overlaps window B.

Candidate windows are searched for in the 8 pixels neigh-
bouring the new-event. Given the raster ordering of the DTs,
only 4 pixels are worth looking for neighbouring windows.
Figure 3b shows the new event (red) and the 4 neighbouring
pixels to be checked (grey). The other 4 neighbouring pixels
(blue) are not to be explored because they still have to
be processed and since no window neighbours are added
while clustering, no windows are present in those blue pixels.
Window neighbours (if required) are added when the frame

2

1

?

2

(a)

LU RU

LD RD

R

D

L

U

(b)

Fig. 4. (a) Window expansion conflict. (b) Allowed window expansion
directions

5

R D

LD RD

LD RD LDR RD

RD RD LDLDRD

RDLR RDL DLR DRLR DRL

Fig. 5. Possible clustering strategies

is fully processed. Neighbour attachment while clustering of
events was also considered (dynamical neighbour attachment).
Solutions including dynamical neighbour attachment were
discarded because they caused problems with total window
overlap, single event windowing, and were also more compu-
tationally intensive. Neighbour attachment in post-processing
avoids total window overlap, the maximum window overlap
is 2 pixels wide. The actual data reduction provided by
the clustering algorithm depends then on DTs geometrical
disposition: purely horizontal/vertical events lead to bigger
data reduction, while purely diagonal disposition of DTs could
theoretically, for more than 4 diagonal DTs, lead to data
growth. However due to the nature of the lightning phenomena,
purely diagonal disposition of DTs has low probability, thus
the eventual increase of data to be sent is not considered to
be a problem for the system.

1) Clustering strategies: A strategy for the clustering is
necessary to resolve situations such as the one depicted in
Figure 4a. The strategy determines which direction is preferred
for the expansion of windows. The strategy also impacts on
the total number of windows defined. Therefore, the selection
of the strategy is important for the minimization of the total
number of windows.

Basically, since the DT ordering is the usual raster scan over
the quadrant, it is not possible that a new DT is on the top
edge of a window, i.e., windows cannot be expanded in the

3 4

1

2

RDLR

4 3

1

2

RDL

2 4

3

1

DLR

3 4

2

1

DRLR

4 3

2

1

DRL

Fig. 6. Expansion direction priorities for the different strategies

DLR DRLR DRL RDLR RDL
1.305

1.31

1.315

1.32

1.325

1.33

1.335

1.34

1.345

1.35

1.355
x 10

5

N
u

m
b

er
 o

f
W

in
d

o
w

s

Strategy

Fig. 7. Number of windows as a function of the strategy

UP (U) direction. Figure 4b illustrates the possible expansion
directions for windows. LEFT (L), LEFT-UP (LU), U, RIGHT-
UP (RU) directions are not possible due to the raster scan.

RIGHT (R), RIGHT-DOWN (RD), DOWN (D) and LEFT-
DOWN (LD) are the possible expansions for windows. A
priority has to be defined with these directions. Referring to
Figure 4a, if an R-before-L strategy was selected window 1
would have been expanded. On the other hand, with an L-
before-R strategy, window 2 would have been expanded.

Figure 5 shows the strategy tree. The possible strategies are
given a short name to be recalled in the following: RDL, DLR,
DRL, RDLR, DRLR, according to the direction priority.

Figure 6 shows the order of expansion as a function of the
position of the new event with respect to the window for the
different strategies. The strategies are equivalent from the point
of view of HW complexity. The best strategy is evaluated by
means of computer simulation over a significant set of test-
vectors.

Figure 7 shows the results of computer simulations over
1000 frames, with flashes concentrated in a 50× 50 area. The
higher the concentration of lightning flashes, the higher the
impact of the chosen strategy, because a larger number of
window expansion conflicts are expected. RDL is the best
strategy from the point of view of window minimization,
therefore it was chosen for the implementation. The adoption
of the RDL strategy entails a saving on 1000 frames of:

• 243 windows with 190x190 cluster concentration
• 730 windows with 100x100 cluster concentration
• 4420 windows with 50x50 cluster concentration
2) Test-vector generation: The random test-vectors used for

the clustering algorithm design and verification were generated
with a MATLAB simulator.

In order to simulate the randomness of a lightning flash seen
from above the clouds, the MATLAB model generates random
points representing the flash according to a bi-dimensional
Gaussian distribution.

First of all, the X and Y coordinates of the points are
generated by means of two independent Gaussian distributions.
The mean value along X and Y represents the flash centroid,
uniformly distributed in the lightning concentration area. The
standard deviation σ is correlated with the radius of the flash.
In a Gaussian distribution, more than 99.7 % cases fall in

6

the interval [−3σ, 3σ]. Therefore, 3σ can be considered as
the radius of the distribution and we can obtain the standard
deviation for the generation of flashes as: σ = R

3 .
Then, the Y coordinates of the points are shrunk by the

factor (1− e), where e represents the distribution eccentricity.
The eccentricity is modeled as a Gaussian random variable
with selectable mean and variance.

Finally, the flashes are rotated by an angle θ, modeled as a
uniformly distributed random variable in the interval [0, 2π).

The generated coordinates of the points of the flashes
are then quantized to integer numbers representing the pixel
coordinates, considering that each pixel is about a 10 × 10
km2 square.

A portion of the resulting generated test-vector is repre-
sented in Figure 8. The different strategic all have the same
computational cost. The number of the necessary comparison
and sums depends on the disposition of DTs.

B. Architecture description

The HW architecture of the CA is depicted in Figure 9.
The Window Memory is used to store the windows defined

during the clustering process. The Window Memory Controller
reads and writes windows in parallel. PAC windows are
accessed at the same time in order to allow the parallel
processing of windows.

When a new DT is fetched, all the already defined windows
must be accessed to look for candidates for DT inclusion.
This operation is carried out by the Adjacency Check (AC)
block. While windows are scanned for AC, they are also
analysed for proximity with respect to the current DT by the
Near-Window Check (NWC) block. A Near Window (NW) is
defined as a window that could interfere with the expansion
of the Candidate Window (CW). The results of the AC are
stored in the CW registers, while NWC results are stored in
the NW registers. Candidate Windows are 4 at most, while
Near Windows are 8 in the theoretical worst case as it will be

40 50 60 70 80 90 100

80

90

100

110

120

130

140

150

 0 1 2
 3 4

 5
 6 7 8 9 10 11 12

 13 14 15 16
 17 18

 19 20
 21 22

 23 24 25
 26 27

 28 29 30 31
 32

 33 34 35
 36 37 38 39

 40
 41 42 43

 44 45
 46 47 48

 49 50 51 52
 53 54 55

 56 57 58 59
 60 61 62

 63 64 65 66
 67

 68 69 70
 71 72

 73
 74

 75 76 77
 78 79

 80 81 82 83
 84 85 86 87

 88 89 90 91
 92 93 94

 95
 96 97 98 99

100 101
102 103

104 105
106 107 108

109 110 111
112 113 114

115
116 117 118

119 120
121 122 123

124
125 126 127

128
129

130 131
132 133

134
135 136 137

138 139 140 141 142

143 144
145

146 147

148 149 150 151 152 153
154 155

156 157

158 159 160 161
162 163

164
165 166

167 168 169 170
171

172 173 174
175 176 177

178
179 180 181

182 183
184 185

186 187
188 189 190

191 192
193 194 195 196 197

198 199
200

201 202
203 204 205 206 207

208 209
210 211 212 213

214 215 216 217
218 219

220
221

222 223 224 225
226 227

228 229
230 231

232 233 234 235 236
237

238 239 240 241 242 243
244 245 246

247 248

 X: 44 Y: 80

Fig. 8. Generated test-vector with windows evaluated by the clustering
algorithm

Near-Window Check

Window Memory Controller

Window

Memory 0

Window

Memory 1

Window

Memory PAC-1

AC[0] AC[1] AC[PAC-1] NWC[0] NWC[1]
NWC

[PAC-1]

EC[0] EC[1] EC[2] EC[3]

Priority Selection

Add

neighbors

CW FIFO CW FIFO CW FIFO NW FIFO NW FIFO NW FIFO

CW SIPO NW SIPO

Adjacency Check

Expansion Check

DT

Output windows

Fig. 9. LI CA architecture

proven in the following sections. NWC reduces the number
of window-to-window comparisons in the Expansion Check
(EC) phase. The EC block takes the candidates from the CW
registers and checks their expandability with respect to all
the NWs identified by the NWC. If there are more than one
possibilities to expand the CW, the Priority Selection block
selects the preferred expansion direction according to the RDL
strategy, which grants the minimum number of windows, as
described in Section III-A1. The architecture parallelism is
parametric and can be adapted to push the area vs performance
trade-off. In particular, the number of windows elaborated in
parallel PAC is a parameter. PAC sets the number of AC and
NWC units, since the processing of every window requires
one AC and one NWC.

The number of EC units is 4, to be able to process the
worst-case number of CW in parallel. The latency of the EC
units is a parameter, and therefore the number of NWs that
the EC units is able to process in parallel is selectable.

In the following sections, the most relevant blocks are
detailed.

1) Adjacency Check: The AC block checks if the window
being processed is adjacent to the current DT and outputs the
direction of expansion for DT inclusion. The DT can either
be:

• already internal to the window, so the window does not
have to be expanded to include the DT, if XWIN ≤
XDT < XWIN + ∆XWIN and YWIN ≤ YDT <
YWIN + ∆YWIN ;

• adjacent to the right of the window, so the window has
to be expanded in the R direction to include the DT,
if XDT = XWIN + ∆XWIN and YWIN ≤ YDT <
YWIN + ∆YWIN ;

• adjacent to the bottom-right corner of the window, so
the window has to be expanded in the RD direction to
include the DT, if XDT = XWIN +∆XWIN and YDT =
YWIN + ∆YWIN ;

• adjacent to the bottom of the window, so the window

7

2

7

7

Candidate Window

(a) RD

2

7

8

Candidate Window

(b) R

2

7

Candidate Window

8

(c) D

2

7

Candidate Window

7

(d) LD

Fig. 10. The four cases of expansion of a candidate window. The blue dashed
rectangle is the candidate window. Orange rectangles represent the area that
must be free from NW to expand the CW in the given direction.

has to be expanded in the D direction to include the DT,
if XWIN ≤ XDT < XWIN + ∆XWIN and YDT =
YWIN + ∆YWIN ;

• adjacent to the bottom-left corner of the window, so the
window has to be expanded in the LD direction to include
the DT, if XDT = XWIN − 1 and YDT = YWIN +
∆YWIN ;

• not adjacent to the window, if none of the previous
conditions apply.

As CWs are found, they are pushed into the First-In-First-
Out (FIFO) buffers and finally stored into the CW Serial-
In/Parallel-Out (SIPO) register. FIFOs are necessary because
in the parallel processing, more than one CWs can be recog-
nized in the PAC windows processed.

2) Near-window Check: The NWC extracts the Near Win-
dows. A NW is defined as a window that could interfere with
the expansion of the CW. In order to save time, we carry out
the NW search together with the CW search, done by the AC
block. As the CW is not identified yet, NW are recognized
only as a function of the new DT. Figure 10 shows the worst-
cases for the possible CW expansions, in terms of number
of NWs. The orange areas indicate the pixels which must
be free from NWs for a given expansion type. For the LD
expansion represented in Figure 10d, the bottom side of the
CW is not checked for NWs because those pixels are not yet
explored: the DT is the last explored pixel in raster-order. The
overall area to check for NWs corresponds to the union of the
orange areas in the four expansion types, which is equivalent
to the orange area for the RD expansion, united the orange
area for the LD expansion. The maximum number of NWs
for each DT is an important parameter to derive in order
to optimize the processing. Figure 11 shows the worst-case
configuration for the case WMAX = 8. Basically, one non-
expandable window plus three 1×1 windows can be fitted into
the orange area, 4 NWs per side, therefore maximum 8 NWs
for WMAX = LMAX = 8. The empty pixels between NW2,

2

NW1 NW2 NW3 NW4

Fig. 11. Worst-case for the number of NWs

NW3 and NW4 are necessary for the worst-case, otherwise
the NWs would not have been separate. The general formula
that can be derived from the worst case is:

NWMAX =

⌈
WMAX

2

⌉
+

⌈
HMAX

2

⌉
(5)

Similarly to the AC block, NWs are pushed into the FIFO
buffers and finally stored into the NW SIPO register. FIFOs
are necessary because in the parallel processing, more than
one NWs can be recognized in the PAC windows processed.

3) Expansion Check: Given a certain candidate window,
the EC block ensures that the window is expandable without
overlapping with other windows. If the candidate window is
expandable, the result is passed to the Priority Selection block.

Given (XC , YC ,∆XC ,∆YC) the coordinates of the candi-
date window and (XN , YN , ∆XN ,∆YN) the coordinates of
a near window, the following values are calculated in the EC
block:
δL = XC−(XN + ∆XN), the distance between the left

border of the candidate window and the right border
of the near window;

δR = XN − (XC + ∆XC), the distance between the
right border of the candidate window and the left
border of the near window;

δU = YC − (YN + ∆YN), the distance between the
upper border of the candidate window and the bottom
border of the near window;

δD = YN − (YC + ∆YC), the distance between the
bottom border of the candidate window and the upper
border of the near window.

The distances δL, δR, δU and δD are depicted in Figure 12. For
the sake of clarity, in Figure 12 the distances are represented
for different near windows, with a directed arrow showing
the direction of the positive value. During the execution of

δU

δR

δL

δD

Candidate Window

Near Window(2)

Near Window(1)

Near Window(4)

Near Window(3)

Fig. 12. Expansion check values

8

the algorithm, all δL, δR, δU and δD are evaluated for every
window.

For every near window, the flags R, RD, D, LD are
calculated, to evaluate which expansions are possible for the
candidate, according to the following conditions:

R = (δR ≥ 1) || (δL ≥ 0) || (δU ≥ 0) || (δD ≥ 0) (6)
RD = (δR ≥ 1) || (δL ≥ 0) || (δU ≥ 0) || (δD ≥ 1) (7)
D = (δR ≥ 0) || (δL ≥ 0) || (δU ≥ 0) || (δD ≥ 1) (8)

LD = (δR ≥ 0) || (δL ≥ 1) || (δU ≥ 0) || (δD ≥ 1) (9)

where || is the or operator. These conditions hold because
overlapping is excluded. The flags are generated for every NW
and the overall flags for the CW are calculated as the and
of all the NW specific flags. For the overall flag, quadrant
boundary conditions and maximum window size must be and-
ed.

IV. RESULTS

A. Timing model

Figure 13 shows the timing model of the CA in a block-
diagram style. In order to set the parallelism degree for
the architecture, each block is characterized by a worst-case
execution time, for a clock frequency of 50 MHz, which is a
reasonable target for RTAX2000 implementation. The timing
block diagram describes the timing sequence of the different
algorithm sections. Each section S is characterized by the
worst-case number of cycles required for the execution, nS .
For the window load section:

nWL = LWL ·NDT (10)

where LWL = 1 is the latency of the window load section
and NDT is the maximum number of DTs.

In the AC section, the AC block and the NWC block run
in parallel in the same time. The timing estimation for this
section can be calculated as:

nAC = ACi + LAC ·NDT (11)

where LAC = 2 is the latency of the AC section and ACi

is the number of iterations of the AC section. For each DT,
the number of iterations ACi of the AC/NWC section is
roughly given by ACi ' dNWIN/PACe, where NWIN is the
maximum number of windows that the clustering algorithm
can define and PAC is the parallelism of the AC/NWC
section. This formula assumes that NWIN windows have to
be checked since the beginning, that is a large approximation.
A more accurate worst-case formula assumes that a new
window is opened for each of the first NWIN DTs:

ACi = (NDT −NWIN) ·
⌈
NWIN

PAC

⌉
+

NWIN−1∑
i=1

⌈
i

PAC

⌉
=

= (NDT −NWIN) ·
⌈
NWIN

PAC

⌉
+

+PAC ·
⌈
NWIN − 1

PAC

⌉
·

⌈
NWIN−1

PAC

⌉
+ 1

2
(12)

Window

Load (WL)

Adjacency

Check (AC)

Expansion

Check (EC)
Near-

Window

Check

(NWC)

Priority

Selection

(PS)

Add

neighbors

nWL nAC nEC nPS nAN

Register

Write

Register

Write

nRW

Fig. 13. Clustering Algorithm timing model

The register write section consists in writing the CW and
NW values to the window registers for EC processing. This
operation is usually done during the AC processing, but in
the theoretical worst case that all CWs/NWs are concentrated
at the end, PAC + 1 cycles are required. Therefore, for the
maximum theoretical worst-case, we can include these cycles
for every DT:

nRW = PAC + 1 (13)

The EC section compares the CWs with the NWs. Each
unit processes one CW and a number of NWs dependent on
the latency of the block, LEC . The number of NWs processed
in parallel is NNW,EC = dNWMAX/LECe. The execution
cycles required by the EC block is given by:

nEC = LEC ·NDT (14)

For the Priority Selection block, given LPS the latency of
the unit, we have:

nPS = LPS ·NDT (15)

Finally, after all the DTs in a frame have been processed,
the windows are sent to the next block, while adding the
neighbouring one-pixel frame around the window.

nAN = NWIN + LAN (16)

Parameter Description Value
(frame)

Value
(quad-
rant)

NDT Maximum number of DTs 1000 813
NWIN Maximum number of windows 300 113
LWL Latency of window loading 1 1
LAC Latency of the AC block 2 2
PAC Parallelism of the AC and NWC

blocks
8 4

LEC Latency of the EC block 2 8
LPS Latency of the Priority Selec-

tion (PS) block
2 2

NWMAX Maximum number of NWs 8 8
LAN Latency of the final window

transmission and neighbour in-
clusion process

2 2

TABLE I
PARAMETERS OF THE TIMING MODEL

9

1 2 4 8

2 101,1% 102,7% 105,9% 112,4%

4 62,0% 63,6% 66,8% 73,4%

LEC

PAC

(a) Quadrant clustering

1 2 4 8

2 273,9% 275,9% 279,9% 287,9%

4 150,4% 152,4% 156,4% 164,4%

8 95,7% 97,7% 101,7% 109,7%

LEC

PAC

(b) Full-frame clustering
TABLE II

RESULTS OF THE TIMING MODEL

The total worst-case execution cycles is given by

nTOT = nWL + nAC + nRW + nEC + nPS + nAN (17)

The number of available cycles per frame nA, considering
a processing clock frequency fck = 50 MHz and a frame time
Tf = 1 ms is:

nA = bTf · fckc = 50000 (18)

The parameters of the timing model are summarized in
Table I, for both the full-frame clustering and quadrant-specific
clustering.

The architecture is parametric with two separate degrees of
freedom:

• PAC is the number of windows processed in parallel in
the AC/NWC sections.

• LEC is the latency of the EC block, which defines the
number of NWs processed in parallel by the EC.

The other latencies are parametric as well, but are fixed
due to timing closure, to reach the target clock frequency on
the RTAX FPGA. The results of the timing model for the
parameters PAC and LEC are represented in Table II, for the
quadrant and frame versions of the algorithm, respectively. The
algorithm execution time is expressed as a percentage of the
single frame time, fixed to 1 ms. The algorithm execution time
needs to be lower than the frame time (¡100%) for the system
to meet the requirements and to be considered real time.

B. Synthesis Results

In this section, the synthesis results on the Microsemi
RTAX2000S FPGA [10] for both quadrant clustering and full-
frame clustering are reported. The RTAX2000S have 21504
combinational resources, 10752 registers and 288 Kbits of
RAM available to the user. The synthesis results are given as a
function of the architecture parallelism at AC level, PAC , and
the parallelism at EC level, LEC . The HW resource occupation
increases with the increasing of PAC , and decreases with
the increasing of LEC , as the latter parameter represents the
latency of the EC block, i.e., the lower LEC , the higher the
parallelism.

1 2 4 8

2 75,1% 64,2% 55,2% 49,4%

4 89,6% 79,1% 69,6% 63,9%

LEC

PAC

(a) Combinational

1 2 4 8

2 28,6% 29,1% 28,9% 28,7%

4 32,9% 33,3% 33,1% 33,0%

LEC

PAC

(b) Registers

1 2 4 8

2 37,5% 37,5% 37,5% 37,5%

4 75,0% 75,0% 75,0% 75,0%

LEC

PAC

(c) RAM
TABLE III

RTAX2000S SYNTHESIS RESULTS FOR QUADRANT CLUSTERING

Table III shows the synthesis results for the quadrant clus-
tering, as a function of PAC and LEC parameters. The timing
analysis in Table II shows that all the solutions with PAC = 4
are good. Therefore, the solution in the case of quadrant
clustering is given by PAC = 4, LEC = 8, minimizing HW
resource occupation.

This configuration gives an occupation of 63.9 % combina-
tional cells, 33.0 % registers, 75.0 % RAM, and has a worst-
case execution time of 73.4 % frame-time.

Table IV shows the synthesis results for the full-frame
clustering. From the timing analysis shown in Table II, only
the solutions with PAC = 8 and LEC = {1, 2} are good.
Therefore, the solution in the case of full-frame clustering
is given by PAC = 8, LEC = 2, minimizing HW resource
occupation.

This configuration gives an occupation of 29.4 % combina-
tional cells, 11.5 % registers, 51.6 % RAM, and has a worst-
case execution time of 97.7 % frame-time.

Compared to the quadrant clustering, the full-frame clus-
tering is much more optimized in terms of HW resource
occupation. This result was predictable, since the worst-case
concentration of DTs forces to have the quadrant clustering
nearly as powerful as the whole frame clustering. In fact, the
single quadrant clustering must be able to process 813 DTs in
the frame time, with a maximum number of windows of 113,
while the full-frame version has to deal with 1000 DTs and
300 windows.

The final architecture parameters are shown in Table I.

V. CONCLUSION

In this paper the problem of data clustering for the Lighting
Imager has been examined. First of all a preliminary analysis
has been carried out to understand the possible saving in
terms of data-rate with the insertion of a clustering algorithm,

10

1 2 4 8

2 20,8% 17,8% 15,1% 13,6%

4 24,8% 21,8% 19,2% 17,6%

8 32,5% 29,4% 26,8% 25,2%

LEC

PAC

(a) Combinational

1 2 4 8

2 8,0% 8,1% 8,0% 8,0%

4 9,2% 9,3% 9,2% 9,2%

8 11,4% 11,5% 11,5% 11,4%

LEC

PAC

(b) Registers

1 2 4 8

2 17,2% 17,2% 17,2% 17,2%

4 26,6% 26,6% 26,6% 26,6%

8 51,6% 51,6% 51,6% 51,6%

LEC

PAC

(c) RAM
TABLE IV

RTAX2000S SYNTHESIS RESULTS FOR FULL-FRAME CLUSTERING

together with a literature analysis on the different clustering
possibilities. A novel algorithm has been proposed, both in
a quadrant specific and in a full frame version, in compari-
son with the algorithm available in literature. The algorithm
has been mapped creating a block level system architecture.
Keeping in mind the system timing constrains, fixed at 50MHz
on the Microsemi RTAX2000 FPGA, a timing model has
been proposed. The target of this analysis was to show which
parameters of the two identified algorithm guarantee that the
execution time stays under the frame time, as required at
system level. Finally a synthesis has been performed on these
architectures. From the results of this study, it is possible
to notice that, once the timing constraints is met, full-frame
clustering is much more optimized in terms of HW resource
occupation. In future work the algorithm could be improved
further employing more than one FPGA, exploiting advantages
coming from parallelisation. Also a more sophisticated testing
environment could be created, taking advantages of the ESA
and NASA Earth Observation catalogue available online.

ACKNOWLEDGMENT

This research project was funded by Leonardo S.p.A.,
Campi Bisenzio, Firenze, Italy.

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, Sep 1999.
[Online]. Available: http://dx.doi.org/10.1145/331499.331504

[2] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in Pro-
ceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining (KDD-96), E. Simoudis, J. Han, and U. M. Fayyad,
Eds. AAAI Press, 1996, pp. 226–231.

[3] Y. Chen and L. Tu, “Density-based clustering for real-time stream
data,” Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining - KDD 2007, 2007. [Online].
Available: http://dx.doi.org/10.1145/1281192.1281210

[4] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan,
“Clustering data streams: theory and practice,” IEEE Trans. Knowl.
Data Eng., vol. 15, no. 3, pp. 515–528, May 2003. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2003.1198387

[5] C. C. Aggarwal, T. J. Watson, R. Ctr, J. Han, J. Wang, and P. S. Yu, “A
framework for clustering evolving data streams,” in Proceedings of the
29th VLDB Conference, 2003, pp. 81–92.

[6] A. Magdy, N. A. Yousri, and N. M. El-Makky, “Discovering clusters
with arbitrary shapes and densities in data streams,” 2011 10th
International Conference on Machine Learning and Applications and
Workshops. [Online]. Available: http://dx.doi.org/10.1109/ICMLA.2011.
56

[7] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in In 2006 SIAM Conference on
Data Mining, 2006, pp. 328–339.

[8] P. Hore, L. Hall, D. Goldgof, and W. Cheng, “Online fuzzy
c means,” NAFIPS 2008 - 2008 Annual Meeting of the North
American Fuzzy Information Processing Society. [Online]. Available:
http://dx.doi.org/10.1109/NAFIPS.2008.4531233

[9] L. Tommasi, G. Basile, A. Romoli, and M. Stagi, “Design and perfor-
mance of the lightning imager for the meteosat third generation,” in
Proc. 6th Internat. Conf. on Space Optics, 2006.

[10] “Rtax-s/sl and rtax-dsp radiation-tolerant fpgas datasheet.” https://www.
microsemi.com/product-directory/rad-tolerant-fpgas/1694-rtax-s-sl, ac-
cessed: 2019-04-29.

[11] S. Lorenzini, R. Bardazzi, M. D. Giampietro, M. Taccola, L. P. Cuevas,
and F. Feresin, “Optical design of the lightning imager for mtg,” in
International Conference on Space Optics 2012, 2012.

[12] S. Parkes and P. Armbruster, “Spacewire: A spacecraft onboard network
for real-time communications,” vol. 2005, 2005, pp. 6–10, cited By
36. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-33751412258&doi=10.1109%2fRTC.2005.1547397&partnerID=
40&md5=2d66d04e4428eb62d6e270a10d55a61e

Pietro nannipieri Pietro Nannipieri graduated cum
Laude in Electronic Engineering (MSc) at the Uni-
versity of Pisa in June 2016. During his bachelor
degree he has been a visiting student at University
College of London for one year. His interests are
digital and VLSI design as well as electronics for
space applications. He took part in the 18th and 21st
ESA Rexus Program with PHOS team as electronic
engineer and with U-PHOS Team as project man-
ager. He is a PhD student in the VLSI lab of the
information engineering department, University of

Pisa and he his currently a visiting researcher at ESTEC (ESA). His work
mainly focus on the development of IPs for satellite on-board data handling,
(i.e. SpaceFibre), but also on signal processing.

11

Daniele Davalle has got the M.Sc. degree in Elec-
tronic Engineering from the University of Pisa in
2011 (110 cum laude). He received the Ph.D. degree
in 2015, with a thesis on electronic systems design
for on-board satellite digital signal processing and
networking, at the Department of information Engi-
neering, University of Pisa. His research interests
are mainly focused on algorithm/architecture co-
design for communication, image processing and
networking systems. His expertise ranges from sys-
tem specification definition, algorithm modelling and

simulation to the complete hardware implementation flow for Xilinx and
Altera FPGAs and up to the logic synthesis for Microsemi RTAX FPGAs and
for ASICs. He is advisor of some Master thesis in Electronic Engineering in
the field of VLSI architectures for digital signal processing and networking.
He is member of the SpaceWire and SpaceFibre working groups and he is
involved in the SpaceFibre standardization committee. In 2014 he has been
visiting researcher at the European Space Agency. He has worked also as
contractor for Consorzio Pisa Ricerche.

Stefano Nencioni Stefano Nencioni got the Lau-
rea in Electronic Engineering from University of
Florence in 1998. From 1999 to 2001, he was
with the SIRIO PANEL, as Electronic Designer of
part of the Cockpit for Aircraft and Car. He is
Electronic Digital Designer at Leonardo Company.
He is involved in several Projects, ViR for DAWN,
ALADIN, JIRAM for JUNO, as FPGA designer and
Electronic Engineer Leader. Currently he is involved
as Electronic Engineer Leader in the Lightning Im-
ager instrument.

Paolo Lombardi Paolo Lombardi graduated cum
laude in Electronic Engineering at the University of
Florence in April 1998. Since September 1998 is
ASIC/FPGA specialist in the Airborne and Space
Systems division of Leonardo SpA, with specific
expertise and experience in applications for Space
products.

Luca Fanucci Luca Fanucci got the Laurea and
the Ph.D. degrees in Electronic Engineering from
University of Pisa in 1992 and 1996, respectively.
From 1992 to 1996, he was with the European Space
Agency - ESTEC, Noordwijk (NL), as research fel-
low. From 1996 to 2004 he was a senior researcher
of the Italian National Research Council in Pisa. He
is Professor of Microelectronics at the University
of Pisa. His research interests include several as-
pects of design technologies for integrated circuits
and electronic systems, with particular emphasis on

system-level design, hardware/software co-design and sensor conditioning
and data fusion. The main applications areas are in the field of wireless
communications, low power multimedia, automotive, healthcare, ambient
assisted living and technical aids for independent living. He is co-author
of more than 400 journal and conference papers and co-inventor of more
than 40 patents. He served in several technical programme committees of
international conferences. He was Program Chair of DSD 2008 and DATE
2014 and General Chair of DATE 2016. He is a member of the editorial board
of IOS Press Technology and Disability Journal. He is a Senior Member of
the Institute of Electrical and Electronic Engineers.

